Новости коэффициент джини показывает

Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране.

В России зафиксирован рост доходного неравенства

Значения и трактование коэффициента Джини Коэффициент Джини может иметь значение от 0 абсолютно равномерное распределение доходов до 1 абсолютно неравномерное распределение доходов. Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве. Коэффициент Джини показателен не только в абсолютном значении, но и в динамике: если он растет — уровень социального неравенства растет, если падает — соответственно, падает. Коэффициент Джини по странам мира и в России На следующей инфографике представлены значения индекса Джини, расчитанные аналитиками Всемирного банка по состоянию на 2023 год, а также десятка стран с наибольшим значением коэффициента.

Пятый столбец — произведение первого и третьего.

Далее подсчитываем суммы по четвертому и пятому столбцу. Это самая простая в применении формула. Советую ее запомнить. А если вдруг хочется понять, как она выведена, откройте этот спойлер объяснение довольно длинное!

В основе этой формулы лежит уже известная вам идея: чтобы посчитать площадь фигуры над кривой Лоренца: можно сперва посчитать площадь фигуры под кривой Лоренца а потом вычесть ее из площади диагонального треугольника, которая равна 0,5, и получим искомое.

Причины неравенства Многие видят причину этого явления в разном уровне личностных качеств, способностей, условий труда. Опрошенные респонденты считают, что для решения проблемы, нужно: предоставить возможности для хорошего заработка; вместе с ростом цен периодически повышать доходы; «заморозить», не увеличивать цены на продукцию первой необходимости; предусматривать больше господдержки для малообеспеченных граждан. Следует заметить, что аспекты неравенства в обществе в т. Подходы к интерпретации данного явления разные.

Уровень бедности К бедным относят тех граждан, у которых доход меньше либо равен прожиточному минимуму ПМ. ПМ — минимально допустимая материальная обеспеченность на человека в стране регионе. ПМ привязывается к минимальному набору продовольственных, непродовольственных товаров, услуг. По РФ: в 2018 г. По данным Росстата на 2019 г.

Оценка уровня жизни производится также по потребительским тратам, а также по тратам на продукты питания. Между тем состоятельные граждане тратят больше на питание, чем бедные, раз в пять. Но чем меньше денег идет на питание, тем больше остается денег на остальные нужды, на образование, открытие бизнеса и др. По данным Росстата потребительские траты богатых выше в 3 раза, чем у средних слоев населения. А у бедных — в 5 раз меньше, чем у средних.

Естественно, из расчета на одного человека. Далее, если рассматривать эти общие расходы по-отдельности, то получится следующее.

В этом посте хочу познакомить экспертов, занимающихся оценкой качества моделей, с таким малоизвестным инструментом как «доверительный интервал коэффициента Джини» Вопрос происхождения и расчета указанного показателя очень мало освещен в интернете: поисковики выдадут одну внятную англоязычную ссылку с попыткой интерпретации соответствующей формулы, которая без дополнительной информации будет недостаточно понятна. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve». Кратко поясню смысл приведенной формулы. Второй блок — это вероятность того, что два случайно выбранных аномальных класса будут оцениваться выше, чем случайно выбранный нормальный класс. Третий блок — вероятность того, что один случайно выбранный аномальный класс будет оценен выше, чем два случайно выбранных нормальных класса.

Задача №77. Расчёт коэффициента Джини

Коэффициент Джини (индекс концентрации доходов). Индекс Джини или коэффициент Джини — это статистическая мера распределения, разработанная итальянским статистиком Коррадо Джини в 1912 году. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Индекс Джини или коэффициент Джини — это статистическая мера распределения, разработанная итальянским статистиком Коррадо Джини в 1912 году. Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Индекс Джини представляет собой отношение площади фигуры между упомянутой биссектрисой и кривой Лоренца к площади треугольника, образованного биссектрисой и одной из осей. Достоинства и недостатки индекса Индекс Джини позволяет обобщенно оценить, насколько доходы распределены неравномерно. Из обобщенности метода вытекают как его достоинства, так и недостатки. Так, например, индекс: легко рассчитывается при наличии небольшого количества статистической информации; предоставляет обобщенную, не персонифицированную информацию; позволяет сравнивать страны независимо от масштаба; универсален. Индекс Джини получил широкое признание как универсальный метод оценки неравенства распределения доходов в экономике, индекс рассчитывают многие страны и международные организации для оценки неравенства. Ниже приведена карта мира с распределением стран по индексу неравенства. Источник: Всемирный Банк, 2018 год Как можно увидеть, в развитых странах индекс неравенства находится на уровне от низкого до среднего. Это обусловлено как социальной ролью государства в таких странах, осуществляющего прямую поддержку слоев населения с низкими доходами, так и часто применяемой в развитых странах прогрессивной ставкой налогообложения, являющейся универсальным выравнивающим механизмом. По данным Всемирного Банка первые 15 стран с самым высоким неравенством выглядят так: Здесь любопытно нахождение США на 15 месте.

В действительности население любой страны или региона в каждый конкретный момент находится где-то между этими показателями. Коэффициент Джини для Коста-Рики — 0,48 — самый высокий среди стран Организации экономического сотрудничества и развития ОЭСР , что свидетельствует о высоком неравенстве в доходах местного населения. Он составляет всего 0,24.

Гватемала 53. При этом средний индекс в мире — 37. FAQ Какой источник информации вы использовали?

Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся.

Что бы сделал Робин Гуд?

Индекс Джини представляет собой число от 0 до 1, измеряемое в соответствии с отношением между площадью, заключенной между кривой Лоренца и линией 45 градусов, и площадью всего треугольника того, который находится ниже линии 45 градусов и площадь которого составляет 0,5. Нулевой коэффициент означает полное равенство, то есть у всех одинаковый доход; Тогда как коэффициент 1 означает абсолютное неравенство, означающее, что у одного человека есть весь доход, а у остальных вообще нет дохода. Джини — это мера статистической дисперсии, и как таковая она может измерять любой ряд числовых данных, а не только доход, богатство или политический риск. Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска. В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов. Прогноз каждой модели — это значение утверждения каждой политики.

Коэффициент Джини Коэффициент Джини Gini coefficient — это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини 1884-1965 гг. Закрашенная площадь показывает степень неравенства в распределении доходов. Обозначим ее через M. Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство.

Кроме того, так как частное предпринимательство запрещено в плановой экономике , выходит ситуация когда получаемые доходы фиксируются не у предпринимателей, а у государства. Из-за этого, формально выходит что доходы концентрируют предприниматели, в отличие от плановой экономики, где доходы принадлежат государству. Коэффициент Джини учитывает разницу доходов граждан, а не государства. Это приводит к значительно более положительным показателям коэффициента Джини в плановых экономиках. Пример расчёта коэффициента Джини[ править править код ] По данным Росстата коэффициент Джини в России составлял в разные годы [4] : Год.

Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества. Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство. Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход. На практике же значения чаще всего укладываются в диапазон от 0,2 до 0,6.

Индекс Джини в странах мира

Однако взаимосвязь между неравенством доходов и показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство, как правило, уменьшалось, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения, а затем резко увеличилось. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран.

В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там. Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот. В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики.

Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых.

Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.

Графическое представление индекса Джини Индекс Джини часто представляется графически через кривую Лоренца, которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси. Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией полного равенства. Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5. Эта цифра представляет собой чрезвычайно высокое неравенство. Другой способ восприятия коэффициента Джини — это показатель отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем меньше равноправия в обществе. В приведенном выше примере Гаити более неравное, чем Боливия.

Коэффициент Джини в мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка, коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году. Однако цифры значительно различаются. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Книга Лакнера и Милановича показывает снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов.

Текст работы размещён без изображений и формул. Полная версия работы доступна во вкладке "Файлы работы" в формате PDF Коэффициент Джини индекс Джини — это статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку к примеру, по уровню годового дохода — наиболее частое применение, особенно при современных экономических расчётах [4, с 54]. В силу значимости получаемых на основе коэффициента оценок, он активно рассчитывается, дискутируется и используется для разного уровня выводов. Он имеет ряд преимуществ, которые стоит отметить: позволяет сравнивать распределение признака в совокупностях с различным числом единиц например, регионы с разной численностью населения ; дополняет данные о ВВП и среднедушевом доходе. Служит своеобразной поправкой этих показателей; может использоваться для сравнения распределения признака между различными совокупностями например, разными странами , при этом нет зависимости от масштаба экономики сравниваемых стран; может использоваться для сравнения распределения признака по разным группам населения например, для сельского населения и городского населения ; позволяет отследить динамику неравномерности распределения признака в совокупности на разных этапах; анонимность, то есть нет необходимости знать, кто имеет какие доходы персонально [3]. Методы расчета коэффициента Джини. Существует несколько способов расчета коэффициента: алгебраический и геометрический.

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи 29 февраля 2024, 08:29 Владислава Ямщикова Все, что вы не успели прочесть, пока спали и отдыхали, — очень кратко в материале 66. В 2023 году коэффициент Джини индекс концентрации доходов составил 0,403, сообщил Росстат. В прошлом году он составлял 0,395. Чем ближе индекс к нулю, тем меньше доходное неравенство. На Сахалине военного осудили за отказ участвовать в боевых действиях на территории Украины. Он опасался за свою жизнь и «отказался выполнить приказ командира об убытии в зону проведения СВО». Его приговорили к двум с половиной годам исправительной колонии общего режима. Хамовнический районный суд Москвы арестовал на 10 суток автора блога «Заметки детского врача» Сергея Бутрия.

Вы точно человек?

Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.). Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.). Коэффициент Джини (индекс концентрации доходов) в целом по России и по субъектам Российской Федерации.

Доверительный интервал коэффициента Джини. Что это?

В России вырос уровень доходного неравенства | Ямал-Медиа Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения.
Неравенство и бедность Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле.
Коэффициент Джини - индекс концентрации доходов — Тюлягин Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%.

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

"РГ"), подготовленный Росстатом, также демонстрирует снижение неравенства. Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3.

Социальная поддержка сократила уровень неравенства в России

В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны. Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам. В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280.

Разница очень наглядная. Еще раз доказывающая, что в России действует американская, а не европейская и тем более не восточноазиатская модель экономики. Это тоже официальные данные Росстата, который порой склонен сглаживать реальность в угоду, например, «беспрецедентному росту зарплат».

Причина роста дохода богатых и хорошо обеспеченных людей кроется отчасти в уходе экономики «в тень». Иными словами, в стране растет сектор серых зарплат, тогда как малообеспеченные граждане не получают прибавок к социальным выплатам в таком же объеме. Кроме того, богатые люди по факту оказываются куда обеспеченнее, чем могут показать коэффициенты Росстата или даже ООН.

Многие из них вкладывают средства в активы за рубежом, кладут на депозиты, приобретают высокодоходные ценные бумаги. Наконец, и инвестиции в недвижимость в Москве обещают богатым людям неплохую прибавку, тогда как менее обеспеченные люди часто не могут себе позволить приобрести даже жилье эконом-класса. Под оценки Росстата и Минтруда также не попали данные, которые возможно оценить лишь с имиджевой точки зрения.

Богатым людям необходим статус, а его обеспечивают лишь приобретения дорогих машин, вилл, яхт и так далее. Именно поэтому с показателями социального неравенства в России сложилась двоякая ситуация. С одной стороны, Россия не показывает колоссальной разницы с другими странами, если верить официальной статистике.

С другой стороны, все более очевидной становится «серая» зона в оценке неравенства, которая не поддается подсчетам.

Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство». Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.

Тем не менее, многие явно подходящие способы измерения неравенства не могут быть использованы. Например, дисперсия, которая должна быть одной из самых простых мер неравенства, не является независимой от шкалы доходов: простое удвоение всех доходов приведет к четырехкратному увеличению оценки неравенства доходов. Федеральная служба статистики Российской Федерации в качестве меры измерения социального неравенства использует децильный коэффициент фондов, который рекомендован в качестве одного из показателей оценки состояния экономической безопасности[7]. Однако на международном уровне зачастую используется другой показатель оценки социального неравенства — коэффициент Джини, который обладает своими плюсами и минусами по сравнению с коэффициентом фондов и может быть использован в качестве дополнительного показателя в оценки экономической безопасности. Методика расчета коэффициента Джини основывается на построении кривой Лоренца.

Коэффициент Джини определяется как отношение двух площадей: площадью между кривой Лоренца распределения доходов и диагональной линией полного равенства, выраженная как доля треугольной области между кривыми полного равенства и неравенства. Величина коэффициента Джини может принимать значения в пределах от 0 до 1. Чем ближе значение коэффициента к 1, тем выше уровень неравенства в распределении совокупного дохода. Чем ближе коэффициент к 0, тем равномернее распределение. Коэффициенту Джини свойственны следующие признаки: Анонимность: не имеет значения, какие социальные группы обладают высоким или низким заработком. Показатель неравенства не должен зависеть от какой-либо характеристики отдельных лиц, кроме их дохода. Независимость от масштаба экономики: коэффициент Джини не учитывает размер экономики. Независимость от размера населения: не имеет значения, насколько велико население страны.

Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4].

В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5. В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны. Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам. В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280. Разница очень наглядная.

Еще раз доказывающая, что в России действует американская, а не европейская и тем более не восточноазиатская модель экономики. Это тоже официальные данные Росстата, который порой склонен сглаживать реальность в угоду, например, «беспрецедентному росту зарплат». Причина роста дохода богатых и хорошо обеспеченных людей кроется отчасти в уходе экономики «в тень». Иными словами, в стране растет сектор серых зарплат, тогда как малообеспеченные граждане не получают прибавок к социальным выплатам в таком же объеме. Кроме того, богатые люди по факту оказываются куда обеспеченнее, чем могут показать коэффициенты Росстата или даже ООН. Многие из них вкладывают средства в активы за рубежом, кладут на депозиты, приобретают высокодоходные ценные бумаги. Наконец, и инвестиции в недвижимость в Москве обещают богатым людям неплохую прибавку, тогда как менее обеспеченные люди часто не могут себе позволить приобрести даже жилье эконом-класса. Под оценки Росстата и Минтруда также не попали данные, которые возможно оценить лишь с имиджевой точки зрения.

Богатым людям необходим статус, а его обеспечивают лишь приобретения дорогих машин, вилл, яхт и так далее. Именно поэтому с показателями социального неравенства в России сложилась двоякая ситуация. С одной стороны, Россия не показывает колоссальной разницы с другими странами, если верить официальной статистике.

Некоторые равнее: что такое коэффициент Джини и зачем он нужен

Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). Коэффициент Джини (индекс концентрации доходов) — статистический показатель для оценки экономического равенства. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца. Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини. В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов.

Ваш пароль

Коэффициент Джини Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.).
Доверительный интервал коэффициента Джини. Что это? В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках.
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели.
Социальная поддержка сократила уровень неравенства в России Коэффициент Джини рассчитывается по формуле.
Коэффициент Джини | это... Что такое Коэффициент Джини? Коэффициент Джини рассчитывается по формуле.

Похожие новости:

Оцените статью
Добавить комментарий