Новости квазары в космосе

Астрофизики из США и Китая заявили, что им удалось раскрыть тайну квазаров, волновавшую ученых в течение последних 20 лет. Открытие и изучение квазара на заре космоса дает исследователям уникальную возможность заглянуть в то время, когда Вселенная была еще молодой и сильно отличалась от того, что мы наблюдаем сегодня. Австралийские ученые обнаружили самый яркий известный квазар во Вселенной — J0529—4351, который почти в 500 раз ярче Солнца. Российско-европейская орбитальная обсерватория "Спектр-РГ" получила первые рентгеновские снимки квазара SMSS J1144-4308, самого яркого активного ядра галактики в ранней Вселенной, который удален от Земли на 9,4 млрд световых лет. Есть в космосе объекты, которые невозможно увидеть невооружённым глазом, при этом они являются чуть ли не самыми яркими источниками света.

Обнаружен самый яркий квазар за последние 9 миллиардов лет истории космоса

Новости космоса: Галактики и темная материя идут рука об руку; вы, как правило, не найдете одно без другого. Анализ показал, что квазары в «пыльных» галактиках, которые выглядят более красными, характеризуются сильным излучением в радиодиапазоне. Астрономы открывают новый квазар, новости космоса, астрономии и космонавтики.

Cамый яркий квазар в ранней Вселенной

Но позже мы обнаружили, что ранее находившаяся в состоянии покоя черная дыра претерпевает переход, в результате чего получается яркий квазар», – рассказала аспирант факультета астрономии и ведущий автор исследовательской работы Сара Фредерик. Оказалось, что галактики, имеющие квазары, примерно в три раза чаще взаимодействуют или сталкиваются с другими галактиками. «Мы уже видели квазары такого возраста ранее, но они были настолько яркими, что их свет невозможно было вычесть, чтобы выявить галактику-хозяина».

Яркий и далекий квазар позволяет увидеть, что происходило в молодой Вселенной

Квазары поражают воображение: энергия их излучения аналогична миллиардам или даже триллионам Солнц! Многие специалисты сходятся во мнении, что одними из самых необычных объектов в космосе являются квазары. самых ярких и мощных объектов во Вселенной. «Мы уже видели квазары такого возраста ранее, но они были настолько яркими, что их свет невозможно было вычесть, чтобы выявить галактику-хозяина».

Ученые раскрыли загадку образования квазаров

Kornmesser Специалистов интересовали причины, по которым ряд квазаров, имеющих схожие свойства, объединены в так называемую «главную последовательность». Ученым удалось связать наблюдения квазаров с Земли с двумя основными факторами. Первый касается интенсивности аккреции падение вещества из окружения на центральное тело в квазаре, а второй связан с особенностями ориентации в пространстве астрономов, которые производят наблюдения над ядрами галактик. Исследование открывает новые возможности для понимания того, как черные дыры набирают свою массу и взаимодействуют с окружением, а также может способствовать пониманию того, какую роль эти физические объекты играют в галактиках и Вселенной.

В конце концов, начиная примерно с 1970-х годов, многие свидетельства включая первые рентгеновские космические обсерватории, знания о черных дырах и современные модели космологии постепенно продемонстрировали, что красные смещения квазара являются подлинными, и, из-за расширения пространства, что квазары на самом деле столь же мощные и столь же далекие, как предположили Шмидт и некоторые другие астрономы, и что их источником энергии является вещество из аккреционного диска, падающего на сверхмассивную чёрную дыру. Это предположение укрепилось благодаря важнейшим данным оптического и рентгеновского наблюдения галактик-хозяев квазара, обнаружение «промежуточных» линий поглощения, объясняющих различные спектральные аномалии, наблюдения гравитационного линзирования, обнаружение Петерсоном и Ганном в 1971 году факта, что галактики, содержащие квазары, показали такое же красное смещение, что и квазары и открытие Кристианом в 1973 году, что «туманное» окружение многих квазаров соответствовало менее светящейся галактике-хозяину. Эта модель также хорошо согласуется с другими наблюдениями, которые предполагают, что многие или даже большинство галактик имеют массивную центральную чёрную дыру. Это также объясняет, почему квазары более распространены в ранней вселенной: когда квазар поглощает вещество из своего аккреционного диска, наступает момент, когда в окрестностях оказывается мало вещества, и поток энергии падает или прекращается, и тогда квазар становится обычной галактикой. Механизм производства энергии в аккреционном диске был окончательно смоделирован в 1970-х годах, и доказательства существования самих чёрных дыр также были пополнены новыми данными включая свидетельства того, что сверхмассивные чёрные дыры могут быть обнаружены в центрах нашей собственной и многих других галактик , что позволило решить проблему квазаров. Современные представления[ править править код ] Квазары находятся в центре активных галактик и являются одними из самых ярких объектов, известных во Вселенной, излучая в тысячу раз больше энергии, чем Млечный Путь, который содержит от 200 до 400 миллиардов звезд. В среднем, квазар производит примерно в 10 триллионов раз больше энергии в секунду, чем наше Солнце и в миллион раз больше энергии, чем самая мощная известная звезда , и обладает переменностью излучения во всех диапазонах длин волн [24]. Спектральная плотность излучения квазара распределена почти равномерно от рентгеновских лучей до дальнего инфракрасного диапазона с пиком в ультрафиолетовом и видимом диапазонах , причем некоторые квазары также являются сильными источниками радиоизлучения и гамма-излучения. С помощью изображений высокого разрешения, полученных с наземных телескопов и космического телескопа Хаббла , в некоторых случаях были обнаружены «галактики-хозяева», окружающие квазары [29]. Эти галактики обычно слишком тусклые, чтобы их можно было увидеть на ярком свете квазара. Средняя видимая звёздная величина большинства квазаров мала и их нельзя увидеть с помощью небольших телескопов. Исключением выступает объект 3C 273 , видимая звёздная величина которого составляет 12,9. Механизм излучения квазаров известен: аккреция вещества в сверхмассивных чёрных дырах , находящихся в ядрах галактик. Свет и другое излучение не могут покидать область внутри горизонта событий чёрной дыры, но энергия, создаваемая квазаром, генерируется снаружи, когда под действием гравитации и огромного трения из-за вязкости газа в аккреционном диске падающее в чёрную дыру вещество нагревается до очень высоких температур. Центральные массы квазаров были измерены с помощью реверберационного картирования и находятся в диапазонах от 105 до 109 солнечных масс. Подтверждено, что несколько десятков близлежащих крупных галактик, в том числе наша собственная галактика Млечный Путь, которые не имеют активного центра и не проявляют никакой активности, подобной квазарам, содержат в своих ядрах подобную сверхмассивную чёрную дыру центр галактики. Таким образом, теперь считается, что хотя все большие галактики имеют чёрную дыру такого типа, но только небольшая часть имеет достаточное количество вещества в её окрестности, чтобы стать активной и излучать энергию таким образом, чтобы её можно было рассматривать как квазар [43]. Это также объясняет, почему квазары были более распространены в ранней Вселенной, поскольку выделение энергии заканчивается, когда сверхмассивная чёрная дыра поглощает весь газ и пыль около неё. Это означает, возможно, что большинство галактик, включая Млечный Путь, прошли свою активную стадию, выглядя как квазар или какой-то другой класс активной галактики, которые зависели от массы чёрной дыры и скорости аккреции, и теперь находятся в состоянии покоя, потому что им не хватает вещества в ближайших окрестностях для генерации излучения.

Несмотря на это квазары достаточно активные объекты, их активность длится не менее нескольких миллионов лет, и использует для этого огромные массы вещества — многие миллионы солнечных масс. Получается, что квазары — это достаточно компактные объекты, которые, как следует из исследования ближайших из них, находятся в ядрах крупных галактик. В большинстве случаев излучение квазаров является настолько сильным, что затмевает собой галактику в которой и находится сам квазар. Кроме оптического, инфракрасного, ультрафиолетового и рентгеновского излучения они выбрасывают потоки быстрых элементарных частиц — космических лучей, которые, перемещаясь в магнитных полях, образуют радиоизлучение квазара. Потоки этих лучей в основном покидают квазар в виде двух струй бьющих в двух разных направлениях, создавая два "радиооблака" на противоположных сторонах квазара. Модель квазара. Наиболее вероятная модель, которая смогла бы описать его наблюдаемые свойства, можно представить следующим образом: в центре вращающегося газового диска располагается массивный компактный объект скорее всего черная дыра. Его центральная горячая часть представляет из себя источник электромагнитного излучения и быстрых космических частиц, которые могут распространятся только вдоль оси диска в следствии чего образуют два противоположно направленных «рукава». Источник энергии. Эта теория, хотя и не единственная, но наиболее известна в настоящее время. Согласно ей квазар получает свою энергию за счёт гравитационного поля массивной черной дыры.

Он интересен тем, что он одновременно является самым ярким объектом ранней Вселенной и при этом он расположен относительно близко к Земле, что дало нам уникальную возможность детально изучить то, как выглядят столь мощные квазары", - заявил научный сотрудник Тулузского университета Франция Элиас Каммун, чьи слова приводит пресс-служба RAS. Квазары представляют собой самые яркие объекты во Вселенной. По своей сути они являются сверхмассивными черными дырами, которые активно поглощают материю и выбрасывают часть ее в виде джетов, пучков раскаленной плазмы, разогнанной до околосветовых скоростей. Сейчас астрономы активно изучают квазары по той причине, что их выбросы предположительно играют ключевую роль в остановке процессов звездообразования в примерно половине галактик Вселенной. Каммун и его коллеги провели первые долгие наблюдения и получили первые детальные рентгеновские снимки самого яркого квазара текущей Вселенной, объекта SMSS J1144-4308.

Обнаружен самый яркий квазар за последние 9 миллиардов лет истории космоса

Затем ученые провели ряд моделирований, чтобы отделить излучение галактики-хозяина квазара от излучения самого квазара, который является ее активным ядром, содержащим сверхмассивную черную дыру. Стоит отметить, что в отличие от большинства сверхмассивных черных дыр в Местной Вселенной наблюдаемые квазары пространственно смещены от центров своих галактик-хозяев. Ранее мы рассказывали о том, как «Джеймс Уэбб» рассмотрел кандидата в рекордно далекую звезду.

А если мы видим не все квазары, то это вносит ошибки в результаты исследований. Но на этот счет имеется встречный аргумент, что с огромной базой данных по квазарам этот эффект был бы выявлен, учтен и сведен к минимуму.

Другое объяснение состоит в том, что линии поглощения в спектрах GRB появляются от газа, извергнутого самими GRB, а не от газа в составе галактик. Но почти в каждом наблюдении, когда астрономы подробно исследовали пространство в направлении GRB, они обнаруживали галактику в том месте, где должен был находиться поглощающий газ. Третья идея заключается в проявлении галактики в качестве гравитационной линзы, увеличивающей яркость объекта, и этот эффект оказывает на гамма-всплески совершенно иное влияние, чем на излучение квазаров. Такое объяснение считается самым предпочтительным, но возникает много вопросов с гравитационной линзой у GRB, которых пока не наблюдалось. И, конечно же, для полноты исследований нужно изучить спектры у гораздо большего количества гамма-всплесков.

Необходимо получить по крайней мере в три-четыре раза больше спектров GRB. Их может дать космический телескоп «Свифт», но это потребует довольно много времени. Ученые согласны ждать, так как лучше узнать истину позже, чем никогда.

В 2020 году ученые впервые обнаружили молекулы кислорода за пределами Млечного Пути. Галактика Маркарян 231, в которой был обнаружен подходящий газ, находится в 580 миллионах световых лет от Земли.

Эта крайняя яркость также объясняет большой радиосигнал. Шмидт пришел к выводу, что 3C 273 может быть либо отдельной звездой диаметром около 10 км внутри или вблизи нашей галактики, либо далеким активным ядром галактики. Он заявил, что предположение об отдаленном и чрезвычайно мощном объекте, скорее всего, будет правильным [17]. Объяснение сильного красного смещения в то время не было общепринятым. Главной проблемой было огромное количество энергии, которое эти объекты должны были бы излучать, если бы они были на таком расстоянии. В 1960-х годах ни один общепринятый известный механизм не мог объяснить этого. Принятое в настоящее время объяснение, что это происходит из-за падения вещества в аккреционном диске в сверхмассивную чёрную дыру, было предложено только в 1964 году Зельдовичем и Эдвином Салпетером [36] , и даже тогда оно было отвергнуто многими астрономами, потому что в 1960-х годах существование черных дыр всё ещё широко рассматривалось как теоретическое и слишком экзотическое и ещё не было подтверждено, что многие галактики включая нашу имеют сверхмассивные чёрные дыры в их центре. Странные спектральные линии в их излучении и скорость изменения, наблюдаемая у некоторых квазаров, многими астрономам и космологам объяснялось, что объекты были сравнительно небольшими и, следовательно, возможно, яркими, массивными, но не настолько далёкими; соответственно, что их красные смещения происходили не из-за расстояния или скорости удаления от нас из-за расширения Вселенной, а из-за какой-то другой причины или неизвестного процесса, означающего, что квазары не были действительно настолько яркими объектами на экстремальных расстояниях. Различные объяснения были предложены в 1960-х и 1970-х годах и у каждого были свои недостатки. Было высказано предположение, что квазары являются близлежащими объектами, и что их красное смещение связано не с расширением пространства объясняется специальной теорией относительности , а со светом, выходящим из глубокой гравитационной ямы гравитационное красное смещение объясняется общей теорией относительности. Это потребовало бы массивного объекта, который также объяснил бы высокую яркость. Однако звезда, обладающая достаточной массой для получения измеренного красного смещения, будет нестабильной и превысит предел Хаяси [37]. Квазары также показывают запрещенные спектральные эмиссионные линии, которые ранее были видны только в горячих газовых туманностях низкой плотности, которые были бы слишком диффузными, чтобы одновременно генерировать наблюдаемую мощность и вписываться в глубокую гравитационную яму [38]. Были также серьёзные космологические опасения относительно идеи далеких квазаров. Один сильный аргумент против них заключался в том, что они подразумевали энергии, которые намного превышали известные процессы преобразования энергии, включая ядерный синтез. Были некоторые предположения, что квазары были сделаны из некоторой неизвестной ранее формы стабильных областей антивещества и мы наблюдаем область его аннигиляции с обычным веществом, и это могло бы объяснить их яркость [39]. Другие предполагали, что квазары были концом белой дыры червоточины [40] [41] или цепной реакцией многочисленных сверхновых. В конце концов, начиная примерно с 1970-х годов, многие свидетельства включая первые рентгеновские космические обсерватории, знания о черных дырах и современные модели космологии постепенно продемонстрировали, что красные смещения квазара являются подлинными, и, из-за расширения пространства, что квазары на самом деле столь же мощные и столь же далекие, как предположили Шмидт и некоторые другие астрономы, и что их источником энергии является вещество из аккреционного диска, падающего на сверхмассивную чёрную дыру. Это предположение укрепилось благодаря важнейшим данным оптического и рентгеновского наблюдения галактик-хозяев квазара, обнаружение «промежуточных» линий поглощения, объясняющих различные спектральные аномалии, наблюдения гравитационного линзирования, обнаружение Петерсоном и Ганном в 1971 году факта, что галактики, содержащие квазары, показали такое же красное смещение, что и квазары и открытие Кристианом в 1973 году, что «туманное» окружение многих квазаров соответствовало менее светящейся галактике-хозяину.

Ученые выяснили, как выглядят вблизи струи квазаров

Исследователи из европейской обсерватории ESO обнаружили самый яркий объект во Вселенной – квазар J059-4351. Больше космоса здесь:Загадки Солнечной системы: ?v=4x_IrdEWUTE&list=PLSCp31X5BXEqLOWl2izjRDgi0T5od-og-Тайны Вселенной, Теории, Г. По мнению ученых, квазара образуются в результате столкновения галактик, при этом концентрируется и сжимается колоссальное количество межзвездного вещества. Используя телескоп Subaru, астрономы из Тайваня провели спектроскопические наблюдения квазара с высоким красным смещением, обозначенным как PSO J006.1240 + 39.2219. Специалисты из британских университетов опубликовали новое исследование, которое доказывает, что источником квазаров являются галактические столкновения.

Комментарии

  • Комментарии
  • Статьи по теме «квазар» — Naked Science
  • Последние новости
  • Последние новости
  • Телескоп Hubble сфотографировал далекий двойной квазар – Земля - Хроники жизни

Получены первые изображения самого яркого квазара молодой Вселенной

Квазары в космосе. Многие специалисты сходятся во мнении, что одними из самых необычных объектов в космосе являются квазары. Астрофизики Сиднейского университета и Оклендского университета впервые показали, что квазары испытывают на себе эффект замедления времени в результате расширения Вселенной.

Похожие новости:

Оцените статью
Добавить комментарий