Любое натурально число имеющее различные разряды можно разложить на сумму разрядных слагаемых. “Разрядные слагаемые числа” – это математическое понятие, которое означает разложение числа на сумму его составляющих цифр, учитывая их разрядность. Представление числа в виде суммы разрядных слагаемых» УМК «Школа России» Математика 4 класс Автор: Малахова Т.С. 1.". Скачать бесплатно и без регистрации. Сумма разрядных слагаемых натурального числа, в виде суммы разрядных слагаемых. Сумма разрядных слагаемых слагаемых. Разрядные слагаемые числа.
Презентация на тему "Разрядные слагаемые"
И с каждым из этих разрядов числа связаны разрядные слагаемые. А теперь представь, что ты отправился в сказочную страну, где любые числа играют в жизни ведущие роли! Именно здесь и происходит таинственное звучание слова «разрядные слагаемые 2 класса». Разрядные слагаемые 2 класса: понятие и примеры Например, рассмотрим число 56.
Оно состоит из пятидесяти и шести.
При сложении сначала складываются единицы, затем десятки, сотни и т. При вычитании также происходит постепенное вычитание разрядных слагаемых от большего числа к меньшему. При использовании разрядных слагаемых мы можем производить более сложные вычисления, в которых нужно учитывать переносы разрядов. При этом в разряде единиц получается 2, а 1 переносят в разряд десятков. Получаем 1 в разряде десятков и переносим 1 в разряд сотен. Получаем число 812, которое является суммой разрядных слагаемых 547 и 365. Таким образом, понимание значения разрядных слагаемых позволяет нам удобно и точно выполнять сложение и вычитание чисел разного разряда, а также проводить анализ и решать более сложные задачи. Практическое использование разрядных слагаемых На практике знание разрядных слагаемых может быть полезным для упрощения сложения чисел и выполнения вычислений эффективнее и точнее.
Этот алгоритм заключается в последовательном вычитании крупнейшего возможного слагаемого из числа. Например, для числа 1234 можно начать с вычетания 1000 и получить слагаемое 1000. Затем вычесть 200 два раза по 100 и получить слагаемое 200. Потом вычесть 30 три раза по 10 и получить слагаемое 30. И, наконец, вычесть 4 и получить слагаемое 4. Разбиение числа на разрядные слагаемые может быть полезным при работе с математическими задачами и при проведении сложных вычислений.
А цифру 1 переносим на следующий разряд: Теперь складываем десятки. Складываем 8 и 4 плюс единица, которая осталась от предыдущей операции единица осталась от 12, на рисунке она выделена синим цветом. Число 13 не вместится в разряд десятков нашего ответа, поэтому мы запишем цифру 3 в разряде десятков, а единицу перенесём на следующий разряд: Теперь складываем сотни. Записываем число 13 в разряд сотен: Вычитание в столбик Пример 1.
Вычтем из числа 69 число 53. Запишем числа в столбик. Единицы под единицами, десятки под десятками. Затем вычитаем по разрядам. Из единиц первого числа вычитаем единицы второго числа. Из десятков первого числа вычитаем десятки второго числа: Получили ответ 16. От пяти единиц нельзя вычесть шесть единиц, поэтому берем один десяток у разряда десятков. Этот десяток и имеющиеся пять единиц вместе составляют 15 единиц. Из 15 единиц можно вычесть 6 единиц, получится 9 единиц. Записываем цифру 9 в разряде единиц нашего ответа: Теперь вычитаем десятки.
Разряд десятков числа 95 раньше содержал 9 десятков, но мы взяли с этого разряда один десяток, и сейчас он содержит 8 десятков. А разряд десятков числа 26 содержит 2 десятка. Из восьми десятков можно вычесть два десятка, получится шесть десятков. Записываем цифру 6 в разряде десятков нашего ответа: Воспользуемся нестандартным способом вычитания при котором каждая цифра, входящая в число, рассматривается как отдельное число. При вычитании больших чисел в столбик этот способ очень удобен. В разряде единиц уменьшаемого располагается число 5. А в разряде единиц вычитаемого число 6. Из пятёрки не вычесть шестёрку. Поэтому берем одну единицу у числа 9. Взятая единица мысленно дописывается слева от пятёрки.
А поскольку у числа 9 мы взяли одну единицу, это число уменьшится на одну единицу: В результате пятёрка обращается в число 15. Теперь можно из 15 вычесть 6. Получается 9. Записываем число 9 в разряде единиц нашего ответа: Переходим к разряду десятков. Раньше там располагалось число 9, но поскольку мы взяли у него одну единицу оно обратилось в число 8. В разряде десятков второго числа располагается число 2. Восемь минус два будет шесть. Записываем число 6 в разряде десятков нашего ответа: Пример 3. Из двойки не вычесть семёрку, поэтому берем единицу у следующего числа 1. Взятую единицу мысленно дописываем слева от двойки: В результате двойка обращается в число 12.
Теперь можно из 12 вычесть 7. Получается 5. Записываем цифру 5 в разряде единиц нашего ответа: Переходим к десяткам. В разряде десятков числа 2412 раньше располагалось число 1, но поскольку мы взяли у него одну единицу, оно обратилось в 0. А в разряде десятков числа 2317 располагается число 1. Из нуля не вычесть единицу. Поэтому берем одну единицу у следующего числа 4. Взятую единицу мысленно дописываем слева от нуля. А поскольку у числа 4 мы взяли одну единицу, это число уменьшится на одну единицу: В результате ноль обращается в число 10. Теперь можно из 10 вычесть 1.
Записываем цифру 9 в разряде десятков нашего ответа: В разряде сотен числа 2412 раньше располагалось число 4, но сейчас там располагается число 3. В разряде сотен числа 2317 также располагается число 3. Три минус три равно нулю. То же самое и с разрядами тысяч в обоих числах. Два минус два равно нулю. А если разность старших разрядов равна нулю, то этот ноль не записывают. Поэтому окончательным ответом будет число 95. Пример 4. Из нуля не вычесть восьмерку, поэтому берем единицу у следующего числа. Но следующее число это тоже ноль.
Тогда за следующее число принимаем число 60. Берем одну единицу у этого числа и мысленно дописываем её слева от нуля. А поскольку у числа 60 мы взяли одну единицу, это число уменьшится на одну единицу: Теперь в разряде единиц располагается число 10. Из 10 можно вычесть 8, получится 2. Записываем число 2 в разряде единиц нового числа: Переходим к следующему числу, находящемуся в разряде десятков. В разряде десятков раньше располагался ноль, но сейчас там располагается число 9, а во втором числе разряд десятков отсутствует. Поэтому число 9 переносится к новому числу: Переходим к следующему числу, находящемуся в разряде сотен. В разряде сотен раньше располагалось число 6, но сейчас там располагается число 5, а во втором числе разряд сотен отсутствует. Поэтому число 5 переносится к новому числу: Пример 5. Из нуля не вычесть девятку, поэтому берем одну единицу у следующего числа, находящегося в разряде десятков.
Но в следующем разряде тоже ноль. Тогда за следующее число принимаем 1000 и берем от этого числа единицу: Следующее число в данном случае было 1000. Взяв у него единицу, мы обратили его в число 999. А взятую единицу дописали слева от нуля. Дальнейшее вычисление не составило особого труда. Десять минус девять равно одному. Вычитание чисел, находящихся в разряде десятков обоих чисел дало ноль. Вычитание чисел, находящихся в разряде сотен обоих чисел тоже дало ноль. А девятка из разряда тысяч была перенесена к новому числу: Пример 6. Из единицы не вычесть шесть, поэтому берем одну единицу у следующего числа, находящегося в разряде десятков.
Но в следующем разряде располагается ноль. Ноль ничего нам дать не сможет. Тогда за следующее число принимаем 1230 и берем от этого числа единицу: Следующее число в данном случае было 1230. Взяв у него единицу, мы обратили его в число 1229.
Различие между разрядными слагаемыми 2 класса в математике - описание и иллюстрации
Разряд единиц, разряд десятков, разряд сотен. Свежие записи В данный момент вы не можете посмотреть или раздать видеоурок ученикам Рассмотрим пример определения разрядных слагаемых числа 92586 Натуральные числа и их классификация «Инновация. Разрядными, называют числа, состоящие из единиц только одного разряда. Сумма разрядных слагаемых натурального числа, в виде суммы разрядных слагаемых. Разрядные слагаемые числа являются основой арифметических операций в разрядной системе счисления.
Разрядные слагаемые. Представление числа в виде суммы разрядных слагаемых
Примеры разрядных слагаемых Разрядные слагаемые используются для разложения числа на разряды, а именно на единицы, десятки, сотни и тысячи. Разрядные слагаемые и операции Операция сложения с разрядными слагаемыми позволяет нам складывать числа, учитывая их разряды. Например, чтобы сложить число 536 и число 214, мы складываем их разряды поочередно: первые цифры 5 и 2 складываем, получаем 7; затем складываем вторые цифры 3 и 1, получаем 4; и наконец сложим третьи цифры 6 и 4, получаем 10. В ответе запишем 0 и запомним 1, которую нужно будет прибавить к следующему разряду. Операция вычитания с разрядными слагаемыми позволяет нам вычитать числа, учитывая их разряды. Например, чтобы вычесть из числа 536 число 214, мы вычитаем их разряды поочередно: первые цифры 6 и 4 вычитаем, получаем 2; затем вычитаем вторые цифры 3 и 1, получаем 2; и наконец вычтем третьи цифры 5 и 2, получаем 3.
Если разряды одного числа закончатся раньше, чем у другого числа, вместо цифр оставшихся разрядов записываем нули. Разрядные слагаемые позволяют нам лучше понять структуру числа и выполнять операции с большими числами.
Чтобы определить количество сотен, записываем всё число без разрядов десятков и единиц то есть разрядов до сотен. Чтобы определить количество единиц тысяч, записываем всё число без разрядов сотен, десятков и единиц то есть разрядов до единиц тысяч. Чтобы определить количество десятков тысяч, записываем всё число без разрядов единиц тысяч, сотен, десятков и единиц то есть разрядов до десятков тысяч.
Чтобы определить количество сотен тысяч, записываем всё число без разрядов десятков тысяч, единиц тысяч, сотен, десятков и единиц то есть разрядов до сотен тысяч. Советуем обратить особое внимание на данную тему, так как умение раскладывать числа на разрядные слагаемые поможет вам при устном счёте и решении примеров с многозначными числами.
Разрядные слагаемые — это числа, стоящие в одном и том же разряде в слагаемых числах. Например, при сложении чисел 456 и 789, разрядные слагаемые для сотен — это цифры 4 и 7, для десятков — цифры 5 и 8, для единиц — цифры 6 и 9. Зная определение разрядных слагаемых, можно более просто и систематизированно выполнять сложение чисел в столбик, что облегчает понимание математических операций и помогает избежать ошибок при сложении. Роль и применение разрядных слагаемых в математике Разрядные слагаемые играют важную роль в математике, особенно при работе с большими числами.
Они помогают разложить числа на разряды и облегчают выполнение арифметических операций. Применение разрядных слагаемых часто используется при выполнении операций сложения и вычитания. При сложении, слагаемые с одинаковыми разрядами суммируются, и результат записывается в такой же разряд. При вычитании, разрядные слагаемые вычитаются из соответствующих разрядов числа. Также, разрядные слагаемые позволяют упростить умножение и деление, особенно при работе с многоразрядными числами. При умножении, слагаемые умножаются на цифры множителя, и результаты суммируются, чтобы получить окончательное произведение.
Остальные цифры: 1, 2, 3, 4, 5, 6, 7, 8, 9 называются значащими. Разрядные единицы Система счисления, которой мы пользуемся, называется десятичной. Потому что именно десять единиц одного разряда составляет одну единицу следующего разряда. Мы считаем единицами, десятками, сотнями, тысячами и так далее.
Это и есть разрядные единицы нашей системы счисления. Например, в числе 12 два разряда: разряд единиц состоит из 2 единиц, разряд десятков состоит из одного десятка. Мы говорили о том, что 0 — незначащая цифра, которая обозначает отсутствие чего либо. В числах цифра 0 обозначает отсутствие единиц в разряде.
Видеоурок 1.5. Разрядные слагаемые. Математика 2 класс
Разрядные слагаемые являются важной концепцией в математике, которая помогает разобраться в устройстве числовой системы. Концепция разрядных слагаемых предполагает, что каждое число имеет свою разрядность, то есть оно состоит из разрядов, которые имеют различное значение. Например, в числе 234 разрядность единиц равна 4, разрядность десятков равна 3, а разрядность сотен равна 2. Разрядные слагаемые позволяют проще и удобнее проводить сложение, вычитание, умножение и деление чисел. Примером применения разрядных слагаемых может служить сложение двух чисел.
Пусть у нас есть два числа: 682 и 345. Мы можем сложить эти числа, начиная с разряда единиц. Сначала сложим 2 и 5, получим 7. Запишем 7 в разряд единиц результирующего числа.
Затем сложим 8 и 4, получим 12. Запишем 2 в разряд десятков результирующего числа и перенесем 1 на разряд сотен. Сложим 1 и 3 с учетом переноса , получим 4. Запишем 4 в разряд сотен результирующего числа.
Итоговое число будет равно 1027. Таким образом, использование разрядных слагаемых помогает упростить математические операции и повысить уровень математической грамотности. Они помогают лучше понять и овладеть числовой системой, развивают навыки логического мышления и способствуют развитию мозга в целом. Улучшение навыков решения сложных задач Решение сложных задач требует не только знаний, но и определенных навыков.
Эти навыки могут быть развиты и улучшены с помощью практики и специальных упражнений. Одним из способов улучшения навыков решения сложных задач является регулярное тренирование мозга. Программы тренировки мозга, такие как головоломки, кроссворды и шахматы, могут помочь развить логическое мышление и улучшить способность анализировать и решать сложные задачи. Другим способом улучшения навыков решения сложных задач является анализ решений других людей.
Изучение примеров решения сложных задач, особенно тех, которые были успешно решены, может помочь расширить свой кругозор и научиться применять новые подходы в решении задач. Также важно развивать свою креативность и гибкость мышления.
Такая запись удобна при выполнении сложения, так как позволяет разбить сложное число на более простые для вычисления. Определение разрядных слагаемых чисел Разрядные слагаемые числа — это способ представления числа в виде суммы, где каждое слагаемое соответствует определенному разряду. Разряд — это позиция цифры в числе, начиная справа и увеличивая разрядность в сторону слева. Например, в числе 2345 первая цифра 5 находится в разряде единиц, вторая 4 — в разряде десятков, третья 3 — в разряде сотен, а четвертая 2 — в разряде тысяч. Каждое разрядное слагаемое получается, умножая цифру на соответствующий ей порядок в числе например, единицы, десятки, сотни, тысячи и т. Сложение разрядных слагаемых позволяет получить исходное число.
Она называется незначащей и обозначает отсутствие чего либо. На рисунке мы видим тарелку, на которой лежит 3 яблока, и пустую тарелку, на которой нет яблок. В случае с пустой тарелкой мы можем сказать, что на ней 0 яблок. Остальные цифры: 1, 2, 3, 4, 5, 6, 7, 8, 9 называются значащими. Разрядные единицы Система счисления, которой мы пользуемся, называется десятичной. Потому что именно десять единиц одного разряда составляет одну единицу следующего разряда. Мы считаем единицами, десятками, сотнями, тысячами и так далее. Это и есть разрядные единицы нашей системы счисления.
Если вдруг так вышло, что вы не расслабляетесь при виде цифр, то воспользуйтесь онлайн-калькулятором. В интернете таких калькуляторов немало, вот один из них. Так вы сможете разложить на разрядные слагаемые любое, даже самое гигантское, число. Важно разобраться в разрядах и классах чисел, тогда вы точно ничего не перепутаете. Копирование информации с сайта greednews. Поделиться ссылкой:.
Определение, что такое разрядные слагаемые с примерами разряда и класса в математике
Упражнения для тренировки You may also like: Деление дробей. Разрядные слагаемые – это понятие, которое используется в математике для разложения числа на составляющие его разряды. Разрядное слагаемое это натуральное число, которое начинается с цифры отличной от нуля. Такие слагаемые называют разрядными. Каждое натуральное число можно представить в виде суммы разрядных слагаемых. Такие слагаемые называют разрядными. Каждое натуральное число можно представить в виде суммы разрядных слагаемых.
Разрядные слагаемые в математике
Сумма разрядных слагаемых 3 класс. Урок по теме Представление числа в виде суммы разрядных слагаемых. Разрядные слагаемые это значит вот например 20+7=27. Свежие записи В данный момент вы не можете посмотреть или раздать видеоурок ученикам Рассмотрим пример определения разрядных слагаемых числа 92586 Натуральные числа и их классификация «Инновация. Разрядные слагаемые являются важной концепцией в математике, которая помогает разобраться в устройстве числовой системы.
Определение, что такое разрядные слагаемые с примерами разряда и класса в математике
Разрядные слагаемые используются в различных математических алгоритмах, а также при решении задач в области программирования и криптографии. Сумма разрядных слагаемых может быть использована для сокращения большого числа до более простого представления, что упрощает его обработку и анализ. В некоторых случаях возможно заменить число суммой разрядных слагаемых более простых чисел. Также, суммирование разрядных слагаемых может быть использовано для построения таблиц умножения, что упрощает запоминание учениками и облегчает их изучение. Что это такое и как их получить Разрядные слагаемые числа — это представление числа в виде суммы чисел, которые получаются из его разрядов. Например, число 421 можно представить в виде суммы 400, 20 и 1.
Для получения разрядных слагаемых числа нужно последовательно выделять каждый его разряд. Например, для числа 421 мы начинаем с наибольшего разряда, который равен 400. Затем мы вычитаем его из числа и повторяем действия для следующего разряда, который равен 20.
Ясность и точность Использование разрядных слагаемых позволяет избежать ошибок при записи чисел и сделать их представление более точным. В разрядной форме каждой цифре присваивается конкретное значение в зависимости от ее разряда, что позволяет избежать путаницы и неоднозначности. Удобство при выполнении математических операций При выполнении математических операций с использованием разрядных слагаемых нет необходимости выполнять сложение или вычитание цифр вручную. Вместо этого можно просто соединить слагаемые по разрядам и произвести операцию над каждым разрядом отдельно. Гибкость представления Использование разрядных слагаемых позволяет представлять числа разной длины и разрядности. Это означает, что можно представить как маленькое число, так и очень большое число с множеством разрядов. Такое представление даёт возможность работать с числами разного порядка и значительно упрощает манипуляции с числовыми данными. В итоге, использование разрядных слагаемых позволяет представлять числа в удобной и понятной форме, обеспечивает точность и ясность числовой информации, а также упрощает выполнение математических операций и работу с числовыми данными. Это помогает детям лучше понять структуру числа и разложить его на составляющие части, что облегчает сложение и позволяет решать более сложные математические примеры. Правила составления разрядных слагаемых Разрядные слагаемые представляют собой числа, которые принимают участие в сложении или вычитании.
Затем мы складываем значения каждого разряда отдельно. Это помогает установить соответствие между разрядными слагаемыми и выполнять сложение правильно. Поэтому освоение понятия разрядных слагаемых является важным этапом в математическом обучении. Оно способствует улучшению навыков работы с числами, помогает развивать логическое мышление и позволяет ученику легче справляться с математическими операциями. Разрядные слагаемые в математике В десятичной системе счисления каждая цифра числа занимает определенный разряд: единицы, десятки, сотни и т. Разные разряды имеют свои значения, которые учитываются при сложении чисел. Например, при сложении чисел 245 и 378, мы сначала складываем единицы и получаем 5. Таким образом, разрядные слагаемые в этой операции будут 5, 11 и 5. Понимание разрядных слагаемых помогает детям лучше понять структуру числа и выполнять сложение корректно. Они могут использовать этот подход не только для десятичных чисел, но и для чисел в других системах счисления, таких как двоичная или шестнадцатеричная.
Сложение в столбик происходит по разрядам — единицы складываются с единицами, десятки с десятками, сотни с сотнями, тысячи с тысячами. Рассмотрим несколько примеров. Пример 1. Сложить 61 и 23. Сначала записываем первое число, а под ним второе число так, чтобы единицы и десятки второго числа оказались под единицами и десятками первого числа. Пример 2. Сложить 108 и 60 Записываем числа в столбик. Единицы под единицами, десятки под десятками: Теперь складываем единицы первого числа с единицами второго числа, десятки первого числа с десятками второго числа, сотни первого числа с сотнями второго числа. Но сотня есть только у первого числа 108. В этом случае цифра 1 из разряда сотен добавляется к новому числу нашему ответу. Как говорили в школе «сносится»: Видно, что мы снесли цифру 1 к нашему ответу. Когда речь идёт о сложении, нет разницы в каком порядке записывать числа. Наш пример вполне можно было записать и так: Первая запись, где число 108 было наверху, более удобнее для вычисления. Человек вправе выбирать любую запись, но обязательно нужно помнить, что единицы надо записывать строго под единицами, десятки под десятками, сотни под сотнями. Другими словами, следующие записи будут неправильными: Если вдруг при сложении соответствующих разрядов получится число, которое не помещается в разряд нового числа, то необходимо записать одну цифру из младшего разряда, а оставшуюся перенести на следующий разряд. Речь в данном случае идет о переполнении разряда, о котором мы говорили ранее. Например, при сложении 26 и 98 получается 124. Давайте посмотрим, как это получилось. Записываем числа в столбик. Получили число 14, которое не вместится в разряд единиц нашего ответа. В таких случаях мы сначала вытаскиваем из 14 цифру, находящуюся в разряде единиц и записываем её в разряде единиц нашего ответа. В разряде единиц числа 14 располагается цифра 4. Записываем эту цифру в разряде единиц нашего ответа: А куда девать цифру 1 из числа 14? Здесь начинается самое интересное. Эту единицу мы переносим на следующий разряд. Она будет добавлена к разряду десятков нашего ответа. Складываем десятки с десятками. Добавив к 11 нашу единицу, мы получим число 12, которое и запишем в разряде десятков нашего ответа. Поскольку это конец решения, здесь уже не стоит вопрос о том, вместится ли полученный ответ в разряд десятков. Получили ответ 124. Говоря традиционным методом сложения, при сложении 6 и 8 единиц получилось 14 единиц. Четыре единицы мы записали в разряде единиц, а один десяток отправили на следующий разряд к разрядам десятков. Затем сложив 2 десятка и 9 десятков, мы получили 11 десятков, плюс добавили 1 десяток, который остался при сложении единиц. В результате получили 12 десятков. Эти двенадцать десятков мы записали целиком, образуя окончательный ответ 124. Этот простенький пример демонстрирует школьную ситуацию, в которой говорят «четыре пишем, один в уме». Если вы будете решать примеры и у вас после сложения разрядов останется цифра, которую надо держать в уме, запишите её над тем разрядом, куда она будет потом добавлена. Это позволит вам не забыть о ней: Пример 2. Сложить числа 784 и 548 Записываем числа в столбик. Число 12 не вмещается в разряд единиц нашего ответа, поэтому мы из 12 вынимаем цифру 2 из разряда единиц и записываем её в разряд единиц нашего ответа. А цифру 1 переносим на следующий разряд: Теперь складываем десятки. Складываем 8 и 4 плюс единица, которая осталась от предыдущей операции единица осталась от 12, на рисунке она выделена синим цветом. Число 13 не вместится в разряд десятков нашего ответа, поэтому мы запишем цифру 3 в разряде десятков, а единицу перенесём на следующий разряд: Теперь складываем сотни. Записываем число 13 в разряд сотен: Вычитание в столбик Пример 1. Вычтем из числа 69 число 53. Запишем числа в столбик. Единицы под единицами, десятки под десятками. Затем вычитаем по разрядам. Из единиц первого числа вычитаем единицы второго числа. Из десятков первого числа вычитаем десятки второго числа: Получили ответ 16. От пяти единиц нельзя вычесть шесть единиц, поэтому берем один десяток у разряда десятков. Этот десяток и имеющиеся пять единиц вместе составляют 15 единиц. Из 15 единиц можно вычесть 6 единиц, получится 9 единиц. Записываем цифру 9 в разряде единиц нашего ответа: Теперь вычитаем десятки. Разряд десятков числа 95 раньше содержал 9 десятков, но мы взяли с этого разряда один десяток, и сейчас он содержит 8 десятков. А разряд десятков числа 26 содержит 2 десятка. Из восьми десятков можно вычесть два десятка, получится шесть десятков. Записываем цифру 6 в разряде десятков нашего ответа: Воспользуемся нестандартным способом вычитания при котором каждая цифра, входящая в число, рассматривается как отдельное число. При вычитании больших чисел в столбик этот способ очень удобен. В разряде единиц уменьшаемого располагается число 5. А в разряде единиц вычитаемого число 6. Из пятёрки не вычесть шестёрку. Поэтому берем одну единицу у числа 9. Взятая единица мысленно дописывается слева от пятёрки. А поскольку у числа 9 мы взяли одну единицу, это число уменьшится на одну единицу: В результате пятёрка обращается в число 15. Теперь можно из 15 вычесть 6. Получается 9. Записываем число 9 в разряде единиц нашего ответа: Переходим к разряду десятков. Раньше там располагалось число 9, но поскольку мы взяли у него одну единицу оно обратилось в число 8. В разряде десятков второго числа располагается число 2. Восемь минус два будет шесть. Записываем число 6 в разряде десятков нашего ответа: Пример 3. Из двойки не вычесть семёрку, поэтому берем единицу у следующего числа 1. Взятую единицу мысленно дописываем слева от двойки: В результате двойка обращается в число 12. Теперь можно из 12 вычесть 7. Получается 5. Записываем цифру 5 в разряде единиц нашего ответа: Переходим к десяткам. В разряде десятков числа 2412 раньше располагалось число 1, но поскольку мы взяли у него одну единицу, оно обратилось в 0.