Теория суперструн, популярным языком, представляет вселенную как совокупность вибрирующих нитей энергии – струн. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой. Согласно теории, до этого Вселенная была очень крошечной, очень горячей, плотной точкой, похожей на сингулярность, из которой возникло все, что мы видим вокруг себя. Расширение Вселенной может быть вызвано загадочной формой материи, называемой «нечастицами», которая не подчиняется законам физики.
Слишком много накопленного хаоса
- Строение и развитие Вселенной для «чайника»: 1 комментарий
- Комментарии:
- Новая теория Вселенной и психики
- Теория струн для чайников: основы, базовые принципы и понятия
- Сны о чём-то большем: Как ученые и мультивселенная подарили человечеству научное обоснование мечты
- Загадочные «нечастицы» способны расколоть Вселенную - Hi-Tech
М теория вселенной для чайников. Теория струн
В статье рассказывается о Вселенной, теориях ее происхождения, свойствах. М-теория является единственным кандидатом на законченную теорию Вселенной. Говоря нетехническим языком, M-теория дает представление об основной субстанции вселенной.
Сны о чём-то большем: Как ученые и мультивселенная подарили человечеству научное обоснование мечты
На самом деле каждый раз ваша поездка длилась все дольше и дольше, потому что вы путешествовали на большее расстояние. Но как это возможно, если пункты отправления и назначения остались прежними? Ответ кроется в скрытом мире темной материи. Понимание, как и объяснение темной материи и энергии, может быть сложным. В конце концов даже ведущие ученые мира не совсем уверены, что представляет собой все вышеперечисленное. К тому же доказать их существование они могут лишь по влиянию, которое темная материя и энергия оказывают на Вселенную. Так как же работает темная материя?
И что такое темная энергия? И почему путешествие домой в Андромеду каждый раз занимает все больше времени? Ниже вы найдете несколько фактов, которые объясняют, что сегодня известно ученым о темной материи и энергии и как, по их мнению, это влияет на нашу Вселенную и будущее всего человечества. Нам рассказывали о протонах, нейтронах и электронах, о том, что они являются строительными блоками всей материи, но ученые обнаружили, что на занятиях уделяли внимание далеко не всему, что есть во Вселенной.
Это называется компактификацией измерений.
Если бы мы узнали, как именно свернуты измерения в нашей вселенной, то, возможно, смогли бы путешествовать во времени и к другим звездам. Но пока это невозможно — слишком много вариантов нужно перебрать. Их бы хватило на все возможные вселенные. Теория струн может объединить все физические теории и открыть нам тайны мироздания — для этого есть все предпосылки. Но пока нет доказательств.
Из теории струн логически следуют другие открытия современной науки. К сожалению, это ничего не доказывает. Теория струн пережила две суперструнные революции и многолетние периоды забвения. Одни ученые считают ее научной фантастикой , другие верят, что новые технологии помогут ее доказать. Самое главное: если планируете рассказать о теории струн друзьям, убедитесь, что среди них нет физика — сбережете время и нервы.
И будете выглядеть, как Брайан Грин в Политехническом институте: Перевод В основе теории струн лежит идея о том, что вместо нульмерных элементарных частиц Вселенная состоит из одномерных струн Теория струн — одна из самых гениальных, противоречивых и недоказанных идей физики. В её основе лежит физический тренд, живущий много столетий — что на некоем фундаментальном уровне все различные силы , частицы, взаимодействия и проявления реальности связываются вместе как разные части одной платформы. Вместо четырёх независимых фундаментальных взаимодействий — сильного, электромагнитного, слабого и гравитационного — есть одна объединённая теория, охватывающая их всех. Во многих смыслах, теория струн — лучший кандидат на квантовую теорию гравитации, объединяющую взаимодействия на высочайших уровнях энергий. И хотя тому нет экспериментальных подтверждений, существуют убедительные теоретические причины считать, что это так и есть.
В 2015 году крупнейший из живущих специалистов по теории струн, Эдвард Виттен, написал работу о том, что каждый физик должен знать о теории струн. И вот, что она означает — даже если вы не физик. Разница между стандартными взаимодействиями квантовой теории поля слева для точечных частиц и взаимодействиями в теории струн справа для закрытых струн. Удивительно, как иногда много общего встречается в законах природы, касающихся вроде бы не связанных между собой явлений. Математические структуры таких явлений часто очень похожи, а иногда даже идентичны.
Колебания маятника полностью аналогичны движению массы на пружине или планеты вокруг звезды. Гравитационные волны, волны на воде, световые волны — все они обладают удивительно похожими свойствами, несмотря на то, что происходит из фундаментально различных физических источников. И в том же ключе, хотя многие этого не осознают, квантовая теория одной частицы и подход к квантовой теории гравитации также аналогичны друг другу. Диаграмма Фейнмана, представляющая рассеяние двух электронов — для этого требуется суммировать все возможные истории взаимодействий частиц Работает квантовая теория поля так: берём частицу и производим математическое «суммирование всех её историй». Нельзя просто подсчитать, где была частица, и где она сейчас, и как она туда попала — поскольку в природе существует внутренняя и фундаментальная квантовая неопределённость.
Вместо этого мы суммируем все возможные способы, которыми она могла прибыть в текущее состояние «прошлая история» , с соответствующими вероятностными весами, а потом подсчитываем квантовое состояние одной частицы. Чтобы работать с гравитацией, а не с квантовыми частицами, нужно кое-что немного поменять. Поскольку Общая теория относительности Эйнштейна связана не с частицами, а с кривизной пространства-времени, мы не будем усреднять все возможные истории частицы. Вместо этого мы усредняем все возможные геометрии пространства-времени. Гравитация по правилам Эйнштейна и всё остальное сильные, слабые и электромагнитные взаимодействия по правилам квантовой физики — это два разных набора законов, управляющих всем во Вселенной.
Работать в трёх пространственных измерениях очень тяжело, и когда мы встречаемся со сложной физической проблемой, мы часто пытаемся решить сначала более простую её версию. Если спуститься на одно измерение, всё станет проще. Единственные из возможных одномерных поверхностей — это открытая струна, с двумя отдельными концами, не связанными друг с другом, или закрытая струна, концы которой соединены и формируют петлю. Кроме того, кривизна пространства — очень сложная в трёх измерениях — становится тривиальным вопросом. Поэтому, если мы хотим добавить материю, мы используем набор скалярных полей точно так же, как для определённого рода частиц и космологическую константу работающую точно как член уравнения, отвечающий за массу : прекрасная аналогия.
Дополнительные степени свободы, которая получает частица в нескольких измерениях, не играют особенной роли; пока мы можем определить вектор импульса, это остаётся главным измерением. Поэтому в одном измерении квантовая гравитация выглядит так же, как свободная квантовая частица в любом произвольном количестве измерений. Граф с вершинами, где сходятся по три ребра — ключевой компонент построения интеграла по траектории, относящегося к одномерной квантовой гравитации Следующий шаг — включить взаимодействия, и перейти от свободной частицы без амплитуд рассеяния или эффективных поперечных сечений к той, что может иметь физическую роль , связанную со Вселенной. Графы, похожие на приведённый выше, позволяют нам описывать физическую концепцию действия в квантовой гравитации. Если записать все возможные комбинации подобных графов и провести суммирование по ним — применяя те же законы, что и обычно, например, закон сохранения импульса — мы можем завершить аналогию.
Квантовая гравитация в одном измерении очень похожа на взаимодействие одной частицы в любом числе измерений. Но этот теоретический «апгрейд» для гравитации может оказаться очень сложным. Можно найти другой подход, если мы решим работать в противоположном направлении. Вместо подсчёта поведения одной частицы нульмерной сущности в любом количестве измерений, возможно, мы могли бы подсчитать поведение струны, открытой или закрытой одномерной сущности. А исходя из этого уже поискать аналогии к более полной теории квантовой гравитации в более реалистичном количестве измерений.
Диаграммы Фейнмана вверху основаны на точечных частицах и их взаимодействиях. Превратив их в аналоги для теории струн внизу , мы получим поверхности, способные обладать нетривиальной кривизной. Вместо точек и взаимодействий мы сразу начинаем работать с поверхностями, мембранами, и так далее. Получив настоящую многомерную поверхность, мы можем искривить её нетривиальными способами. Мы начинаем наблюдать у неё очень интересное поведение; такое, которое может находиться в основе кривизны пространства-времени, наблюдаемого во Вселенной в рамках ОТО.
Но хотя одномерная квантовая гравитация даёт нам квантовую теорию поля для частиц в возможно искривлённом пространстве-времени, сама по себе она не описывает гравитацию. Чего не хватает в этой головоломке? Нет соответствия между операторами, или функциями, представляющими квантово-механические взаимодействия и свойства, а также состояния, то есть, как частицы и их свойства изменяются со временем.
Он предложил объединяющую теорию под названием « М-теория », в которой «М» конкретно не определяется, но обычно понимается как «мембрана».
Слова «матрица», «хозяин», «мать», «монстр», «тайна» и «магия» также были заявлены. М-теория объединила все теории струн. Он сделал это, заявив, что струны на самом деле являются одномерными срезами двумерной мембраны, колеблющейся в 11-мерном пространстве-времени. Вибрации объектов более высоких измерений например, в трехмерном вибрирующем шарике или сфере или даже в более возможных измерениях , безусловно, являются частью M-теории, но основная теория бран все еще развивается.
Объекты более высокой размерности гораздо сложнее вычислить математически, чем точку в классической физике , одномерную струну в теории струн или двумерные мембраны в M-теории. Статус М-теория не завершена, но математика подхода была исследована очень подробно. Однако экспериментального подтверждения М-теории пока нет. Некоторые физики скептически относятся к тому, что этот подход когда-либо приведет к физической теории, описывающей наш реальный мир, из-за фундаментальных проблем.
А что у нас в начале? До всего этого десятка измерений, кое-что безразмерное, так называемое нулевое измерение. Конечно же, это точка. А у вас были другие варианты?
Теперь возьмем две точки и соединим как в начальных классах на математике. Что получилось? Правильно, отрезок. Он, в отличие от точки уже имеет одно измерение — длину.
Однако ни ширины, ни высоты здесь по-прежнему нет. Двигаться в одномерном пространстве можно только вперед и назад. Никаких вверх-вниз, влево-вправо там и в помине нет. Если на вашем пути поставить какое-либо препятствие, вы в лепешку расшибетесь, но обогнуть его не сможете.
Зато на такой линии уже можно определить нахождение объекта по одной координате. Итак, представьте, что на отрезке все-таки возникло препятствие, как его обойти? Логично, что нужно добавить еще одно измерение, ибо в одном никак. Поэтому дорисовываем где-нибудь рядом с этой линией еще одну точку.
Совместим ее с любой из двух других точек и получим двумерную систему координат. Теперь у нас есть два измерения — длина и ширина. Но для настоящего 3D-пространства нам все еще не хватает высоты. Поэтому сейчас мы будем творить настоящую магию.
Добавим еще одну точку и соединим ее с той, с которой соединяли предыдущую. Теперь мы можем двигаться как вперед и в сторону, так и вверх-вниз. Мы получили трехмерное пространство, в котором мы же с вами и живем. Ну и не забываем про время, конечно же.
Думаю, вы все уже задались вопросом: как это все вяжется с теорией струн? Скоро все поймете, мы же тут для чайников разжевываем, поэтому все по порядку. Вам же понравилось рисовать? Поэтому давайте продолжим.
Нарисуем двух человечков в двумерном пространстве. Назовем их Федор и Вадим. Мы с вами видим их такими: Однако Федор и Вадим существуют в 2D-пространстве, поэтому они видят друг друга так: А теперь нарисуем Федора сверху: Как теперь Вадим будет видеть своего товарища? Вот так: Из этого следует, что, как ни крути, эти ребята будут видеть друг друга как одномерные отрезки, но мы то с вами знаем, что оба они двумерны.
Вы и так уже наверняка догадались, почему. Все из-за точки обзора. Мы с вами видим Федора как объект, имеющий длину и ширину, а Вадим недоумевает и говорит, что мы свихнулись, и перед нами простой отрезок с одним единственным измерением. Тот факт, что Вадим живет на плоскости, попросту не позволяет ему даже представить, как по-настоящему выглядят объекты в его мире.
И я уже не говорю о том, как сильно будет болеть его плоский мозг, пытаясь представить трехмерное изображение. А сейчас попытайтесь представить, что в спокойную двуразмерную жизнь Федора и Вадима резко врывается некий 3D-объект, пересекающий их плоскость. Каким образом вы увидите это со стороны? Двумерные проекции сразу же изменятся и это будет похоже на брокколи в МРТ: Что в этот момент будет с нашими героями?
Сказать, что они очень удивятся такому развитию событий, ничего не сказать. Такого они даже представить себе не смогут. Для них везде начнут появляться отрезки, которые будут резко менять свою длину и положение. Вычислить длину или координаты этих объектов в двумерном мире будет просто невозможно.
Надеюсь, теперь вы немного въехали в то, что я пытаюсь вам здесь втереть. Мы живем в трехмерном мире и видим все объекты двумерными.
Кто ввел понятие энтропии?
- М-теория — теория всего? Существование параллельных Вселенных. | Space light
- Загадочные «нечастицы» способны расколоть Вселенную
- 2. Черные дыры
- Сны о чём-то большем: Как ученые и мультивселенная подарили человечеству научное обоснование мечты
- Параллельная Вселенная: существует ли она, теории | РБК Тренды
- История и свойства М-теории
История и свойства М-теории
2.0 Теория ДВС: Шары для расточки каналов ГБЦ. Скажем, для теории нейросети гипотеза о множественности вселенных не нужна. Они не доказывают окончательно, что теория отскакивающей Вселенной неверна, но подчеркивают проблемы с некоторыми версиями этой теории. Устройство мироздания: самые необычные концепции Вселенной. Теория струн Теория струн – физическая теория, объединяющая квантовую механику и общую теорию относительности, и считающаяся главным кандидатом на роль теории квантовой гравитации. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.
Теория струн для чайников
Но так же есть вероятность, что в одном сферическом бутоне, проявить гравитационно, могут все субатомы из скопление галактик, то есть каждый субатом на своей сферической орбите бутона. Через бутоны мембран, пространство вселенной, изнутри выворачивается, увлекая этим движением, галактики, свет, со временем все будет в обратном направлении, собирая их остатки, внутри, вместе для большого взрыва и одновременно "кроме темной материи" сброса в наружу. Если, бутоны мембран, свободно, разворачиваются - это тёмная энергия. Если у бутонов мембран, приостановлено частицами, разворачивание - это чёрные дыры.
Предположим что пространство вселенной, выворачивается изнутри, как "карман или рукав", мы, это, "снаружи", наблюдаем, как ускоренное расширения вселенной.
Темная материя существует и для этого есть множество доказательств, однако что именно она собой представляет, остается тайной. Температура Темной материи Ученые пытаются понять не только что такое Темная материя — им интересно, насколько она может быть холодной или горячей. Разные теории предполагают, что темная материя может быть горячей, теплой или холодной, однако общепринятой считается модель «Лямбда-СиДиЭм», согласно которой эта субстанция является холодной и темной. Темная энергия Темной энергией в 1990-е годы группа астрофизиков назвала субстанцию, которая, по их мнению, противодействует гравитации и ускоряет расширение Вселенной. Согласно некоторым теориям, темная энергия представляет собой область, известную как «квинтэссенция» — понятие переменного во времени и пространстве скалярного поля, предложенное Эйнштейном. Немезида — наше второе солнце Некоторые тайны космического пространства человеческому мозгу воспринять очень сложно, если вообще возможно.
Так, многие ученые считают, что когда-то у нас было два солнца, одно из которых носило имя Немезиды. Что удивительно, последние исследования это подтверждают, поскольку в результате детального изучения звезд Млечного пути ученые пришли к выводу, что все солнцеподобные звезды рождаются в парах. Тем не менее, до тех пор пока не будет найдена звезда, идентичная по составу нашему солнцу, Немезида останется одной из самых таинственных загадок вселенной. Луна На самом деле никто не знает, откуда появилась Луна.
Им никак не удавалась сшить две теории воедино. Две любимые теории стали саморазрушаться. Первая проблема возникла с Большим Взрывом.
Она ничего не говорит нам ничего самом большом взрыве, она не говорит, что взорвалось, почему, что вызвало взрыв. Фундаментальная проблема космологии, что фундаментальные законы физики как мы их знаем рушатся в момент Большого взрыва. Некоторые говорят: «Ну и что из того, что рушатся физические законы». Но для физики это катастрофа. Всю свою жизнь ученые посвятили утверждению, что Вселенная подчиняется известным законам, которые могут быть описаны языком математики и вот основа самой Вселенной попадает за пределы физического закона. Начало Большого Взрыва — самая большая загадка космологии. Ее назвали сингулярностью.
Сингулярность — это точка пространства-времени, в которой кривизна его становится бесконечной. Со струнами тоже возникли неприятности. Чем больше людей занимались теорией струн, тем более одна запутывалась. Вскоре ученые получили пять разных теорий струн. Куда уж тут думать о единой теории! Некоторые стали говорить, что это не теория всего, а теория ничего! Но было сделано новое открытие.
Оно вдохновило их на новые попытки и повернуло лицом к последней популярной идее — параллельные вселенные. Когда развалилась теория струн — никто не обезумел от горя. Майкл Дафф -один из создателей теории супергравитации. Эта теория не очень то сильно отличалась от теории суперструн. Отличие было лишь в маленькой детали — в числе измерений. Обычно мы рассматриваем себя живущими в трех измерениях. Но физикам нравится добавлять измерения.
Энштейн предложил добавить в качестве четвертого — время. Затем кто-то предложил — пятое, кто-то — шестое…их число продолжает расти. Это измерения, которые мы не можем ощутить. Теория суперструн утверждает, что существует 10 измерений — 9 пространственных и временное. А в теории супергравитации получается 11. Приверженцов первой теории было намного больше, нежели второй, утверждающей, что всего во Вселенной 11 измерений.
Ученые сделали еще одно открытие — так называемый «эффект наблюдателя». Удивительно, но на поведение элементарных частиц воздействует наблюдатель. Частицы то исчезают, то появляются, и как только субъект направляет свое внимание на конкретное местоположение электрона, он тут же там появляется. Но когда наблюдатель перестает туда смотреть, субатомная частица исчезает в бескрайнем поле энергии. Звучит как магия, но это все научные факты. То есть получается, что физической материи не существует до тех пор, пока мы, не направляем на нее свое внимание. А как только мы перестаем наблюдать, объект тут же исчезает. Открытый и доказанный учеными «эффект наблюдателя» позволяет нам утверждать, что материя постоянно трансформируется и меняется — из материи в энергию. Это происходит 7-8 раз в секунду. И мы с вами, будучи теми самыми наблюдателями окружающей реальности, постоянно проделываем этот «фокус» с появлением и исчезновением материи. Почему желания исполняются То есть получается, что наш разум первичен, он преобладает над материей. Это и есть квантовая реальность! А раз разум непосредственно влияет на объективную реальность, то все рассуждения эзотериков, парапсихологов и авторов тех самых кассовых фильмом верны — мы можем управлять своей реальностью! И имеем для этого научное обоснование.
Теории о Вселенной, которые взорвут ваш мозг 💥
Виттен и стажёр Хофава обнаружили, что для теории E-гетеротической струны существует описание в терминах 11-мерной теории. Так что данная теория "Вселенной Феникса" прогрессивна, и именно поэтому не будет принята научным сообществом. Теория Большого взрыва по-прежнему является доминирующей космологической моделью, объясняющей происхождения Вселенной. Именно эти противоречия сподвигли Эйнштейна на создание Общей Теории Относительности (ОТО), которая должна была «поправить» Ньютоновскую теорию гравитации и объяснить устройство бесконечно существующей Вселенной. Вселенная «для чайников». Согласно наиболее популярной теории эволюции Вселенной, смерть последней будет холодной. |.
Просто невероятно: как устроена Вселенная, почему желания сбываются и зачем смотреть «Матрицу»
Говоря нетехническим языком, M-теория дает представление об основной субстанции вселенной. В этой статье я максимально простым языком изложу 8 самых фундаментальных законов Вселенной. и новая теория квантовой гравитации показывает, как это может работать. Устройство мироздания: самые необычные концепции Вселенной. Согласно теории, до этого Вселенная была очень крошечной, очень горячей, плотной точкой, похожей на сингулярность, из которой возникло все, что мы видим вокруг себя.
Как наш разум связан со Вселенной и какие возможности открывает квантовая психология?
Атомный уровень — протоны, нейтроны и электроны 4. Субатомный уровень — электрон 5. Субатомный уровень — кварки 6. Ramos В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут — гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн.
Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак.
Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». Вначале был миф До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение — легенда. В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия — чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.
Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял — формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн.
К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно. Стандартная модель В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, — не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос — зачем их так много и откуда они берутся?
Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон — частица света. Ученые предсказывали, что именно этот обмен частицами-переносчиками — есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».
Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема — она не включала в себя самую известную силу макроуровня — гравитацию. Гравитон Для не успевшей «расцвести» теории струн наступила «осень», уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион — частица, которая движется в вакууме быстрее света.
Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе. Ученый уже решил забросить свое гиблое дело, и тут его осенило — может быть, уравнения теории струн описывают, в том числе, и гравитацию?
Впрочем, это подразумевало пересмотр размеров главных «героев» теории — струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона — частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило.
Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин. Субатомные матрешки Несмотря ни на что, в начале 1980? Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания.
И вот эти составляющие. Каждый атом, как известно, состоит из еще меньших частиц — электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц — кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево.
Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства — массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона?
А если под рукой окажется телескоп средней мощности, то общая численность светил на небе увеличится до 15 миллионов. Более того, с помощью этого устройства человек сможет наблюдать отдаленные галактики, которые выглядят как небольшие пятна. Но сколько их существует во Вселенной? Во Млечном Пути, где расположена Солнечная система, находится примерно 400 млрд. Данная цифра является очень большой, но она невелика по отношению ко Вселенной.
Существуют спиральные галактики, насчитывающие 100 триллионов светил. По подсчетам, минимальное количество звезд во Вселенной равно септиллиону 10 в 24-й степени. Все они находятся в пределах 46 млрд. Именно такая область поддается наблюдению. Однако дальше этого расстояния могут находиться и другие галактики, скрытые от глаз человека. Соответственно, общее количество звезд во Вселенной может быть гораздо больше септиллиона. Есть ли у Вселенной конец?
Изображение реликтового излучения Пока ученые не могут с уверенностью ответить на данный вопрос. Человечество не обладает достаточными технологиями, чтобы заглянуть в бесконечную даль и убедиться в наличии или отсутствии краев у пространства. Однако некоторые обсерватории непрерывно работают в этом направлении. У ответа на этот вопрос может быть два варианта: Вселенная конечна, либо она бесконечна. Если принимать за действительность первый вариант, то установить теоретические края мироздания помогает реликтовое излучение. Свет, оставшийся после Большого взрыва, протянулся на расстоянии примерно в 93 млрд. Это и можно считать за границу Вселенной.
Вольное изображение границ Вселенной Второй вариант указывает на то, что космос бесконечен. Тогда, если человек отправится в любом направлении на большой скорости, то ему встретится бесконечное количество галактик, звезд и планет. Более того, ученые убеждены, что в этом случае где-то может существовать идентичная Солнечная система с Землей, которую населяют точно такие же люди. Ведь если пространство безгранично, и в нем существует неограниченное количество планет, вероятность того, что где-то существует клон Земли, стремится к бесконечности. Интересный факт: теория о бесконечности космоса часто применяется в научно фантастических фильмах, книгах и комиксах, когда герой встречается со своей копией из другого измерения. Возможно, в будущем люди смогут узнать наверняка, имеет ли Вселенная конец. Но на данный существуют лишь теории.
Гипотезы происхождения Вселенной Изображение религиозной теории создания Вселенной Помимо Большого взрыва существует масса теорий появления Вселенной. Вот наиболее интересные: религиозная уверяет, что все вокруг создал Бог, в каждой вере процесс творения Вселенной описывается по разному; стационарная говорит, что Вселенная не меняется в размерах и была всегда; циклическая — космос находится в непрерывном цикле, рождаясь и уничтожаясь бесконечное количество раз; космологическая утверждает, что Вселенная бесконечна; теория струн гласит, что внутри уже имеющейся вселенной может образоваться новая за счет квантовых колебаний и достаточного количества энергии. Несмотря на большое количество теорий, объясняющих происхождение Вселенной, ученые отдают предпочтение Большому взрыву. Эта гипотеза поясняет образование веществ и материи и содержит в себе гораздо меньше белых пятен. Из-за этого ученым легче с ней работать и делать логические заключения. Интересный факт: у Эйнштейна тоже была собственная теория о происхождении Вселенной, которая строилась на том, что она конечна. Однако это шло вразрез с теорией относительности, одним из авторов которой также был Эйнштейн.
История изучения Вселенной Солнечная система Четыре тысячи лет назад люди уже пытались изучать Вселенную. Карты созвездий и рисунки звездного неба составлялись еще в Древнем Вавилоне. Вплоть до 16 века астрономы считали Землю центром мироздания, но Галилео Галилей после изобретения телескопа сумел доказать, что планеты вращаются вокруг Солнца. Также ученый обнаружил на небе множество галактик, подобных Млечному Пути. Это расширило представление людей о Вселенной. На протяжении нескольких веков астрономы изучали космические объекты, а в 1929 году Хаббл подтвердил, что галактики отдаляются друг от друга, а пространство расширяется. Сейчас люди используют современные технологии, чтобы получать о космосе как можно больше данных.
Нечастицы, однако, возникают в результате взаимодействия набора полей, где их возбуждения не имеют определенного импульса и массы. В макроскопическом масштабе они ведут себя как жидкость. Как следствие, соотношение между давлением, оказываемым нечастицами, и плотностью их энергии, зависит от температуры. Очень слабое взаимодействие нечастиц с «обычной» материей, предсказываемое всеми теоретическими моделями вещества, делает их отличным кандидатом на роль темной энергии. Значения постоянной Хаббла и параметра S8, полученные с использованием нечастиц, согласуются друг с другом, в отличие от значений, рассчитанных с использованием стандартной космологической модели. На данный момент нет эмпирических доказательств, подтверждающих эту теорию.
Однако авторы уверены, что в ближайшее десятилетие точность астрономических измерений повысится настолько, что можно будет определить, верно ли их предположение.
Конечно, и двухмерная струна чисто математический объект. В природе таких объектов не существует. Даже слой одиночных атомов или электронов имеет определенную толщину. Одно утешение — теория идет дальше и предполагает, что существуют и трехмерные объекты в ее математических образах. Все что только мы наблюдаем и даже представляем, все, все является в виде трехмерных объектов. Кажется, описывай их, представляй взаимодействия между ними, предлагай методы измерений и изменений, в общем изучай. Так нет же — мы будем изучать все в комплексе. К этим точечным, одномерным, двухмерным и трехмерным объектам добавим четырехмерные, пятимерные и так до девятимерных объектов.
Как будь то, они у нас под ногами валяются. Их никто не видел, они никак не проявляются в нашей жизни. Они существуют только в виде формул в некоторых головах и передающихся как условный рефлекс другим, обычно студентам. И какая тут уж демократия — всего 9 бран. А как же быть с десятой, сотой или двести первой браной? Вот это будет демократия. Что бран столько, сколько существует измерений? Так измерений действительно бесконечно много. Давайте рассмотрим такую логическую цепочку.
Часть ее будет очевидной, а в некоторую ее часть придется поверить. Уже давно никто не сомневается в том, что почти все состоит из атомов. Раньше считали, что атом это мельчайшая неделимая частица. Возьмем любой объект: монитор, карандаш, человека или что угодно. Водрузим возле него декартову систему координат в виде стержней. Все согласятся, что положение каждого атома этого объекта можно задать этими координатами. Будем считать, что все атомы неподвижны. В крайнем случае, это можно сделать, опустив температуру объекта до абсолютного нуля. Это три измерения.
Cейчас мало кто сомневается в том, что атом атом делим, и состоит из протонов, нейтронов и электронов. В первом пункте мы определили координаты атома в целом, по существу его центра. А вот координаты электрона нам известны приблизительно с точностью до величины его орбиты. Он то приближается к нашим стержням-координатам, то удаляется. Мы не будем рассматривать, ничего полезного не содержащую, вероятностную модель атома.
Как наш разум связан со Вселенной и какие возможности открывает квантовая психология?
Теория струн Теория струн – физическая теория, объединяющая квантовую механику и общую теорию относительности, и считающаяся главным кандидатом на роль теории квантовой гравитации. Такое менее обширное понятие дает возможность для существования нашей теории о множественной вселенной. Суть теории заключается в том, что вселенная возникла из одной точки, называемой точкой сингулярности, по причине того самого большого взрыва. ТЕОРИЯ СТРУН На сегодняшний день главной и единственной теорией, которая может объяснить все многообразие сил, организующих Вселенную, является струнная теория. Чтобы понять основную идею М-теории, нужно вернуться к 1970-м годам, когда ученые поняли, что вместо описания Вселенной, основанной на точечных частицах, вы можете описать ее в терминах крошечных колеблющихся струн (трубок энергии). "Формулой Вселенной" утверждение Пуанкаре называют из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно дает ответ на вопрос о форме Вселенной.