ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. С момента ввода в обиход теории суперсимметрии и до настоящего времени эта теория являлась лишь только неподтвержденной физической гипотезой. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
Но применение переизлучателей сопряжено с рядом технических сложностей: эти вещества могут растворяться в аргоне или отслаиваться от стенок детектора. Особенно актуальны эти проблемы станут при создании очень больших детекторов. Исследования, проведённые нашим коллективом, показывают, что возможно создание детекторов на основе аргона, которые будут работать без переизлучателей, хотя и с меньшей чувствительностью. Идея заключается в регистрации излучения в видимом и инфракрасном диапазоне.
Даже если на детекторе с такой технологией не получится обнаружить вимпы, то он всё равно сослужит хорошую службу науке: на нём можно будет регистрировать другие события с большим энерговыделением, в том числе достаточно редкие. Например, такие детекторы можно будет использовать для регистрации солнечных нейтрино. Тёмная материя состоит из разных частиц, как и барионная?
Вполне возможно, что эта субстанция неоднородна и в ней присутствуют различные частицы. Что касается аксионов, метод их регистрации основан на том, что в условиях магнитного поля аксионы могут превращаться в фотоны, которые уже можно зарегистрировать. Проводились разные эксперименты, но, к сожалению, зарегистрировать аксионы пока не удалось.
Можно сказать, что если бы не было тёмной материи, то наш мир был бы совершенно иным. Например, если тёмную материю «отключить», то гравитационная масса всех объектов во Вселенной окажется намного меньше, поэтому звёзды и планеты просто разлетятся в разные стороны, а галактики исчезнут. Например, плотность тёмной материи значительно выше в центрах галактик, чем в среднем по Вселенной.
В то же время наблюдаются галактики, где почти отсутствует тёмная материя или, наоборот, почти полностью состоящие из неё. При этом считается, что тёмная энергия распределена достаточно равномерно. Как они связаны и что это вообще такое?
Тёмная энергия — это, по сути, величина, которая была введена Эйнштейном в своё время для объяснения стационарной модели Вселенной. Необходимость в этой переменной, казалось бы, отпала, когда Александр Фридман представил модель нестационарной Вселенной, и позже было экспериментально установлено, что Вселенная расширяется. Однако впоследствии выяснилось, что Вселенная не просто расширяется, а делает это с ускорением — это означает, что всё же существует некая дополнительная сила, о свойствах и природе которой мы пока ничего не знаем.
Но применение переизлучателей сопряжено с рядом технических сложностей: эти вещества могут растворяться в аргоне или отслаиваться от стенок детектора. Особенно актуальны эти проблемы станут при создании очень больших детекторов. Исследования, проведённые нашим коллективом, показывают, что возможно создание детекторов на основе аргона, которые будут работать без переизлучателей, хотя и с меньшей чувствительностью. Идея заключается в регистрации излучения в видимом и инфракрасном диапазоне. Даже если на детекторе с такой технологией не получится обнаружить вимпы, то он всё равно сослужит хорошую службу науке: на нём можно будет регистрировать другие события с большим энерговыделением, в том числе достаточно редкие. Например, такие детекторы можно будет использовать для регистрации солнечных нейтрино. Тёмная материя состоит из разных частиц, как и барионная? Вполне возможно, что эта субстанция неоднородна и в ней присутствуют различные частицы. Что касается аксионов, метод их регистрации основан на том, что в условиях магнитного поля аксионы могут превращаться в фотоны, которые уже можно зарегистрировать. Проводились разные эксперименты, но, к сожалению, зарегистрировать аксионы пока не удалось.
Можно сказать, что если бы не было тёмной материи, то наш мир был бы совершенно иным. Например, если тёмную материю «отключить», то гравитационная масса всех объектов во Вселенной окажется намного меньше, поэтому звёзды и планеты просто разлетятся в разные стороны, а галактики исчезнут. Например, плотность тёмной материи значительно выше в центрах галактик, чем в среднем по Вселенной. В то же время наблюдаются галактики, где почти отсутствует тёмная материя или, наоборот, почти полностью состоящие из неё. При этом считается, что тёмная энергия распределена достаточно равномерно. Как они связаны и что это вообще такое? Тёмная энергия — это, по сути, величина, которая была введена Эйнштейном в своё время для объяснения стационарной модели Вселенной. Необходимость в этой переменной, казалось бы, отпала, когда Александр Фридман представил модель нестационарной Вселенной, и позже было экспериментально установлено, что Вселенная расширяется. Однако впоследствии выяснилось, что Вселенная не просто расширяется, а делает это с ускорением — это означает, что всё же существует некая дополнительная сила, о свойствах и природе которой мы пока ничего не знаем.
Доктор Дийкграаф пишет: «Если наш мир — лишь один из многих, что нам делать с остальными? Взгляд современной физики на Вселенную — это полная противоположность представлениям Эйнштейна о едином космосе». Дийкграаф, кстати, сказал, что название своей статье придумывал не он, и считает его излишне громогласным. Возможно, за теорией струн всё же есть некий единый фундаментальный принцип. Однако никто, в том числе и создатели теории, даже предположить не могут, каким может быть этот принцип. Что привело ученых к теории струн? Открытие загадочной силы, «темной энергии» , которая ускоряет расширение Вселенной, отдаляя галактики друг от друга всё с большей скоростью. Темная энергия имеет все признаки космологической постоянной , которую Эйнштейн вводил в свои уравнения теории относительности столетней давности, но потом от нее отказался. Это явление даже получило название «проблемы космологической постоянной». Пока что физики дают единственное объяснение этой проблеме: возможно, во всех альтернативных вселенных эта постоянная принимает случайное значение. Это значит, что мы живем в одной из тех вселенных, где количество темной энергии позволяет сформироваться звездам и галактикам — там, где это в принципе возможно. Другие физики считают ландшафт теории струн логическим продолжением коперниканской революции : если Земля может не быть центром Солнечной системы и единственной планетой, наша вселенная тоже может быть не единственной. Существует и группа ученых, которые считают идею мультивселенной эпистемологическим абсурдом, тупиковой ветвью познания, основанного на бездоказательных спекуляциях. Долгожданное открытие бозона Хиггса в 2012 году стало последним кирпичиком в фундаменте амбициозной теоретической конструкции в физике элементарных частиц , известной как Стандартная модель элементарных частиц. Стандартная модель объясняет все формы материи и энергии, кроме темной материи и энергии.
Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов. Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность. Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели графики справа такая точка имеется. Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной. Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией. Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации. В объединении гравитации с остальными взаимодействиями также есть трудности. Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий фотон, W- и Z-бозоны, глюоны равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин. А преобразование суперсимметрии как раз и есть такое преобразование. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно. Природа темной материи Вселенной Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая светящаяся материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию. Прямым указанием на существование темной материи являются зависимости скоростей звезд в спиральных галактиках от их расстояния до центра. Эту зависимость легко вычислить. Оказывается, экспериментальные данные существенно расходятся с предсказаниями теории. Расхождение объясняют тем, что галактики находятся в «облаках» темной материи. Частицы темной материи взаимодействуют только гравитационно.
С теорией суперсимметрии придётся расстаться
Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Напр., в теории С. происходит сокращение бесконечностей, которые присущи всем релятивистским теориям и представляют проблему, особенно в квантовой гравитации. Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии.
«Вселенная удваивается»
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания | Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. |
Поиски суперсимметрии на коллайдере принесли новую интригу | С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. |
С теорией суперсимметрии придётся расстаться | Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. |
Супер ассиметричная модель вселенной попович | Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. |
Супер ассиметричная модель вселенной попович | Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами.
И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии.
В последние месяцы они проводили на БАК опыты с В-мезоном. В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория. Однако Тара Шиарс отказалась полностью отвергнуть теорию Суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Хорошо, что науке предстоит ещё такое открывать, что мы пока и не представляем себе этого! LHC себя ещё покажет. Дейвид Эванс из Бирмингемского университета, работающий в CERN, где коллайдер, говорил, что многие вообще не верили в сам принцип действия этого чуда физики Всё путём..
С теорией суперсимметрии придётся расстаться
На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак. Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
Супер ассиметричная модель вселенной попович
Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ.
Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Поиски суперсимметрии на коллайдере принесли новую интригу | Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. |
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания | К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». |
Большой адронный коллайдер подорвал позиции теории суперсимметрии » Последние новости — Аргументы | Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. |
Нобелевский лауреат предположил открытие суперсимметрии: Космос: Наука и техника: | Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. |
Доказательство суперсимметрии полностью изменит наше понимание Вселенной | В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии. |