Новости термоядерная физика

Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы.

Эра термоядерного синтеза

Самая грандиозная научная стройка современности. Мы закуем Солнце в «бублик» Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час.
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза Хорошие новости продолжают поступать в области исследований ядерного синтеза.
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост.

Американские физики повторно добились термоядерного зажигания

На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики.

Российский инженер рассказала о значении термоядерного прорыва американских ученых

Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников. Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж. Но с точки зрения промышленности все остается на своих местах: потратили 322, получили 3,15», — резюмируют сотрудники Московского инженерно-физического института в Telegram-канале «Эвтектика из МИФИ». Но в этой гонке принципов — токамаки vs инерциальный термояд — как-то оказался отодвинутым на периферию научного и государственного, что важно!

Этот сценарий, как бы, зеркально противоположен лазерному термояду. Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков. Любопытно, что теоретическую схему этого процесса предложил как раз академик Роберт Нигматулин в середине 1990-х.

По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США. Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты. Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются.

Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону. Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном. Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции.

А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн.

Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона. Кстати, о температурах. Пузырьковый термояд иногда называют «холодным».

Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина. Процесс длится доли пикосекунды 10—12 с.

Лаборатория подтвердила успешный эксперимент в Национальном комплексе лазерных термоядерных реакций, но подчеркнула, что анализ результатов продолжается. Однако точная выработка все еще определяется, и мы не можем подтвердить, что на сегодняшний момент она превышает пороговое значение, — говорится в сообщении. Два осведомленных источника сообщили, что выход энергии превысил ожидаемый, повредив часть диагностического оборудования и затруднив анализ. При этом прорыв уже широко обсуждается учеными, добавили источники. Национальный комплекс лазерных термоядерных реакций стоимостью 3,5 миллиарда долларов изначально строился для испытаний ядерного оружия через имитацию взрывов, но с тех пор использовался для исследований в области термоядерной энергии. Gizmodo США : сможет ли человечество использовать термоядерный синтез как источник энергии?

Ученые давно ведут поиски альтернативных источников энергии для спасения планеты. Один из них — управляемый термоядерный синтез. Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи.

Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него. Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу.

Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. В данном подходе слой жидкого лития берёт на себя часть защитных функций.

Но как удержать плазму и довести ее параметры до необходимых термоядерных значений? Это возможно в магнитном поле. Одно из физических устройств для удержания плазмы в магнитном поле соответствующей конфигурации называется «токамак» — тороидальная камера с магнитными катушками. О том, каким путем шли и идут научные исследования, связанные с токамаками, о возможности альтернативы атомным электростанциям, а также о том, как управлять плазмой с термоядерной реакцией с помощью математических моделей и систем автоматического управления, и насколько важную роль в этом может сыграть международное научное сотрудничество, мы поговорили с Юрием Владимировичем Митришкиным, доктором технических наук. Объясните пожалуйста, суть процесса!

Термоядерная реакция — это слияние ядер легких элементов с выделением энергии. Самое близкое по порогу получение термоядерной реакции — это смесь дейтерия с тритием. Это газ, поступающий через клапаны в тороидальную вакуумную камеру. В камере образуется меняющееся магнитное поле за счет изменения токов в окружающих камеру катушках, оно создает вихревое электрическое поле, которое пробивает газ, образуется плазма и ток в ней, при этом плазма начинает греться за счет прохождения в ней тока. Токамак — это и есть та самая тороидальная камера с магнитными катушками, в которой все происходит. Много таких технологий. Проблема термоядерного синтеза разрабатывается давно, шесть десятков лет, и флагманом в этой области сейчас служит сооружаемый во Франции ITER International Thermonuclear Experimental Reactor — Международный термоядерный экспериментальный токамак-реактор.

Для него развиваются технологии. Этих технологий много, и много связанных с ними сложностей: например, проблемы материалов первой стенки, роботов, которые могут заменять бланкет через определенное время, проблемы магнитного и кинетического автоматического управления плазмой, их интегрирования и много разных других. Но надо понимать, что термоядерный реактор ITER — это не термоядерная электростанция. Вся термоядерная энергия, которая получается внутри него, будет рассеиваться в окружающем пространстве. Однако термоядерная реакция в ITER будет происходить в любом случае, и будет происходить усиление мощности — то есть, на один вложенный ватт за счет термоядерной реакции будет получено 10 ватт. Зачем нужен термояд? Прежде всего для мировой промышленности.

Дело в том, что уже в ближайшее время, где-то к 2050-му г. Потому что чем выше уровень цивилизации, тем больше энергии она требует. И, несмотря на то, что пока еще сохраняются ресурсы нефти, угля, газа, дефицит энергии никак не покроешь за их счет. Единственный выход — это термоядерная энергетика. Вот над этим и работают исследователи, особенно в Европе, и лидеры там — немцы. Это уникальная нация, и они это сделают — создадут термоядерную энергетику. А мы, если всерьез не возьмемся за разработки в этой области, окажемся на задворках истории в решении столь серьезной проблемы.

Известны две дорожные карты. Одна — с очень дорогими термоядерными электростанциями, огромными по размеру, до 9 метров большого радиуса тора токамака-реактора. Вторая — с дешевыми, всего 6 американских центов за 1 квт-час электроэнергии, и 1,6-2,0 метров большого радиуса, и это можно сделать на сферических токамаках, на одном из которых мы и работаем, разрабатывая для него системы управления плазмой. Но можно говорить об их разнообразии? Да, существуют различные сферические токамаки. Они сферические в том плане, что у них аспектное отношение, то есть отношение большого радиуса токамака к малому, составляет, примерно, 1,5, а все другие, конвенциальные, имеют аспектное отношение, приблизительно, 3-4 и выше, и это, в отличие от сферических, не может дать дешевую электроэнергию. Можно строить небольшие установки модульного типа, а потом их наращивать, допустим, вместо одного модуля сделать 10.

Модуль — это небольшая часть всей термоядерной установки, это одна независимая небольшая термоядерная электростанция. Это приведет к снижению цены за электроэнергию по современным представлениям. Когда стали создаваться термоядерные установки, возникла большая наука — это физика высокотемпературной плазмы. Большая, серьезная наука, не все могут ее понимать и осваивать.

Эра термоядерного синтеза

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки.

ядерная физика

Мегаджоули управляемого термоядерного синтеза Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука" Зачем на самом деле строится самый большой термоядерный реактор.
Термоядерный реактор: что это, как устроен, международный термоядерный реактор ИТЭР Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.
Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые, и выделяя огромное количество энергии по пути. На Солнце этот процесс приводится в действие силой гравитации. Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция.

Сейчас всё внимание приковано к международному проекту ITER Международный экспериментальный термоядерный реактор.

Россия получила ценный опыт при разработке отдельных элементов проекта. С учетом него сейчас проектируется установка ТРТ токамак с реакторными технологиями », — рассказал специалист. По его словам, помимо уже полученных навыков там будут отрабатываться новые технологии, необходимые для создания реактора, которых еще нет в ITER.

Например, там будут использоваться высокотемпературные сверхпроводники, которые пока нигде не применялись.

Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию. Инженер-физик добавил, что токамаками занимается уже не первый год целая отрасль ученых. Они зарабатывают на этом проекте, поэтому только выигрывают от экспериментов. Ученые могут преуспеть, но от экспериментальной установки до промышленной еще очень далеко. Плюс нужно будет придумать, как превратить термоядерную энергию, например, в электричество.

До того, как это стало бы технологией, которая начала бы приносить пользу человечеству, еще пройдет довольно много времени. Даже если эта технология состоится, у меня огромное ощущение зря потраченных ресурсов и зря потраченных денег», — заявил Ожаровский.

В качестве следующего шага планируется создание на его основе будущего китайского испытательного термоядерного реактора CFETR , который рассматривается как «искусственное солнце» нового поколения и который станет первым в мире демонстрационным термоядерным реактором. В свою очередь в Германии было объявлено о собственном прорывном достижении в области термоядерного синтеза. Учёные из Института физики плазмы имени Макса Планка IPP нашли способ значительно уменьшить расстояние между горячей плазмой в устройствах ядерного синтеза и стенкой корпуса.

Термоядерный синтез

Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Физик объяснил важность создания прототипа российского термоядерного реактора. Все самое интересное и актуальное по теме "Ядерная физика". На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Китайский термоядерный реактор поставил рекорд в ядерной энергетике.

Ракетчики начали строить термоядерный двигатель

Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее. Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились.

Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией. То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов. В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы.

Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов.

В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома — выделение из него энергии в ядерных реакторах в процессе распада — термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые, и выделяя огромное количество энергии по пути.

Главные новости сегодняшнего дня Новости 9 ноября. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Стартап Helion Energy планирует запустить энергоэффективную установку термоядерного синтеза в 2024 году. Владимир Губайловский Схема установки Trenta. Helion energy Самый экологичный способ получения ядерной энергии — это термоядерный синтез.

Но он начинается при температуре и давлении, примерно таких, как в недрах Солнца. Создать такие условия на Земле совсем непросто, но есть надежда, что все получится Самый знаменитый проект получения термоядерной энергии — это международный проект ИТЭР. Россия принимает в нем самое активное участие. Это — огромная установка, чья стоимость сегодня оценивается в 22 млрд евро. Чтобы запустить процесс на ИТЭР, плазму надо разогреть в токамаке — огромной полой баранке, где высокотемпературную плазму «держат на весу» мощные сверхпроводящие магниты.

Напомним, тогда, затратив 2,05 МДж на питание лазеров, ученые получили 3,15 МДж энергии.

Повторный эксперимент был нужен для того, чтобы подтвердить, что первоначальный успех не был случайностью и технология действительно позволяет генерировать больше энергии, чем затрачивается на запуск реакции. Термоядерный синтез — это процесс, при котором два легких атомных ядра объединяются в одно более тяжелое, высвобождая большое количество энергии. В 1960-х годах группа ученых-первопроходцев из LLNL выдвинула гипотезу, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях.

Выбор сделан - токамак плюс

На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Российские учёные разработали новый материал для термоядерного реактора. Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения.

Лазерный пресс

  • Мегаджоули управляемого термоядерного синтеза / / Независимая газета
  • Физики США вторично добились положительного термоядерного синтеза
  • Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
  • Мегаджоули управляемого термоядерного синтеза

Мегаджоули управляемого термоядерного синтеза

Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием. При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются. Исторически эти исследования вели крупные государственные лаборатории формата ДЖЭТа или Объединенного европейского токамака в Оксфорде, но в последние годы инвестиции хлынули и в частные компании, которые сулят выработать термоядерную энергию уже в 2030-х. По данным Ассоциации термоядерного синтеза, за год до конца июня компании из этой области привлекли 2,83 миллиарда долларов инвестиций, в результате чего общий объем инвестиций частного сектора на сегодняшний день достиг почти 4,9 миллиарда. Николас Хоукер, исполнительный директор стартапа First Light Fusion из Оксфорда, чей подход аналогичен Ливерморской национальной лаборатории, назвал это событие прорывным. Статья написана при участии Дэвида Шеппарда и Дерека Брауэра.

А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге. Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им. Иоффе в группе лазерной диагностики плазмы. Экспериментальная работа на термоядерной установке настолько меня увлекла, что после окончания института я решил связать свою жизнь с наукой! Впереди еще много планов! Хочу, чтобы первый термоядерный реактор запустили именно в России!

Источник изображения: Lawrence Livermore National Laboratory Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии, чем затрачивалось на запуск реакции синтеза. Это могло бы стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и, конечно, избавиться от вредных выбросов в атмосферу. В Ливерморской национальной лаборатории воспроизвели т. Эксперимент проходил в минувшие две недели. В Министерстве энергетики США уже назвали результаты эксперимента «крупным научным прорывом». Полученные данные всё ещё проверяются.

Прорыв, достигнутый после более чем 120 000 попыток, значительно улучшил предыдущий мировой рекорд токамака в 101 секунду, установленный в 2017 году. Такие же процессы происходят на Солнце, а сырьем для термоядерной энергии может быть обычная морская вода. Сун Юньтао, директор ASIPP, сказал, что главное значение этого прорыва заключается в режиме высокого уровня удержания. По его словам, температура и плотность частиц значительно увеличились во время работы с плазмой с высоким уровнем удержания, что заложит прочную основу для повышения эффективности выработки электроэнергии будущих термоядерных электростанций и снижения затрат.

Похожие новости:

Оцените статью
Добавить комментарий