Теория струн предполагает объединения идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. В теории струн мироздание похоже на невероятно малые, вибрирующие нити энергии, способные извиваться, растягиваться и сжиматься.
Что такое теория струн простыми словами (насколько это возможно)?
меньших, чем атомы, электроны или кварки. Теория струн кратко и понятно. В начале XX века учёные, благодаря классической физике, считали, что поняли, как устроен мир. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны. Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации.
Что такое теория струн? Простой обзор
Шерк и Шварц объявили, что теория струн — это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию.{27}. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. 20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе. Теория струн кратко и понятно. Антропный принцип в теории струн.
Теория струн, Мультивселенная
В 1960-х годах физики начали исследовать модели струн, которые могли быть основой для новой теории. Однако, в то время не было достаточно математических инструментов для полного описания струнных моделей. В 1970-х годах были сделаны важные открытия, которые привели к развитию квантовой теории струн. Это был важный шаг вперед в понимании струнных моделей. В 1980-х годах были сделаны еще большие прорывы в развитии квантовой теории струн. Операционализация и экспериментальное подтверждение квантовой теории струн до сих пор остаются сложными задачами. В настоящее время нет прямых экспериментальных данных, которые бы подтверждали предсказания квантовой теории струн. Однако, теория имеет ряд математических и концептуальных преимуществ, которые делают ее привлекательной для физиков исследователей. Развитие квантовой теории струн продолжается, исследователи по-прежнему работают над различными аспектами теории и ищут возможности для экспериментальной проверки. Квантовая теория струн предлагает новый подход к пониманию фундаментальных взаимодействий и структуры Вселенной, и ее развитие может привести к новым открытиям и пониманию природы на более глубоком уровне.
Свойства и особенности квантовой теории струн Квантовая теория струн обладает рядом уникальных свойств и особенностей, которые делают ее отличной от традиционных теорий физики. Вот некоторые из них: Дополнительные измерения и сверхпространство Одной из ключевых особенностей квантовой теории струн является наличие дополнительных измерений, помимо традиционных трех пространственных и одного временного измерений. Струны могут колебаться в пространствах большего числа измерений, таких как 10-мерное или 11-мерное пространство. Эти дополнительные измерения не наблюдаются в нашем мире из-за их свернутой или скрытой природы. Сверхпространство — это пространство, в котором существуют дополнительные измерения. Оно может быть представлено как некоторая компактифицированная или свернутая форма, которая не проявляется в нашем мире. Сверхпространство играет важную роль в квантовой теории струн, поскольку оно позволяет объединить гравитацию и другие фундаментальные взаимодействия. Суперсимметрия и симметрии струнных моделей Суперсимметрия — это математическая концепция, которая позволяет установить связь между частицами с разными спинами бозоны и фермионы. В квантовой теории струн суперсимметрия играет важную роль, поскольку она позволяет устранить некоторые проблемы, связанные с наличием различных типов частиц и их взаимодействием.
Струнные модели также обладают различными симметриями, которые определяют их свойства и поведение. Некоторые из них включают конформную симметрию, которая сохраняется при преобразованиях масштаба, и симметрию Пуанкаре, которая описывает инвариантность физических законов относительно преобразований пространства и времени. Уникальные математические свойства и симфония гравитации и квантовой механики Квантовая теория струн имеет уникальные математические свойства, которые делают ее сложной и интересной для исследования. Она требует использования различных математических инструментов, таких как теория групп, топология и теория функций. Математические методы, используемые в квантовой теории струн, часто связаны с алгебрами Ли, теорией представлений и дифференциальной геометрией. Квантовая теория струн также стремится объединить гравитацию и квантовую механику, две фундаментальные теории, которые до сих пор не были полностью совмещены. Она предлагает новый подход к объединению этих двух теорий, позволяя описывать гравитацию в терминах квантовых объектов — струн. Это открывает новые возможности для понимания природы пространства, времени и гравитационных взаимодействий.
В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров. Возможен даже переход между вселенными с разными законами физики. Однако вероятен вариант, когда квантовая теория гравитации сделает их существование невозможным. Многие физики считают, что голографический принцип, когда вся информация, содержащаяся в объеме пространства, соответствует информации, записанной на его поверхности, позволит глубже понять концепцию энергетических нитей. Некоторые полагают, что теория суперструн позволяет множественность измерений времени, следствием чего может быть путешествие через них. Кроме того, в рамках гипотезы существует альтернатива модели большого взрыва, согласно которой наша вселенная появилась в результате столкновения двух бран и проходит через повторяющиеся циклы создания и разрушения. Конечная судьба мироздания всегда занимала физиков, и окончательная версия теории струн поможет определить плотность материи и космологическую константу. Зная эти значения, космологи смогут установить, будет ли вселенная сжиматься до тех пор, пока не взорвется, чтобы все началось снова. Никто не знает, к чему может привести научная теория, пока она не будет разработана и проверена. Создатели квантовой физики не знали, что она станет основой для создания лазера и транзистора. И хотя сейчас еще не известно, к чему приведет такая сугубо теоретическая концепция, история свидетельствует о том, что наверняка получится что-то выдающееся. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Каждый колебательный паттерн соответствует разным частицам. Электрон - это не что иное, как струна, вибрирующая по одному шаблону, а протон - это струна, вибрирующая по другому шаблону. Это просто математическая концепция, нет никаких экспериментальных доказательств теории струн. В природе существуют четыре фундаментальные силы: гравитация, электромагнетизм и слабые и сильные ядерные силы. Одна из главных целей физиков - разработать теорию, которая может описать все эти силы. За последние 6 десятилетий, пытаясь объединить все силы, физики-теоретики выдвинули много разных интересных идей и новых теорий. Одна из самых многообещающих из этих теорий - теория струн. Теория струн в настоящее время стала самой противоречивой концепцией в физике, целью которой является объединение двух столпов физики 20-го века: теории относительности Эйнштейна и квантовой механики. Проще говоря, это всеобъемлющая структура, которая может объяснить всю физическую реальность если она доказана. Основная идея теории струн Выбери что-нибудь вокруг себя. Допустим, вы взяли яблоко со стола. Из чего сделано яблоко? Ну, чтобы ответить на этот вопрос, вам нужно заглянуть в него. Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы. Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы. Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц скажем, нейтрон и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками. Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще. Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту. Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам. Следовательно, кварк - это не что иное, как струна, вибрирующая по одной схеме, а электрон - это не что иное, как струна, вибрирующая по другой схеме. Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах. Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной. Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн. Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн. Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн. Открытые и закрытые струны 5 фундаментальных взаимодействий струны типа I Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну. Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов. Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике. Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка. Это масштаб, при котором эффекты квантовой гравитации становятся значительными. Однако в 1995 году американский физик-теоретик Эдвард Виттен объединил все пять теорий в одну 11-мерную теорию, называемую М-теорией. Это может обеспечить основу для построения единой теории всех фундаментальных сил во Вселенной. Кто открыл теорию струн? Целью этой программы было заменить локальную квантовую теорию поля как основной принцип физики элементарных частиц. Ускорители частиц 1950-х и 60-х годов в изобилии производили адроны. Физики изобрели множество различных моделей для описания структуры спинов и масс этих сильно взаимодействующих частиц состоящих из кварков. Итальянский физик-теоретик Габриэле Венециано сыграл главную роль в разработке этих ранних моделей. Он сформулировал основы теории струн в 1968 году, когда обнаружил, что крошечные струны могут описывать взаимодействия адронов. Он также опубликовал статью в 1991 году, в которой описывается, как инфляционная космологическая модель может быть получена из теории струн. Сегодня, благодаря совместным усилиям многих исследователей, теория струн превратилась в широкую и разнообразную тему, связанную с чистой математикой, космологией, физикой конденсированного состояния и квантовой гравитацией. Является ли теория струн теорией всего? Ну, быстрый ответ - нет. Теория Всего - это гипотетическая основа физики, которая полностью описывает и связывает воедино все физические аспекты вселенной. Для достижения этой цели теория струн стала многообещающим кандидатом в Теорию Всего. До сих пор он успешно объяснил многие сложные явления, в том числе черные дыры , которые требуют как квантовой механики, так и общей теории относительности для их изучения. Согласно теории струн, все четыре фундаментальные силы когда-то были единой фундаментальной силой в начале вселенной - через 10—43 секунды после Большого взрыва. Это также дало новые идеи в отношении кварк-глюонной плазмы и дал много результатов, некоторые из которых могут показаться непонятными или абсурдными.
Чтобы изучать структуру частиц, был придуман особый способ: «бомбардировать» объект другими, более мелкими частицами, и изучать, каким образом они разлетаются в разные стороны. Вы можете проделать такой эксперимент дома: взять два предмета, например, коробку и кастрюлю. И покидать в них небольшой резиновый шарик. Шарик будет по-разному отскакивать от ровных стенок коробки и скругленных стенок кастрюли — наших экспериментальных объектов. Немного тренировок — и только по тому, куда отлетает шарик, вы скажете, что именно за предмет сейчас подвергается бомбардировке, даже если не будете на него смотреть. Ученые накопили достаточно статистики, чтобы успешно применять этот принцип. Удалось определить, что одни частицы, например, входящие в состав атома протоны и нейтроны имеют составную структуру, а электроны и многие другие частицы… не состоят из чего-либо меньшего размера, то есть на языке физики являются «бесструктурными». Состоять из ничего Что значит «не имеет структуры»? На этот вопрос Стандартная модель ответа не имеет и предпочитает сильно не задумываться. На самом деле есть всего два варианта: либо вещество можно бесконечно делить на мелкие составляющие что маловероятно , либо мы рано или поздно должны дойти до каких-то минимальных объектов, которые образуют все остальные. В качестве решения проблемы структуры частиц в середине прошлого века была предложена теория струн. В ней все частицы состоят из мельчайших «петель» — струн размером всего лишь 10-33 см.
Наступит ли Конец Света? Тысячелетиями Человечество искало ответы на эти вопросы. Одна теория сменяла другую, каждая была точнее и сложнее предыдущей, но Истина постоянно ускользала из рук. Что не устраивает в Стандартной Модели? На деле всё не так просто, Теория струн работает не везде и с большими оговорками, но это не мешает ей вносить большой вклад в развитие физики и её реально можно назвать революционной. Однако самое интересное, что как только начинаешь разбираться с теорий, сталкиваешься с такими необычными вещами, как: частицы, движущиеся со скоростью больше света; дополнительные семь измерений; коллайдеры размером с Галактику; пульты для настройки Вселенной; двойники элементарных частиц; квантовая гравитация и многое другое... Чтобы разобраться в Теории Струн нужно понять - на каком этапе наука находится сейчас. В целом она развивается циклично, фундаментальные теории, объясняющие модель мира, сменяют одна другую - когда одна теория не может объяснить что-то и в то же время другая отлично это объясняет - следует смена. И так далее, и так далее. Наример, ранее самыми фундаментальными считались тысячи различных веществ - вода, золото, серебро, стекло, глина и т. На смену им прило чуть более сотни химических элементов таблица Менделеева. Потом обнаружилось, что атомы любых элементов состоят из электронов, протонов и нейтронов. Ну и так далее. На данный момент есть 17 частиц, которые считаются фундаментальными: Некоторые являются крипичиками, из которыех состоит всё вокруг. U и D-кварки образуют протоны и нейтроны, добавляете электроны - и получаются атомы из которых сделаны абсолютно ВСЁ, от неживой до живой природы, от звёзд до вируса... Глюлны, фотоны и бозоны - переносчики взаимодействий. Перекидываясь ими частицы притягиваются или ооталкиваются в зависимости от заряда и других параметров. Именно так возникают силы, они определяют размеры, форму, стабильность ядер, атомов и молекул. Бозон Хиггса, кстати, самый бесполезный, но... Можно сказать, что это некая "современная таблица Менделеева" - это состав, ингридиенты, из которых состоит Вселенная.
Теория струн простыми словами
И каждой частотет соответствует своя частица. Именно колебательным состоянием струны и определяется масса, заряд и все другие параметры абсолютно всех частиц. Струны могут сливаться друг с другом, разрываться - поглощение и излучение частиц соответственно. Почему до этого нельзя было так сделать? Причина - в структуре Пространства и Времени. В Теории Относительности - оно гладкое и ровное на любых масштабах. И раз у них есть масса и энергия, то они... Из-за чего оно становится искривлённым и неровным. На самом деле есть и другая причина.
В квантовой теории поля силы возникают благодаря обмену частицами, а в теории относительности - из-за кривизны Пространства-Времени. И если всё объединять, то должна существовать частица - переносчик Гравитации, гравитон, но если рассматривать его как точечный объект как в стандартной модели , то это фееричный провал: Раз он крошечный, вокруг него возникает мегасильное гравитационное поле, такое, что оно порождает вторичные гравитоны, те, в свою очередь - другие поля, и так далее, до бесконечности. Насчёт других частиц ученые как-то разобрались, но вот что делать с гравитонами? Поэтому возникновение вторичных гравитонов не носит лавинообразный характер. Но что касается темной материи и тёмной энергии - Теория Струн не предлагает готового решения да-да! Но она настолько гибкая, что наверняка сможет и их тоже объяснить. Надо только дать время доработать теорию... Похожее по теме...
Говоря простыми словами, гравитация - это притяжение между двумя любыми объектами во вселенной. Первая версия Теории Струн, разработанная ещё в 1960 годах, значительно отличается от текущей, вроде бы название почти одно и то же, а по сути - многое различно. Появилась Теория Суперструн, Суперсимметрия по сути мир, составленный из фотонов , и частицы, подтверждающие суперсимметрию, должны были бы быть найдены, но их пока НЕТ.
Вернее энергия первична, а материя вторична.
Десять измерений которые куда то мелко свернуты... Ребята, по моему ваша математика окончательно оторвалась от реальности. Пора вводить новый термин: научная сингулярность. Это когда вычисления зашли так далеко что окончательно потеряли какую бы то ни было связь с реальностью, но ученые остановиться не могут.
Особенно в этом преуспел Хокинс, возможно потому что его мозг имеет весьма ограниченную связь с этим миром и он придумывает какой то свой виртуальный мир, внутренне как бы логичный, но абсолютно фантастический. Я тоже хочу спросить "Почему?
При этом стоит подчеркнуть, что теория струн пока не подтверждена экспериментально. Как появилась теория струн Ученые наблюдали за столкновениями частиц на ускорителях и заметили, что в результате реакций возникали целые семьи частиц. Все выглядело так, будто различные разные частицы внутри одной семьи вели себя, как различные гармоники струны. Одним из первых придал этому наблюдению математическую форму итальянский физик Габриэле Венециано.
Тогда, в 1960-х годах, исследователи пытались найти теорию, которая бы точно предсказывала спектр масс частиц в обсуждаемых семьях. К сожалению, полного сходства с реальностью не получалось. Однако ученые заметили, что в спектре струны возникали частицы, которые имели те же свойства, что и фотоны в случае открытой струны , и гравитоны в случае замкнутой струны. Так и возникла идея попробовать применить создаваемую теорию для описания гравитации и других фундаментальных теорий, а не к описанию поведения адронов — частиц, возникающих в ядерных реакциях. Футурология Загадочные частицы: что ученые знают о космических лучах Как теория струн стала «теорией всего» Где-то к началу 1980-х ученые поняли, что теория струн, изначально придуманная для описания взаимодействий адронов, имеет более фундаментальный характер. Тогда и началась так называемая «струнная революция».
Около 20 лет эта концепция была основным локомотивом развития фундаментальной физики. Существовала надежда, что она объяснит не только природу всех элементарных частиц, но и размерность того пространства-времени, в котором мы живем. Важно также, что появлялся единый общий взгляд на все существующие типы частиц.
Вместе теория относительности и квантовая механика могут объяснить очень большое и очень маленькое. Однако, несмотря на то, что обе поддерживают все, что мы знаем о вселенной, теория относительности и квантовая механика плохо работают вместе. На самом деле ученые не смогли объединить две теории в единую теорию всего. Объединение двух столпов физики в одно целое может показаться не слишком важным.
Ведь по отдельности теория относительности и квантовая механика могут объяснить большую часть Вселенной. Однако наличие двух отдельных законов, управляющих вселенной, имеет свои проблемы. Например, представьте, что есть два типа улиц, и тип определяет правила движения. Некоторые улицы имеют тот или иной тип, поэтому правила довольно просты.
Что такое Теория струн и существует ли 10-ое измерение
Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Просто о сложном_ структура Вселенной, квантовая физика, теория относительности. Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее.
Теория струн кратко и понятно
Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. О чем теория струн? Самое простое и понятное объяснение.
Симфония вселенной: теория струн для начинающих
Каждому из этих отрезков отвечала своя константа связи. При нормальных энергиях константа связи мала, и в ближайших нескольких отрезках её можно использовать как хорошее приближение к реальным её значениям. Однако, когда константа связи велика, методы, используемые при работе с нормальными энергиями, уже не работают, и эти отрезки становятся бесполезными. Аналогичная картина в струнной теории. В ней тоже есть своя константа связи, однако, в отличие от теорий элементарных частиц, струнная константа связи — это не просто число, а параметр, зависящий от определенной колебательной моды струны, называемой дилатоном. Изменение знака поля дилатона на противоположный изменяет константу связи с очень большой на очень маленькую. Такой тип симметрии называется S-дуальностью. Если две теории связаны между собой S-дуальностью S-дуальны друг другу , то одна из этих теорий, с сильной связью сильной константой связи , будет эквивалентной другой теории, со слабой связью. Необходимо заметить, что теории с сильной связью нельзя исследовать путем разложения в ряды такие теории называют непертурбативными, в отличие от пертурбативных , которые можно раскладывать в ряды , а теории со слабой связью — можно. Таким образом, если две теории S-дуальны друг другу, то достаточно понять слабую теорию, поскольку это эквивалентно пониманию сильной теории.
Дополнительные измерения[ Файл:Калаби-Яу. Ни теория Максвелла , ни теории Эйнштейна не дают такого предсказания, поскольку предполагают число измерений заданным в теории относительности их четыре. Первым, кто добавил пятое измерение к эйнштейновским четырём, оказался немецкий математик Теодор Калуца 1919 г. Обоснование ненаблюдаемости пятого измерения его компактности было предложено шведским физиком Оскаром Клейном в 1926 г. Требование согласованности теории струн с релятивистской инвариантностью лоренц-инвариантностью налагает жёсткие требования на размерность пространства-времени, в котором она формулируется. Теория бозонных струн может быть построена только в 26-мерном пространстве-времени, а суперструнные теории — в 10-мерном. Поскольку мы, согласно специальной теории относительности , существуем в четырёхмерном пространстве-времени, необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории суперструн имеется два таких механизма. Компактификация[ Файл:Calabi-Yau.
Шестимерное разложение моделей достигается с помощью пространств Калаби — Яу. Стандартная аналогия, используемая при рассмотрении многомерного пространства, — садовый шланг. Если наблюдать шланг с достаточно далекого расстояния, будет казаться, что он имеет только одно измерение — длину. Но если приблизиться к нему, обнаруживается его второе измерение — окружность. Истинное движение муравья, ползающего по поверхности шланга, двумерно, однако издалека оно нам будет казаться одномерным. Дополнительное измерение доступно наблюдению только с относительно близкого расстояния, поэтому и дополнительные измерения пространства Калаби — Яу доступны наблюдению только с чрезвычайно близкого расстояния, то есть практически не обнаруживаемы. Локализация[ ] Другой вариант — локализация — состоит в том, что дополнительные измерения не столь малы, однако в силу ряда причин все частицы нашего мира локализованы на четырёхмерном листе в многомерной вселенной мультивселенной и не могут его покинуть. Этот четырёхмерный лист брана и есть наблюдаемая часть мультивселенной. Поскольку мы, как и вся наша техника, состоим из обычных частиц, то мы в принципе неспособны взглянуть вовне.
Единственная возможность обнаружить присутствие дополнительных измерений — гравитация. Гравитация, будучи результатом искривления пространства-времени, не локализована на бране, и потому гравитоны и микроскопические чёрные дыры могут выходить вовне. В наблюдаемом мире такой процесс будет выглядеть как внезапное исчезновение энергии и импульса, уносимых этими объектами. Проблемы[ Возможность критического эксперимента[ ] Теория струн нуждается в экспериментальной проверке, однако ни один из вариантов теории не даёт однозначных предсказаний, которые можно было бы проверить в критическом эксперименте. Таким образом, теория струн находится пока в «зачаточной стадии»: она обладает множеством привлекательных математических особенностей и может стать чрезвычайно важной в понимании устройства Вселенной, но требуется дальнейшая разработка для того, чтобы принять её или отвергнуть.
Если бы эти искажения были найдены, то можно было бы с большой долей уверенности заявить, что существование аксионов подтверждено экспериментально. Однако таких искажений астрофизики не зафиксировали. Это поставило под сомнение теорию струн. Исследователи считают, что, возможно, теперь сторонникам этой теории придется пересмотреть прогнозы о диапазоне масс этих частиц. Теоретикам придется задуматься, поскольку одной из возможных интерпретаций этой работы является то, что аксионоподобных частиц не существует.
Но есть и другое объяснение. Оно заключается в том, что такие частицы имеют более низкие значения конвертируемости, чем предел обнаружения обсерватории "Чандра". Возможно, будущие исследования, когда появятся более чувствительные инструменты, все-таки помогут обнаружить неуловимые аксионы.
Поскольку мы, согласно специальной теории относительности , существуем в четырёхмерном пространстве-времени [52] [53] , необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории струн имеется два таких механизма. Компактификация Проекция 6-мерного пространства Калаби — Яу , полученная с помощью Mathematica Первый из них заключается в компактификации дополнительных 6 или 7 измерений, то есть замыкание их на себя на таких малых расстояниях, что они не могут быть обнаружены в экспериментах.
Шестимерное разложение моделей достигается с помощью пространств Калаби — Яу. Классическая аналогия, используемая при рассмотрении многомерного пространства, — садовый шланг [54]. Если наблюдать шланг с достаточно далёкого расстояния, будет казаться, что он имеет только одно измерение — длину. Но если приблизиться к нему, обнаруживается его второе измерение — окружность. Истинное движение муравья, ползающего по поверхности шланга, двумерно, однако издалека оно нам будет казаться одномерным. Дополнительное измерение доступно наблюдению только с относительно близкого расстояния, поэтому и дополнительные измерения пространства Калаби — Яу доступны наблюдению только с чрезвычайно близкого расстояния, то есть практически не обнаруживаемы.
Локализация Другой вариант — локализация — состоит в том, что дополнительные измерения не столь малы, однако в силу ряда причин все частицы нашего мира локализованы на четырёхмерном листе в многомерной вселенной мультивселенной и не могут его покинуть. Этот четырёхмерный лист брана и есть наблюдаемая часть мультивселенной. Поскольку мы, как и вся наша техника, состоим из обычных частиц, то мы в принципе неспособны взглянуть вовне. Единственная возможность обнаружить присутствие дополнительных измерений — гравитация. Гравитация, будучи результатом искривления пространства-времени, не локализована на бране, и потому гравитоны и микроскопические чёрные дыры могут выходить вовне. В наблюдаемом мире такой процесс будет выглядеть как внезапное исчезновение энергии и импульса, уносимых этими объектами.
Проблемы Возможность критического эксперимента Теория струн нуждается в экспериментальной проверке, однако ни один из вариантов теории не даёт однозначных предсказаний, которые можно было бы проверить в критическом эксперименте. Таким образом, теория струн находится пока в «зачаточной стадии»: она обладает множеством привлекательных математических особенностей и может стать чрезвычайно важной в понимании устройства Вселенной, но требуется дальнейшая разработка для того, чтобы принять её или отвергнуть. Поскольку теорию струн, скорее всего, нельзя будет проверить в обозримом будущем в силу технологических ограничений, некоторые учёные сомневаются, заслуживает ли данная теория статуса научной, поскольку, по их мнению, она не является фальсифицируемой в попперовском смысле [12] [55]. Разумеется, это само по себе не является основанием считать теорию струн неверной. Часто новые теоретические конструкции проходят стадию неопределённости, прежде чем, на основании сопоставления с результатами экспериментов, признаются или отвергаются см. Поэтому и в случае теории струн требуется либо развитие самой теории, то есть методов расчёта и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин.
Фальсифицируемость и проблема ландшафта В 2003 году выяснилось [57] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно.
А чтобы получить вынужденный индуцированный распад протона у нас нет соответствующего положительного поля. У нас все отрицательное, в любом атоме сверху торчат электроны. По этой же причине время распада антипротона в нашем мире значительно меньше. Что это за поля с небольшой интенсивностью и большим дальнодействием Брайан не расшифровывает и можно только предположить, что это некоторые виды передачи информации в виде мысли, телепатии, телепортации и тому подобное. Действительно, некоторые явления, из этого, возможны. Например, эффект сотой обезьяны, или то что мать чувствует что-то не хорошее со своим ребенком, или животные чувствуют наличие далекого водоема или надвигающегося ненастья и т. Но все это объясняется очень слабым потом фотонов, излучаемых происходящим явлением. Такой поток способна уловить только система, точно настроена в резонанс данному излучению. Такое происходит при работе шестого чувства. Это происходит также, как и в любом приемнике. Что существует и малое дальнодействие? Физически это истолковано, истолковывайте математически. Да тут и устанавливать нечего. Еще Дирак предсказал существование моря энергии. Это либо скопления масс скрытых фотонов в виде тёмного вещества, или аннигилировавших фотонов в виде черных дыр. Другого ничего в природе просто не наблюдается, да и не нужно оно не для чего, то есть ни в какую причинно-следственную цепочку ничего больше не встраивается. Космологическая постоянная, в уравнении гравитации Эйнштейна, оказалась равной нулю. А что если эксперимент покажет, что она, как дело с нейтрино, не будет равна нулю, то объяснит ли это теория струн? Если такое объяснение будет получено, то это даст убедительные свидетельства в поддержку данной теории. Вот такие предсказания и после сказания теории струн.