Человеческий глаз может не заметить разницы между 120 Гц и 144 Гц, но легко увидит разницу между 30 FPS и 60 FPS. Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Этот диапазон видимых частот, который воспринимает человеческий глаз, составляет от приблизительно 4.3 x 1014 Гц до 7.8 x 1014 Гц. ОКнутые люди 2 — Выпуск 3. ВОЛКОВА и ЧЕХОВА против ГАВРИЛИНОЙ и МИГЕЛЯ. Jinxy Jenkins, Lucky Lou Жизнь такая, какой ее видим МЫ YOGA. Таким образом, можно сказать, что человеческий глаз видит световые волны с частотами в диапазоне от 430 до 770 триллионов герц.
Сколько кадров в секунду реально видит человеческий глаз?
Сколько FPS видит человеческий глаз? | В некоторых случаях человеческий глаз может видеть детали на скоростях выше 90 Гц. |
Сколько кадров в секунду видит человеческий глаз — Александр Навагин | 2 Так сколько человеческий глаз видит кадров в. Количество герц у современных экранов сильно зависит от множества. |
Какое самое высокое разрешение телевизора может видеть человеческий глаз?
Сколько FPS видит человеческий глаз? → — IT новости. Человеческие глаза не могут видеть вещи с частотой выше 60 Гц, так почему же мониторы с частотой 120/144 Гц лучше? Сколько кадров в секунду (FPS) видит человеческий глаз? Однако на самом деле человеческий глаз видит не в виде кадров, как это делает видеокамера.
Сколько кадров в секунду воспринимает человеческий мозг
В заключение следует отметить, что понимание научных основ зрения помогает пролить свет на то, как наши глаза способны воспринимать окружающий мир. Понимая процесс зрения и возможности нашей зрительной системы, мы можем лучше оценить технологии и средства массовой информации, предназначенные для создания реалистичных и захватывающих визуальных впечатлений. Отделяя факты от вымысла В условиях продолжающихся споров о возможностях человеческого глаза в восприятии кадров в секунду fps очень важно отделить факты от вымысла. На эту тему возникло множество мифов, и настало время пролить свет на правду. Человеческий глаз видит больше, чем 30 кадров в секунду. Вопреки распространенному мнению, человеческий глаз способен воспринимать гораздо больше, чем 30 кадров в секунду. Хотя точный предел до сих пор является предметом споров среди экспертов, общепризнанно, что средний человек способен различать не менее 60-75 кадров в секунду.
Некоторые люди с исключительным зрением могут воспринимать даже 200 кадров в секунду. Более высокая частота кадров повышает четкость изображения. Увеличение частоты кадров не обязательно приводит к улучшению четкости изображения. Хотя увеличение частоты кадров в секунду может помочь уменьшить размытость изображения, другие факторы, такие как разрешение, контрастность и освещение, также играют важную роль в определении качества изображения. Важно рассматривать эти факторы в комплексе, а не концентрироваться только на частоте кадров в секунду. Предпочтения по частоте кадров у разных людей различны.
Индивидуальные предпочтения в отношении частоты кадров могут быть разными. Некоторые люди могут предпочесть более плавную работу с более высокой частотой кадров в секунду, в то время как другие могут не заметить существенной разницы. На восприятие и предпочтение частоты кадров могут влиять такие факторы, как возраст, острота зрения, знакомство с технологиями. После определенного момента более высокая частота кадров становится незаметной. Хотя человеческий глаз способен воспринимать высокую частоту кадров, существует предел того, что человек может различить. Как только частота кадров превышает определенный порог, разница становится менее заметной.
Этот порог часто обсуждается, но в целом принято считать, что все, что превышает 200-300 кадров в секунду, плохо различимо человеческим глазом. Частота кадров имеет значение в различных контекстах. Значение частоты кадров зависит от контекста. В быстро развивающихся играх или спортивных состязаниях более высокая частота кадров может улучшить общее впечатление от игры, обеспечив более плавное и отзывчивое изображение. Однако в более медленных видах деятельности, таких как просмотр фильмов или веб-серфинг, разница между частотой кадров может быть не столь заметной и значимой. В заключение следует отметить, что возможности человеческого глаза по восприятию кадров в секунду более совершенны, чем принято считать.
Хотя конкретные пределы могут варьироваться в зависимости от конкретного человека, можно с уверенностью сказать, что человеческий глаз способен воспринимать частоту кадров, превышающую 30 кадров в секунду, и что более высокая частота кадров может способствовать улучшению визуального восприятия в определенных условиях. FAQ: Правда ли, что человеческий глаз может воспринимать только 30 кадров в секунду? Нет, это распространенный миф, что человеческий глаз может воспринимать только 30 кадров в секунду. В действительности человеческий глаз способен воспринимать гораздо более высокую частоту кадров. Точное число варьируется от человека к человеку, но большинство людей способны воспринимать и различать отдельные кадры со скоростью около 200-300 кадров в секунду. Как частота кадров влияет на наше восприятие?
Частота кадров оказывает непосредственное влияние на наше восприятие движения. При более высокой частоте кадров движение кажется более плавным и текучим, в то время как при более низкой частоте кадров может наблюдаться заметное отставание или прерывистое движение. Это объясняется тем, что при более высокой частоте кадров в секунду поступает больше информации, что позволяет нашим глазам и мозгу более точно обрабатывать движение.
Сколько минимум фотонов нам нужно видеть?
Для того чтобы цветное зрение работало, колбочкам, как правило, нужно намного больше света, чем их коллегам-палочкам. Поэтому в условиях низкой освещенности цвет «гаснет», поскольку на передний план выходят монохроматические палочки. В идеальных лабораторных условиях и в местах сетчатки, где палочки по большей части отсутствуют, колбочки могут быть активированы лишь горсткой фотонов. И все же палочки лучше справляются в условиях рассеянного света.
Как показали эксперименты 40-х годов, одного кванта света достаточно, чтобы привлечь наше внимание. В 1941 году исследователи Колумбийского университета усадили людей в темную комнату и дали их глазам приспособиться. Палочкам потребовалось несколько минут, чтобы достичь полной чувствительности — вот почему у нас возникают проблемы со зрением, когда внезапно гаснет свет. Затем ученые зажгли сине-зеленый свет перед лицами испытуемых.
На уровне, превышающем статистическую случайность, участники смогли зафиксировать свет, когда первые 54 фотона достигли их глаз. После компенсации потери фотонов через всасывание другими компонентами глаза, ученые обнаружили, что уже пять фотонов активируют пять отдельных палочек, которые дают ощущение света участникам. Каков предел самого мелкого и дальнего, что мы можем увидеть? Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть.
Возможно, что форма также позволяет игнорировать преломленный свет, чтобы картинка не выглядела размытой. Таким образом, если взять ширину в 30-60 арксекунд и разделить на 3, то мы и получим фактическую остроту восприятия колбочки. Более или менее. Другими словами, получается, что в изображении должны быть пробелы. Ведь "сенсоры" не смогут определить расстояние, потому что их ширина того же размера. Постоянное движение Однако в отличие от сенсоров камер, наша сетчатка не зафиксирована. Существует феномен, который называется тремор глаз — когда мышцы незначительно вибрируют, с частотой 83. Рамки же составляют от 70 до 103 Гц. Благодаря этим движениям свет может падать на разные колбочки.
При помощи временной выборки и пост-обработки мозг может генерировать картинку гораздо большего изображения от одного зафиксированного на месте рецептора. Если учесть, что наши глаза еще и наполнены "желе", которое и так меняет форму при движении, то почему бы не использовать лишнюю информацию для чего-то полезного. Области распознания Чувствительное поле сенсорного нейрона разделено на две части — центральную и окружную, что выглядит примерно вот так: Благодаря такому разделению получается с высокой эффективностью распознавать границы объектов. Если симулировать картинку, то получается примерно так: Таким образом, если присутствуют колебания, то чувствительные клетки будут регистрировать свет при пересечении границ. В результате формируется картинка с разрешением как минимум в два раза выше. Похожие методы формирования изображений высокого качества используются и в различных технологических системах. Самый простой пример — формирование панорамы при помощи камеры смартфона. Достаточно включить функцию, провести по заданной линии и получается панорама, которую нельзя добиться путем стандартной съемки. Как все это связано с частотой кадров?
Предположим, если все что мы видим постоянно меняется и "шумит", то мозг эффективно регистрирует информацию. Мозг способен проводить суперсэмплинг повышать разрешение и получать в два раза больше данных. И это действительно так. Более того, для получения лучших результатов сигнал должен быть "шумным" — этот феномен известен как Стохастический резонанс. Более того, допустив, что колебания с частотой 83. Получится, что мы более не получаем сигнал, который меняется достаточно быстро для проведения суперсэмплинга. В результате теряется значительная часть воспринимаемых движений и деталей.
Это связано с тем, что зрительные миелиновые нервы способны срабатывать от... Отвечает Дмитрий Ягодкин 20 янв. Более того, реакция на... Отвечает Макс Соколов 14 мар. Нужны ли мониторы на 120, 200, 300 Гц? Стоит ли гнаться за максимальным FPS в играх? Нужны ли мониторы с частотой 120, 200, 300 или даже 350 Гц? И если... Сколько кадров в секунду FPS видит человеческий глаз? Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Я на связи в социальных сетях, добавляйтесь:... Это очередной выпуск из рубрики Разрушитель мифов. В этот раз я расскажу про миф, который гуляет активно среди... Вся правда о герцовке монитора. Покупать 144Гц или 240Гц?
Частота глаза человека
Сколько герц может видеть человеческий глаз? Исследования показали, что ответ составляет от 7 и 13 Гц. Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Сколько Гц может видеть популярный человеческий глаз? by Admin 9 июля 2020 г. Возможности зрения и то, сколько кадров в секунду видит человек, до сих пор не полностью изучены.
сколько герц видит человеческий глаз
Системные требования Fortnite Конечно, для одиночной игры вам достаточно стабильных 60 кадров в секунду, но для соревновательного шутера вам действительно нужно, по крайней мере, выше 144 кадров в секунду. Если вы хотите серьезно относиться к игре, то есть. Может ли человеческий глаз видеть 240 кадров в секунду? Человеческий глаз может видеть со скоростью около 60 кадров в секунду и потенциально немного больше. Некоторые люди считают, что могут видеть до 240 кадров в секунду, и были проведены некоторые тесты, чтобы доказать это. Что такое МП наших глаз?
Главная блог Что такое мегапиксель человеческого глаза? Короткий ответ — 576 мегапикселей. Сколько мегапикселей у лучшей камеры в мире? Стоит ли 4K того в 2020 году? Так стоит ли покупать 4K?
Быстрый ответ — да, если вы планируете использовать разрешение 4K. Если нет, то вам лучше с разрешением 1080p. Хотя модели 4K становятся более доступными из-за коммерциализации, это еще не самая доступная цена. Можете ли вы сказать, в чем разница между 1080p и 4K? Телевизор 1080p имеет 1920 пикселей по горизонтали и 1080 пикселей по вертикали, а телевизор 4k имеет 3840 пикселей по горизонтали и 2160 пикселей по вертикали.
Это может сбить с толку, потому что 1080p относится к количеству пикселей по вертикали 1080 , а 4k относится к количеству пикселей по горизонтали 3840. Почему 4К ТВ бессмысленно?
Влияет не только количество кадров в секунду, но и следующие факторы: амплитуда смены кадра; резкость от перехода на разные цвета; время, необходимое для одного кадра.
Можно склеить 100 не схожих кадров вместе и перелистывать их быстро. Человек в это время будет ощущать дискомфорт, так как вышеперечисленные параметры не соблюдены. Неприятное ощущение образуется из-за того, что органы зрения человека пытаются воспринять каждый кадр в отдельности, так как они не взаимосвязаны.
У испытуемого болят глаза, голова. Если у человека наблюдается эпилепсия, начнется приступ. Выявлено, что человек способен воспринимать четко 120-150 кадров в одну секунду.
Число может и увеличиваться, но восприятие будет ухудшаться. Это означает, что до 150 кадров человек распознает изображение идеально. Если они увеличиваются, это вызывает неприятные ощущения в глазах, дискомфорт.
При этом считается, что при высокой смене кадров за одну секунду показывается большое число картинок, человеческий глаз распознает их плавно. Но даже если он не видит смену кадра, головной мозг все равно ее воспринимает. Научное обоснование Ученые доказали, что при 24-кратной частоте кадров человек воспринимает не только общую картинку на мониторе, но на подсознательном уровне отдельные кадры.
Для разработчиков игр эта информация стала стимулом к проведению дальнейших исследований возможностей органов зрения человека. Поразительно, но глаз человека может воспринимать видеоряд со скоростью 60 кадров в секунду и более. Способность к восприятию большего количества изображений увеличивается, когда вы концентрируетесь на чем-либо.
В этом случае человек способен воспринимать до ста кадров в секунду, не теряя семантической нити видеоизображения. А в случае, когда внимание рассеивается, скорость восприятия может упасть до 10 кадров в секунду. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100.
Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров.
В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект.
Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду в действительности видит глаз Человеческое зрение — это не дискретная система, возможности которой можно описать простыми цифрами.
Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе. Зрительная система воспринимает картинку целостно, замечая только ее изменения.
Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется — разницы нет, будет за секунду меняться 5 кадров, 25, или 250. Пределы восприятия сильно зависят от особенностей наблюдаемого объекта.
Чем быстрее он движется, чем резче эти движения — тем выше предельная частота. Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные. Если этот человек быстро бежит — разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS.
Это различные кинематографические и телевизионные стандарты, не более того! Они таковы, чтобы соответствовать некоторым технологиями телевидения и кино. Не вижу причин тратить время на разоблачении совершенно абсурдно мифа про невидимый 25 кадр. С легкостью можно доказать, что вы сможете заметить даже 60 кадр! Таким образом, приблизительный предел распознавания кадров в секунду большинства индивидов, лежит в интервале от шестидесяти до двухсот FPS. Я очень хотел помочь Вам разобраться в разнице восприятии глаза между 25 и 240 FPS и если статья оказалось полезной - поставьте Лайк.
Ньютон первый использовал слово спектр лат.
Он обнаружил, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц корпускул разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов. Ньютон разделил свет на семь цветов: красный , оранжевый , жёлтый , зелёный , голубой , индиго и фиолетовый. Число семь он выбрал из убеждения происходящего от древнегреческих софистов , что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели [6] [8]. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, ввиду чего некоторые люди не могут отличить его от голубого или фиолетового цвета.
Сколько герц (Гц) может видеть человеческий глаз? (Удивительно)
А при использовании 144-герцового экрана, вы видите кадр, который отстает всего на 7 миллисекунд. У 240-герцовых моделей показатель ещё ниже. Кроме того, вы видите более плавное изображение, за счет меньшего времени, выделенного под каждый кадр. Описанные преимущества подойдут лишь для профессиональных киберспортсменов и любителей соревновательных онлайн-игр. Для игроков, предпочитающих одиночные проекты смысла в этом мало. В таком случае, на наш взгляд, качество картинки стоит выше, чем плавность изображения. Также для просмотра фильмов высокогерцовый монитор не нужен, поскольку 60 кадров в секунду является стандартом для многих цифровых видео-форматов. Повышенная герцовка — это дорого? Высокая частота обновления не всегда ведет к удорожанию монитора.
В игровых сериях она стала уже просто «маст хэв». Если вы всерьез увлекаетесь соревновательными шутерами, авиа- или гоночными симуляторами, вам важна не только максимально высокая частота обновления, но и минимальная задержка. Соответственно, есть смысл рассмотреть более прогрессивные модели — например, Acer Nitro XV252QFbmiiprx в частотой 360 Гц и задержкой 1 мс. Конечно, чтобы реализовать потенциал такого монитора, нужно будет позаботиться о железе и даже кабелях: например, пропускной способности стандарта HDMI 2. Словом, даже, если вы покупаете универсальный монитор для дома, в нем уже, скорее всего, будет матрица с повышенной частотой. И этого будет вполне достаточно: вряд ли через год или два вам начнет не хватать ваших 144 или 240 Гц.
Кроме того, изображения, отображаемые на игровых мониторах, никогда не будут такими высококонтрастными, как чрезвычайно резкие края, использованные в вышеупомянутом исследовании.
Должен ли я купить монитор 144 Гц или 240 Гц? Человеческий глаз может видеть не менее 1 FPS, например, в неподвижных изображениях человеческий глаз может видеть нормально. Однако для плавного просмотра фильмов или игр, не затрагивающих глаза и мозг, минимальная частота кадров составляет 24—30 кадров в секунду. Но если вам действительно нравятся игры и у вас есть бюджет , вам обязательно стоит купить монитор с частотой 144 Гц или 240 Гц. В то время как 60 Гц в основном достаточно для хорошего отображения большинства игр, вам потребуется больше, чем это, чтобы иметь конкурентное преимущество в игровых сценариях. Поскольку глаза большинства людей могут отслеживать движущиеся изображения с частотой до 90 Гц а в некоторых случаях и выше , вам следует как минимум приобрести монитор с частотой 144 Гц для соревновательных игровых потребностей. Это позволит вам быстрее реагировать на любые изменения в игре в режиме реального времени.
Кроме того, плавность увеличенных анимаций выглядит великолепно! Это особенно актуально при переключении с монитора с частотой 60 Гц на дисплей с частотой 144 Гц; Разница очевидна, как день и ночь. Однако переход с дисплея с частотой 144 Гц на дисплей с частотой 240 Гц или дисплей с более высокой частотой обновления не имеет смысла. Конечно, разница есть, но ваши глаза и мозг ее не заметят. Игровой процесс будет отображаться на экране более точно, а задержка ввода будет меньше, но, как правило, не так выражена.
Каков предел самого мелкого и дальнего, что мы можем увидеть? Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть.
Пока объекты любого размера, на любом расстоянии передают фотоны клеткам сетчатки, мы можем их видеть. Вы можете сделать источник света до смешного малым и удаленным, но если он излучает мощные фотоны, вы его увидите». К примеру, расхожее мнение гласит, что темной ясной ночью мы можем разглядеть огонек свечи с расстояния 48 километров. На практике, конечно, наши глаза будут просто купаться в фотонах, поэтому блуждающие кванты света с больших расстояний просто потеряются в этой мешанине. Ночное небо с темным фоном, усеянным звездами, являет собой поразительный пример дальности нашего зрения. Звезды огромны; многие из тех, что мы видим в ночном небе, составляют миллионы километров в диаметре. Но даже ближайшие звезды находятся минимум в 24 триллионах километров от нас, а потому настолько малы для нашего глаза, что их не разберешь.
И все же мы их видим как мощные излучающие точки света, поскольку фотоны пересекают космические расстояния и попадают в наши глаза. Все отдельные звезды, которые мы видим в ночном небе, находятся в нашей галактике — Млечный Путь. Самый далекий объект, который мы можем разглядеть невооруженным глазом, находится за пределами нашей галактики: это галактика Андромеды, расположенная в 2,5 миллионах световых лет от нас. Хотя это спорно, некоторые индивиды заявляют, что могут разглядеть галактику Треугольника в чрезвычайно темном ночном небе, а она находится в трех миллионах световых лет от нас, только придется поверить им на слово.
В интернете в последнее время стала очень популярна тема о 120 Гц мониторах. Часто в этих темах озвучивается идея о том, что на 120 Гц мониторах изображение выглядит лучше даже без 3D-очков. Действительно ли человек способен заметить разницу? Картинка на 120 Гц мониторе выглядит более плавной Как ни странно, но это действительно так. На первых взгляд можно заподозрить противоречие: в одной статье я писал, что максимум — 60 FPS А сейчас говорю, что мы замечаем разницу между 60 и 120 Гц. Как так? Дело в том, что подобные сравнения некорректны. Гц и FPS это совершенно разные величины и они не тождественны, как подразумевают многие пользователи. FPS это кадры в секунду которые отображаются матрицей монитора. Гц это количество сигналов поступающих на матрицу. Казалось бы а ни «одна ли фигня»? Нет, ни одна. Артефакты матриц Человеческий глаз воспринимает 60 FPS. Но мы забываем, что изображение, которое выводится на монитор не является «идеальным»: оно содержит артефакты. Взгляните на график ниже. На нем изображена зависимость светимости пикселя от времени.
Сколько кадров в секунду может видеть человеческий глаз?
обо всем этом читайте в нашей статье. И наши разработали: если вставить этот 1 кадр с совершенно иной информацией, то человеческий глаз не будет его видеть. И наши разработали: если вставить этот 1 кадр с совершенно иной информацией, то человеческий глаз не будет его видеть. обо всем этом читайте в нашей статье. Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз).
Сколько кадров в секунду видит человеческий глаз
Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps. Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное. И наши разработали: если вставить этот 1 кадр с совершенно иной информацией, то человеческий глаз не будет его видеть.
сколько герц воспринимает человеческий глаз
Формирование изображения в мозге — сложный, но очень быстрый процесс: Свет проходит через роговицу глазную поверхность в хрусталик, который играет важную роль в преломлении света; Затем хрусталик фокусирует свет на точку в самой задней части глаза — в сетчатке; После фоторецепторные клетки в сетчатке превращают свет в электрические сигналы; Наконец, зрительный нерв передает электрические сигналы в мозг. Последний преобразует полученные данные в изображения. Подробнее о том, как работает зрительная система, можно почитать тут. FPS и частота обновления Когда вы наблюдаете за футбольным матчем с трибун или приглядываете за ребенком на велосипеде, глаза и мозг обрабатывают визуальные данные как один непрерывный поток информации. Человек привык к частоте кадров от 24 до 30. Например, все фильмы, снятые на плёнку, имеют FPS 24. Это означает, что каждую секунду перед глазами мелькают 24 изображения.
Вот колбочки отвечают за цветное изображение. Взглянем на нашу фотографию ещё раз, колбочки имеют в своём составе определённые пигменты, получается 3 типа цветных «пикселей»: красный, синий и зелёный. Колбочек в здоровом глазу находится порядка 7 миллионов штук и это почти в 17 раз меньше, чем палочек! Более того, палочки и колбочки распределены не равномерно по нашей сетчатке, об этом чуть позже. Теперь мы имеем представление что такое палочки и колбочки. Выходит, если сложить палочки и колбочку, получается около 127 миллионов рецепторов. Значит, в человеческом глазу 127 Мегапикселей, так? Не совсем. Вернее даже, совсем не так.
Давайте, копнём ещё глубже и посмотрим как они работают между собой. Есть еще один важный аспект. Пиксели как в камере, так и в глазу, не работают по отдельности. Они собраны в группы. В камерах эта технология называется биннинг пикселей. Обычно пиксели объединяются в группы по 4 или 9 штук. Получается один большой пиксель. Такой финт ушами нужен, чтобы постараться уловить больше света и максимально избавиться от шумов в фотографии. Но надо оговориться, пиксели в камере всё равно считываются по отдельности.
И запомним ещё один факт, каждый пиксель в камере подключён к матрице отдельно, своим проводом. То есть в камере у которой 10 мегапикселей, 10 миллионов пикселей и 10 миллионов проводов. Только в отличие от смартфонов, палочки и колбочки объединяются в группы по десятки, сотни, а то и тысячи штук! Если в камере, каждый пиксель подлючён одним проводом, то у нас в глазах одним проводом подключены целые группы рецепторов. Такие контакты называются ганглионарной клеткой. Причем палочки, чаще объединяются в такие группы чем колбочки. Их банально больше. Но почему так, поговорим чуть дальше. То есть, выходит, что мозг напрямую получает информацию не от всех 127 миллионов, а уже от объединненых в группу пикселей.
Сколько же их? Физически, у человека в среднем 1 миллион таких проводов или пучков в глазу. Напомню что, 1 мегапиксель, это 1 миллион пикселей. То есть, по этой логике, наш глаз, в среднем видит в разрешении 1 мегапиксель. Но что-то не сходится. Если вывести наше видео в таком качестве на большом мониторе, вы легко увидите зерно. С этим подходом явно что-то не так. Мы видим мир явно более четко. В чем прикол?
И тут надо посмотреть на главный лайфхак в строении сетчатки. Помните, я говорил про неравномерное распределение палочек и колбочек? Давайте посмотрим на этот график. Здесь мы видим концентрацию двух типов рецепторов в разных частях сетчатки. Красный скачок в середине графика. Это место называется Центральная ямка. Или Fovea. Посмотрите на график, на нём наглядно показано распределение наших зрительных рецепторов. Если палочки, светочувствительные пиксели, распределены в основном по краям сетчатки.
Но самое интересное вот в чем. Выясняется, что колбочки, находящиеся в ямке, в основном подключены уже отдельными проводочками, чтобы улучшить качество итоговой картинки. И именно здесь они в приоритете. То есть их можно назвать классическими пикселями, как в камере смартфона! Еще раз. Самые главные, четкие и цветные зрительные рецепторы расположены в самом центре нашей матрицы. Чтобы представить ее размер: он примерно соответствует площади ногтя на вытянутой руке. И это действительно похоже на наш опыт: для того, чтобы внимательно рассмотреть предмет или прочитать текст, мы переводим на него взгляд. То есть как бы рассматриваем его центральной ямкой.
Но почему же тогда, если по бокам у сетчатки только черно-белые колбочки, периферийные объекты мы все равно видим цветными? Это тоже интересный аспект, о нем еще поговорим. А ещё по этому графику видно, что угол обзора в ямке 0 градусов. То есть прямо по середине. Чем дальше мы удаляемся от центра, тем более размытым становится наше зрение, так как там становится слишком мало палочек и преобладают колбочки. То есть наше периферийное зрение, по этой логике должно быть серым и размытым. Так и есть! Но обо всём по порядку. Такой подход может показаться странным.
Тест под названием «критический порог слияния мерцаний» позволил определить специалистам частоту, при которой участники исследования переставали различать мерцание. Распределение порогов слияния мерцаний у участников теста в трех различных измеренияхИсточник: PLOS ONE В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду. Так, некоторые переставали различать мигания света уже при 35 Гц, подавляющее большинство воспринимало от 40 до 50 Гц, а также несколько людей смогли преодолеть порог в 60 Гц.
Для цифровых фильмов используют понятие «частоты обновления», которая выражается в герцах Гц. Чем выше значения показателей, тем быстрее сменяются статичные изображения и реалистичнее выглядит иллюзия движения. FPS и частота обновления немного отличаются. Под FPS подразумевают число самостоятельных кадров, отображаемых в секунду. Частота обновления — это общее количество показов всех изображений за то же время. Дело в том, что для большей реалистичности и минимизации прерывистости видео один кадр может показываться два и более раз, что сопряжено с увеличением скорости кадросмены. Читайте также: Как сделать синяки под глазами от недосыпания Пределы человеческого зрения сколько кадров в секунду видит человеческий глаз 24 кадра в секунду — не предел возможностей человеческого глаза.
Это оптимальное количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда кинематограф был немой и киномеханики крутили ручки, они самостоятельно выбирали скорость видеоряда исходя из темперамента зрителей: для спокойной публики частота составляла 20-24 кадра, а для активной — 24-30. Изменяя параметры, Вы сможете установить личную скорость зрения: Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное. Механизм восприятия видео человеком Глаз человека начинает идентифицировать смену неподвижных картинок в секунду как прерывистое движение, когда их число достигает 12. Если значение FPS мало, то анимация выглядит неровной, а если слишком велико — возникает эффект гиперреалистичности. Что влияет на скорость работы компьютера Одним из главных компонентов создания реалистичного видео является размытие движения. Когда мы наблюдает за объектами вокруг нас, то при их быстром перемещении упускаем детализацию. Иными словами, нам не хватает времени для восприятия полной визуальной информации и теряется острота зрения. В кино такой эффект получают размытием, которое происходит естественным образом при смене кадров.
Но если уровень FPS слишком высок, то данный эффект пропадает, и наблюдатель видит гиперреалистичную картинку. Это мешает ему поверить в происходящее на экране. Исследования Так как эта тема интересна для многих людей, то количество проводимых опытов тоже велико. Ведь все хотят узнать о возможностях своего зрения.
сколько герц воспринимает человеческий глаз
Человеческий глаз не воспринимает информацию дискретно (50 кадров видит, а 51 уже нет.) различия в частоте мерцания человек может воспринимать до 1000 Гц. У нас есть 18 ответов на вопрос Сколько герц может видеть человеческий глаз? Человеческий глаз не воспринимает информацию дискретно (50 кадров видит, а 51 уже нет.) различия в частоте мерцания человек может воспринимать до 1000 Гц. Сколько FPS может видеть человеческий глаз?
Сколько кадров способен уловить человеческий глаз?
- Сколько герц может видеть человеческий глаз?
- Частота кадров: сколько визуальной информации воспринимает человек?
- Частота глаза человека
- Как пульсация освещения и мерцание монитора действуют на зрение и мозг человека
- Что такое герц и как он связан с восприятием человеком
Сколько максимум герц видит глаз?
Поразительно, но глаз человека может воспринимать видеоряд со скоростью 60 кадров в секунду и более. Способность к восприятию большего количества изображений увеличивается, когда вы концентрируетесь на чем-либо. В этом случае человек способен воспринимать до ста кадров в секунду, не теряя семантической нити видеоизображения. А в случае, когда внимание рассеивается, скорость восприятия может упасть до 10 кадров в секунду.
Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100. Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом.
Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет.
Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя.
Сколько кадров в секунду в действительности видит глаз Человеческое зрение — это не дискретная система, возможности которой можно описать простыми цифрами. Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе.
Зрительная система воспринимает картинку целостно, замечая только ее изменения. Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется — разницы нет, будет за секунду меняться 5 кадров, 25, или 250.
Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота. Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные.
Если этот человек быстро бежит — разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS. А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия — то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты. Сравнение 12, 18, 25 и 60 кадров в секунду на динамичном видео Чтобы проверить это, не нужно далеко ходить.
Достаточно запустить на компьютере тяжелую игрушку сначала на низких настройках, чтобы FPS был высоким, а потом — на высоких или максимальных, чтобы получить меньше 30 FPS. Вы сразу заметите разницу: в первом случае объекты хоть и будут менее детальными, но движения — гораздо более плавными. Увидев разницу между 30, 60 и 100 FPS, можно наглядно убедиться, что человеческий глаз видит гораздо больше 24 кадров в секунду.
Предел, после которого разница становится не видна, зависит от индивидуальных особенностей зрения, и в случае с видео или игрой составляет 80-150 кадров в секунду, а иногда и больше. Неожиданные факты Не все знают о таком интересном факте: эксперименты с показом видеоизображения с разной частотой начались более ста лет назад в эпоху немого кино. Для демонстрации первых фильмов кинопроекторы снабжались ручным регулятором скорости.
То есть фильм показывали с той скоростью, с которой крутил ручку механик, а он, в свою очередь, ориентировался на реакцию зала. Изначальная скорость показа немого фильма составляла 16 кадров в секунду. Но при просмотре комедии, когда публика проявляла высокую активность, скорость увеличивали до 30 кадров в секунду.
Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия. Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов. Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным.
Более или менее. Другими словами, получается, что в изображении должны быть пробелы. Ведь "сенсоры" не смогут определить расстояние, потому что их ширина того же размера. Постоянное движение Однако в отличие от сенсоров камер, наша сетчатка не зафиксирована. Существует феномен, который называется тремор глаз — когда мышцы незначительно вибрируют, с частотой 83. Рамки же составляют от 70 до 103 Гц. Благодаря этим движениям свет может падать на разные колбочки.
При помощи временной выборки и пост-обработки мозг может генерировать картинку гораздо большего изображения от одного зафиксированного на месте рецептора. Если учесть, что наши глаза еще и наполнены "желе", которое и так меняет форму при движении, то почему бы не использовать лишнюю информацию для чего-то полезного. Области распознания Чувствительное поле сенсорного нейрона разделено на две части — центральную и окружную, что выглядит примерно вот так: Благодаря такому разделению получается с высокой эффективностью распознавать границы объектов. Если симулировать картинку, то получается примерно так: Таким образом, если присутствуют колебания, то чувствительные клетки будут регистрировать свет при пересечении границ. В результате формируется картинка с разрешением как минимум в два раза выше. Похожие методы формирования изображений высокого качества используются и в различных технологических системах. Самый простой пример — формирование панорамы при помощи камеры смартфона.
Достаточно включить функцию, провести по заданной линии и получается панорама, которую нельзя добиться путем стандартной съемки. Как все это связано с частотой кадров? Предположим, если все что мы видим постоянно меняется и "шумит", то мозг эффективно регистрирует информацию. Мозг способен проводить суперсэмплинг повышать разрешение и получать в два раза больше данных. И это действительно так. Более того, для получения лучших результатов сигнал должен быть "шумным" — этот феномен известен как Стохастический резонанс. Более того, допустив, что колебания с частотой 83.
Получится, что мы более не получаем сигнал, который меняется достаточно быстро для проведения суперсэмплинга. В результате теряется значительная часть воспринимаемых движений и деталей. Что будет, если сигнал обновляется с частотой выше половины частоты колебаний? По мере движения глаза, он будет регистрировать больше деталей, используя эту информацию для создания подробной картинки мира.
Обратите внимание, что посередине цветное изображение, это благодаря центральной ямке и концентрации в ней колбочек. Ах да, ещё мы видим наш нос, если смотрим прямо. Но как же в итоге получается это потрясающе четкая и широкоугольная картинка, которой вы наслаждаетесь прямо сейчас? Мозг Я думаю вы уже догадались, что без мощной нейронной сети тут не обошлось. Мозг — наш процессор, который в идеале освоил «фотошоп»! Давайте разберемся, как он с этим справляется. Проблемы слепого пятна, наш процессор решает очень элегантно. У правого глаза пятно находится справа, у левого слева. Поэтому наш мозг накладывает на правый глаз изображение из левого и наоборот. Происходит взаимозамена и мы не видим никаких чёрных точек. Сосуды, равно как и нос, наш мозг стирает из нашего восприятия. Есть предположения, что когда мы только появляемся на свет, наши глаза видят сосуды. Но со временем мозг учиться их игнорировать. Кстати, тут можно провести прямую параллель с камерами смартфона! У FSI провода, питающие камеру находятся над пикселями, то есть так же как и наши сосуды. Потому она и устаревшая, так как эти провода препятствовали проходимости света. У BSI уже пиксели находятся над проводами, соответственно уже ничего не препятствует прохождению света. Получается наши глаза сделаны по устаревшей технологии FSI. Надо не забывать, что изображение которое делают наши глаза плоское. Мозг сопоставляет их между собой и делает трёхмерными. Что-то похожее мы ощущаем когда смотрим фильм в 3D-очках. Надевая очки обратно, нашему мозгу становится проще объединить эти изображения и картинка становится объёмнее. Так же происходит и у нас. Наконец, изображение переворачивается, становится чётким и цветным! Если с переворотом изображения всё понятно, то почему картинка становится цветной и чёткой? Ежесекундно, глаза делают множество микро-движений, так называемые саккады. Глаза сканируют окружающее пространство, а мозг объединяет снимки и превращает в видеоряд прекрасного качества. Это похоже на заполнение пустых фрагментов пазла. Объясняю — у нас есть небольшой участок матрицы, который может делать цветное и чёткое фото. То есть у нашего мозга уже есть представление о том, каким цветом окрашен тот или иной объект благодаря сканированию. Всё что ему остаётся это сопоставить всю полученную информацию, объединить их в единую чёткую и цветную картинку. Немного напоминает раскрашенную версию 17 мгновений весны, но мозг справляется получше. Фактически, мозг сам дорисовывает за нас итоговую картинку. Придумывает наше мировосприятие. Забавный факт, для этой обработки и сопоставления результатов сканирования или собирания этого пазла, мозгу необходимо примерно 150 миллисекунд. Во время этого процесса наше зрение отключается. Мы ничего не видим. Но из-за такого малого промежутка по времени, наше сознание этого не замечает. То есть каждую секунду, мы страдаем временной слепотой! Что там с ретиной? Сканирование нам нужно из-за того, что в человеческом глазу очень ограниченное пространство. И сделать как в камере, чтобы к каждому пикселю был подключен свой проводок не получается. Эволюция наградила нас зрительной ямкой, в которой, хоть и ограничено, но есть похожая технология как на матрице смартфона. Чтобы каждый участок видимого пространства попал на эту ямку и мы получили хорошую картинку, нам нужны две функции. Первая, это сканер. Нужно захватить каждую точку в пространстве с помощью микродвижений, их как мы помним называют саккады. Саккады сканируют объект или пространство. Мы получаем кучу мелких пазлов, которые нам нужны для итоговой картинки. Вторая функция, это наш мозг. Он собирает эти пазлы в единую картинку. Придаёт чёткости, дорисовывает объекты, наполняет красками. Создаёт виртуальное пространство в нашем сознании, из фотонов, которое мы воспринимаем как реальность. Вот как то так мы воспринимаем мир, и вот так устроены глаза. Но все-таки. С какой точностью глаза это делают. И что там с Retina у Apple? Давайте, наконец, попробуем решить задачку Стива Джобса. Итак, сколько точек на дюйм должно быть у экрана смартфона, лежащего в руке, чтобы мы не замечали на нем пиксели? И теперь давайте решим несложную задачку по геометрии 7 класса. Мы уже посчитали ,что DPI глаза в самом четком месте центральной ямке примерно 9 836 точек на дюйм. Вот здесь находится линза нашего глаза, хрусталик, через который проходит луч. А вот здесь пиксель смартфона в нашей руке. И он должен быть такого размера, чтобы пройдя через хрусталик, он спроектировался ровно в пиксель на сетчатке.
Палочки имеют серый цвет, а колбочки фиолетовый. На иллюстрации видно явное преобладание монохроматических палочек над колбочками Например, сетчатка человеческого глаза имеет приблизительно 7-8 млн колбочек, отвечающих за цветное зрение, и около 120 млн палочек черно-белое зрение. Эту функцию с успехом выполняет зрительный нерв. Узким местом, в которое упирается максимальная частота «кадров», передаваемая органом зрения, является — латентность нервных синапсов участок связи между нейронами, где импульс передается путем выброса и захвата химических веществ. По разным оценкам это примерно 100-150 Гц, что является пределом скорости передачи изображения в зрительную кору головного мозга. Количество нервных волокон в зрительном нерве составляет примерно 1 200 000. Если принять, что одно волокно за такт может передать 1 бит информации, то суммарная пропускная способность зрительного нерва примерно равна 1. Солидный поток. А ведь есть еще слух, обоняние, осязание, температурные и болевые рецепторы, чувство равновесия, проприоцептивное чувство ощущение собственного тела в пространстве. Вся эта нагрузка, не считая кучи других функций, укладывается всего лишь в 25 Вт TDP. Здесь, кстати, кроется ряд вопросов, лежащих в поле биоинформатики. То есть еще до передачи в мозг происходит некая фильтрация и предобработка зрительной информации. Кстати, отсюда следует, что за «такт» сетчатка не в состоянии передать более 1. Другое дело, что в результате обработки серии таких «снимков» в мозгу формируется куда более отчетливая картина происходящего. Еще одним интересным свойством человеческого зрения является тот факт, что мы всегда видим прошлое. Задержка в проведении нервного импульса до центров обработки составляет по разным оценкам примерно 150-180 мс. Именно поэтому, кстати, в профессиональном спорте считается преждевременным стартом рывок спортсмена в промежуток от 0 до 100 мс. Считается, что человек не мог из-за физиологических ограничений успеть отреагировать так быстро. Надо сказать, что эти величины могут меняться в определенных пределах в зависимости от стресса, психоэмоционального состояния, уровня нейромедиаторов, но в целом картина достаточно стабильна. Сравним с фотоаппаратом? Светочувствительность может варироваться в широчайших пределах — от нормального зрения при освещенности в 25000 люкс яркий полдень до регистрации отдельных фотонов в кромешной темноте при максимальной адаптации. Динамический диапазон глаза также поражает на фоне традиционных фотоаппаратов — примерно 24 f-ступени! Для сравнения, максимальный динамический диапазон среди фотоматериалов имеет черно-белая пленка — около 10 f-ступеней. Цветная пленка имеет диапазон около 7, а средняя матрица современного фотоаппарата от 4 до 6. Стоит заметить, что для такой адаптации требуется время. Время привыкания меньше при переходе в светлое помещение — всего несколько секунд. При переходе в темноту это время удлиняется до нескольких минут. Связано это в первую очередь с необходимостью синтеза разрушенного родопсина, зрительного белка, который непосредственно отвечает за возникновение зрительного возбуждения. Световой поток регулируется также как и в фотоаппаратах — диафрагмой. Эту функцию выполняет радужка, отверстие в которой и называют зрачком. По сути, наши глаза — широкоугольный объектив со свойственными ему искажениями на периферии. Однако при реконструкции трехмерной картинки в мозгу это компенсируется. Также мы не замечаем слепое пятно , несмотря на его вполне ощутимые угловые размеры около 1. Оптическая система глаза Для правильной фокусировки лучей нам важны не только размеры и форма элементов, но и их коэффициент светопреломления.