ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ. Математика ЕГЭ Стереометрия 2. 2. Введение Стереометрия ©2023 ООО «Юмакс». Основные формулы стереометрии. Стереометрия ЕГЭ формулы объемов и площадей.
Формулы по стереометрии
Формулы по стереометрии для ЕГЭ | Стереометрия ЕГЭ формулы объемов и площадей. |
Telegram: Contact @umschool_official | Стереометрия 11 класс формулы ЕГЭ. |
ВСЕ формулы по математике для ЕГЭ
Содержание Формулы для ЕГЭ по профильной математике.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются.
Обозначая пирамиду, сначала называют ее вершину, а затем — вершины основания. Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды на ее основание. Длина этого перпендикуляра обозначается буквой H. На чертеже высота это AG.
Обратите внимание: только в случае если пирамида является правильной четырехугольной пирамидой как на чертеже высота пирамиды попадает на диагональ основания. В остальных случаях это не так. В общем случае у произвольной пирамиды, точка пересечения высоты и основания может оказаться где угодно. Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.
На чертеже это, например, AF. Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину пирамиды и диагональ основания. На чертеже это, например, ACE. Еще один стереометрический чертеж с обозначениями для лучшего запоминания на рисунке правильная треугольная пирамида : Если все боковые ребра SA , SB , SC , SD на чертеже ниже пирамиды равны, то: Около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр точка O.
Иными словами, высота отрезок SO , опущенная из вершины такой пирамиды на основание ABCD , попадает в центр описанной вокруг основания окружности, то есть в точку пересечения посерединных перпендикуляров основания. Важно: Также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны. Если боковые грани наклонены к плоскости основания под одним углом углы DMN , DKN , DLN на чертеже ниже равны , то: В основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр точка N. Иными словами, высота отрезок DN , опущенная из вершины такой пирамиды на основание, попадает в центр вписанной в основание окружности, то есть в точку пересечения биссектрис основания.
Высоты боковых граней апофемы равны. Площадь боковой поверхности такой пирамиды равна половине произведения периметра основания на высоту боковой грани апофему. Важно: Также верно и обратное, то есть если в основание пирамиды можно вписать окружность, причем вершина пирамиды проецируется в её центр, то все боковые грани наклонены к плоскости основания под одним углом и высоты боковых граней апофемы равны. Правильная пирамида Определение: Пирамида называется правильной , если её основанием является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами: Все боковые ребра правильной пирамиды равны. Все боковые грани правильной пирамиды наклонены к плоскости основания под одним углом. Важное замечание: Как видим правильные пирамиды являются одними из тех пирамид к которым относятся свойства, изложенные чуть выше. Действительно, если основание правильной пирамиды — это правильный многоугольник, то центр его вписанной и описанной окружностей совпадают, а вершина правильной пирамиды проецируется именно в этот центр по определению.
Однако важно понимать, что не только правильные пирамиды могут обладать свойствами, о которых говорилось выше. В правильной пирамиде все боковые грани — равные равнобедренные треугольники. В любую правильную пирамиду можно как вписать сферу, так и описать около неё сферу. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Формулы для объема и площади пирамиды Теорема об объеме пирамид, имеющих равные высоты и равные площади оснований. Две пирамиды, имеющие равные высоты и равные площади оснований, имеют равные объемы Вы конечно, наверняка уже знаете формулу для объема пирамиды, ну или видите ее несколькими строчками ниже, и Вам кажется это утверждение очевидным, но на самом деле, если судить «на глаз», то данная теорема не так уж и очевидна см. Это относится кстати и к другим многогранникам и геометрическим фигурам: их внешний вид обманчив, поэтому, действительно — в математике нужно доверять только формулам и правильным расчетам. Объём пирамиды может быть вычислен по формуле: где: S осн — площадь основания пирамиды, h — высота пирамиды.
Боковая поверхность пирамиды равна сумме площадей боковых граней. Для площади боковой поверхности пирамиды можно формально записать такую стереометрическую формулу: где: S бок — площадь боковой поверхности, S 1 , S 2 , S 3 — площади боковых граней. Полная поверхность пирамиды равна сумме площади боковой поверхности и площади основания: Определения: — простейший многогранник, гранями которого являются четыре треугольника, иными словами, треугольная пирамида. Для тетраэдра любая из его граней может служить основанием.
Всего у тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр называется правильным , если все его грани — равносторонние треугольники. У правильного тетраэдра: Все ребра правильного тетраэдра равны между собой. Все грани правильного тетраэдра равны между собой.
Периметры, площади, высоты и все остальные элементы всех граней соответственно равны между собой. Из общих формул для объема и площадей пирамиды, а также знаний из планиметрии не сложно получить формулы для объема и площадей правильного тетраэдра а — длина ребра : Определение: При решении задач по стереометрии, пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. В таком случае, это ребро и является высотой пирамиды. Ниже примеры треугольной и пятиугольной прямоугольных пирамид.
На рисунке слева SA — ребро, являющееся одновременно высотой. Усечённая пирамида Определения и свойства: Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Фигура, полученная на пересечении секущей плоскости и исходной пирамиды, также называется основанием усеченной пирамиды. Боковые грани усечённой пирамиды являются трапециями.
На чертеже это, например, AA 1 B 1 B. Боковыми ребрами усеченной пирамиды называются части ребер исходной пирамиды, заключенные между основаниями. На чертеже это, например, AA 1. Высотой усеченной пирамиды называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания к плоскости другого основания.
Усеченная пирамида называется правильной , если она является многогранником, который отсекается плоскостью, параллельной основанию правильной пирамиды. Основания правильной усеченной пирамиды — правильные многоугольники. Боковые грани правильной усеченной пирамиды — равнобедренные трапеции. Апофемой правильной усеченной пирамиды называется высота ее боковой грани.
Площадью боковой поверхности усеченной пирамиды называется сумма площадей всех ее боковых граней. Формулы для усеченной пирамиды Объём усечённой пирамиды равен: где: S 1 и S 2 — площади оснований, h — высота усечённой пирамиды. Однако на практике, удобнее искать объем усеченной пирамиды так: можно достроить усечённую пирамиду до пирамиды, продлив до пересечения боковые рёбра. Тогда объём усечённой пирамиды можно найти, как разность объёмов всей пирамиды и достроенной части.
Площадь боковой поверхности также можно искать как разность между площадями боковой поверхности всей пирамиды и достроенной части. Площадь боковой поверхности правильной усечённой пирамиды равна полупроизведению суммы периметров её оснований и апофемы: где: P 1 и P 2 — периметры оснований правильной усеченной пирамиды, а — длина апофемы. Площадь полной поверхности любой усеченной пирамиды, очевидно, находится как сумма площадей оснований и боковой поверхности: Пирамида и шар сфера Теорема: Около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит вписанный многоугольник то есть многоугольник около которого можно описать сферу. Данное условие является необходимым и достаточным.
Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Замечание: Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу. Однако, список пирамид около которых можно описать сферу не исчерпывается этими типами пирамид. Тогда точка О — центр описанного шара.
Теорема: В пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке необходимое и достаточное условие. Эта точка будет центром сферы. Замечание: Вы, очевидно, не поняли того, что прочитали строчкой выше. Однако, главное запомнить, что любая правильная пирамида является такой, в которую можно вписать сферу.
При этом список пирамид, в которые можно вписать сферу не исчерпывается правильными. Определение: Биссекторная плоскость делит двугранный угол пополам, а каждая точка биссекторной плоскости равноудалена от граней, образующих двугранный угол. На стереометрическом чертеже ниже изображен шар вписанный в пирамиду или пирамида описанная около шара , при этом точка О — центр вписанного шара. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой необходимое и достаточное условие.
Конус называется описанным около пирамиды , когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой необходимое и достаточное условие. Важное свойство: Пирамида и цилиндр Цилиндр называется вписанным в пирамиду , если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды. Цилиндр называется описанным около пирамиды , если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды.
Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник необходимое и достаточное условие. Сфера и шар Определения: Сфера — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра. Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы.
Хордой сферы называется отрезок, соединяющий две точки сферы. Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R.
Шар — геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра. Обратите внимание: поверхность или граница шара называется сферой.
Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой. Радиусом , хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара. Разница между шаром и сферой аналогична разнице между кругом и окружностью. Окружность — это линия, а круг — это ещё и все точки внутри этой линии.
Сфера — это оболочка, а шар — это ещё и все точки внутри этой оболочки. Плоскость, проходящая через центр сферы шара , называется диаметральной плоскостью. Сечение сферы шара диаметральной плоскостью называется большой окружностью большим кругом. Теоремы: Теорема 1 о сечении сферы плоскостью.
Сечение сферы плоскостью есть окружность. Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы. Теорема 2 о сечении шара плоскостью. Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении.
Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB.
Этот диаметр является и диаметром пересекающихся больших кругов.
На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы — выпускникам не предоставляются формулы, необходимые для решения задач. Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах.
5 задание Формулы стереометрии -2 - Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ
Геометрические формулы для ЕГЭ. Шпаргалка по математике ЕГЭ планиметрия стереометрия. Шпаргалки по геометрии 11 класс ЕГЭ геометрия. Формулы для ЕГЭ по математике планиметрия. Шпаргалка ЕГЭ математика планиметрия. Формулы площадей планиметрия. Формулы по планиметрии для ЕГЭ. Формулы площадей стереометрических фигур. Формулы для задач по стереометрии ЕГЭ. Формулы объёма геометрических фигур таблица.
Все формулы объемов и площадей фигур для ЕГЭ. Формулы площадей фигур для ЕГЭ. Площади поверхности фигур формулы ЕГЭ. Формулы объемов геометрических фигур таблица ЕГЭ. Формулы площадей для ЕГЭ профильная математика. Формулы площади и объёма геометрических фигур. Формулы площадей фигур стереометрия. Формулы площадей всех фигур для ЕГЭ. Стенд для кабинета математики планиметрия.
Формулы планиметрии для ЕГЭ профиль 1 часть. Формулы планиметрия для ЕГЭ математика профильный. Формулы для планиметрии ЕГЭ математика профиль. Формулы ЕГЭ математика стереометрия. Стереометрия формулы площадей и объемов. Формулы площадей фигур планиметрия. Формулы планиметрии для ЕГЭ. Площади фигур ЕГЭ математика профиль планиметрия. Формулы объёмов фигур 11 класс.
Формулы тел вращения геометрия 11 класс. Формулы объемов тел вращения 11 класс. Площади фигур формулы стереометрия 11 класс. Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы для профильной математики ЕГЭ. Формулы шпоры по математике ЕГЭ 2022. Формулы ЕГЭ математика профильный уровень Алгебра. Справочные материалы ЕГЭ математика профиль 2021. Справочный материал ЕГЭ математика 2022.
Базовая математика ЕГЭ 2022. Справочные материалы ЕГЭ математика 2022. Геометрические формулы для ЕГЭ база. Геометрические формулы для ЕГЭ база математика. Теоремы планиметрии 10 класс. Основные формулы планиметрии для ЕГЭ. Шпаргалки по геометрии для подготовки к ОГЭ. Геометрические задания ЕГЭ профиль математика. Теоремы по геометрии для ОГЭ 2023.
Геометрия на готовых чертежах 7-9 классы теорема Пифагора. Шпоры на ОГЭ по математике 2022. Формулы для ОГЭ по математике 2022. Шпаргалки по алгебре 9 класс ОГЭ. Шпаргалки ОГЭ математика 9 класс. Формулы для ЕГЭ профильная математика геометрия. Шпоры для ЕГЭ по математике 2021 профильный уровень геометрия. Формулы геометрии и стереометрии шпаргалка. Формулы по стереометрии профильная математика.
Объёмы фигур формулы ЕГЭ шпаргалка. Формулы для ЕГЭ по математике профиль планиметрия. Основные теоремы планиметрии для ЕГЭ. Основные формулы планиметрии для ЕГЭ профиль. Планиметрия теория для ЕГЭ формулы. Шпаргалка по планиметрии на ЕГЭ. Планиметрия шпаргалки для ЕГЭ. Геометрия - теоремы планиметрии. Вся теория по геометрии планиметрия таблица.
Формулы планиметрии таблица. Шпаргалки для ОГЭ по математике 2022. Шпоры ОГЭ математика 2021.
Да-да, тригонометрия на ЕГЭ умеет прятаться и в Части 2. Давайте посмотрим на эти задания. Это уравнение второй части, в котором ученики как раз ожидают увидеть тригонометрию, хотя она там бывает не всегда! Ведь, как я и сказала выше, в геометрии она тоже бывает! Профильный ЕГЭ по математике: что нужно знать к 2022 году? К сожалению, их действительно много.
Именно поэтому я рекомендую не учить формулы, а выводить. Это очень удобно тем более, что в профильном ЕГЭ по математике весь справочный материал состоит из 5-ти формул тригонометрии, из которых очень легко выводятся все остальные. Но прежде чем я расскажу вам, как выводятся тригонометрические формулы, пообещайте, что обязательно отработаете все правила выведения!
Допускается использование гелевой или капиллярной ручки. При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. Профильная математика. Часть 2 Математика на отлично ЕГЭ 2022.
Тригонометрия на ЕГЭ: 5 формул для базы и профиля
Площадь основания шарового сегмента: Площадь внешней поверхности шарового сегмента: Площадь полной поверхности шарового сегмента: Объем шарового сегмента: В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов. В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара. Объем шарового сектора вычисляется по формуле: Определения: В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности. Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности.
Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности. Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра. Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части круги , отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра. Основания цилиндра — это два равных круга.
Образующей цилиндра называется отрезок или длина этого отрезка образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям. Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра. Высотой цилиндра называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей. Радиусом цилиндра называется радиус его оснований.
Цилиндр называется равносторонним , если его высота равна диаметру основания. Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого — образующие, а две другие — хорды оснований цилиндра. Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра — прямоугольник, две стороны которого есть образующие цилиндра, а две другие — диаметры его оснований. Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям. На чертеже ниже: слева — осевое сечение; в центре — сечение параллельное оси цилиндра; справа — сечение параллельное основанию цилиндра.
Цилиндр и призма Призма называется вписанной в цилиндр , если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны. Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму. Примеры: Призма называется описанной около цилиндра , если ее основания описаны около оснований цилиндра.
В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны. Все боковые ребра призмы будут параллельны образующим цилиндра. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры: Цилиндр и сфера Сфера шар называется вписанной в цилиндр , если она касается оснований цилиндра и каждой его образующей. При этом цилиндр называется описанным около сферы шара.
Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, то есть диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример: Цилиндр называется вписанным в сферу , если окружности оснований цилиндра являются сечениями сферы. Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара. При этом шар сфера называется описанным около цилиндра. Вокруг любого цилиндра можно описать сферу.
Центром описанной сферы также будет служить середина оси цилиндра. Пример: На основе теоремы Пифагора легко доказать следующую формулу, связывающую радиус описанной сферы R , высоту цилиндра h и радиус цилиндра r : Объем и площадь боковой и полной поверхностей цилиндра Теорема 1 о площади боковой поверхности цилиндра : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту: где: R — радиус основания цилиндра, h — его высота. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности прямой призмы. Площадью полной поверхности цилиндра , как обычно в стереометрии, называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра то есть просто площадь круга вычисляется по формуле: Следовательно, площадь полной поверхности цилиндра S полн. Эта формула также легко выводится доказывается на основе формулы для объема призмы.
Теорема 3 Архимеда : Объём шара в полтора раза меньше объёма, описанного вокруг него цилиндра, а площадь поверхности такого шара в полтора раза меньше площади полной поверхности того же цилиндра: Конус Определения: Конусом точнее, круговым конусом называется тело, которое состоит из круга называемого основанием конуса , точки, не лежащей в плоскости этого круга называемой вершиной конуса и всех возможных отрезков, соединяющих вершину конуса с точками основания. Неформально, можно воспринимать конус как правильную пирамиду, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности конуса. Отрезки или их длины , соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Все образующие прямого кругового конуса равны между собой. Поверхность конуса состоит из основания конуса круга и боковой поверхности составленной из всех возможных образующих.
Объединение образующих конуса называется образующей или боковой поверхностью конуса. Образующая поверхность конуса является конической поверхностью. Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе, как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси. При этом боковая поверхность конуса образуется вращением гипотенузы, а основание — вращением катета, не являющимся осью.
Радиусом конуса называется радиус его основания. Высотой конуса называется перпендикуляр или его длина , опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту, то есть прямая проходящая через центр основания и вершину. Если секущая плоскость проходит через ось конуса, то сечение равнобедренный треугольник, основание которого — диаметр основания конуса, а боковые стороны — образующие конуса. Такое сечение называется осевым.
Если секущая плоскость проходит через внутреннюю точку высоты конуса и перпендикулярна ей, то сечением конуса является круг, центр которого есть точка пересечения высоты и этой плоскости. Высота h , радиус R и длина образующей l прямого кругового конуса удовлетворяют очевидному соотношению: Объем и площадь боковой и полной поверхностей конуса Теорема 1 о площади боковой поверхности конуса. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую: где: R — радиус основания конуса, l — длина образующей конуса. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности правильной пирамиды. Площадью полной поверхности конуса называется сумма площади боковой поверхности и площади основания. Следовательно, площадь полной поверхности конуса S полн.
Объем конуса равен одной трети произведения площади основания на высоту: где: R — радиус основания конуса, h — его высота. Эта формула также легко выводится доказывается на основе формулы для объема пирамиды. Определения: Плоскость, параллельная основанию конуса и пересекающая конус, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом. Основание исходного конуса и круг, получающийся в сечении этого конуса плоскостью, называются основаниями , а отрезок, соединяющий их центры - высотой усеченного конуса. Прямая проходящая через высоту усеченного конуса то есть через центры его оснований является его осью.
Часть боковой поверхности конуса, ограничивающая усеченный конус, называется его боковой поверхностью , а отрезки образующих конуса, расположенные между основаниями усеченного конуса, называются его образующими. Все образующие усеченного конуса равны между собой. Формулы для усеченного конуса: Объем усеченного конуса равен разности объемов полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса. Однако на практике, всё же удобнее искать объем усеченного конуса как разность объёмов исходного конуса и отсеченной части. Площадь боковой поверхности усеченного конуса также можно искать как разность между площадями боковой поверхности исходного конуса и отсеченной части. Действительно, площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса.
Площадь полной поверхности усеченного конуса , очевидно, находится как сумма площадей оснований и боковой поверхности: Обратите внимание, что формулы для объема и площади боковой поверхности усеченного конуса получены на основе формул для аналогичных характеристик правильной усеченной пирамиды. Конус и сфера Конус называется вписанным в сферу шар , если его вершина принадлежит сфере границе шара , а окружность основания само основание является сечением сферы шара. При этом сфера шар называется описанной около конуса. Вокруг прямого кругового конуса всегда можно описать сферу. Центр описанной сферы будет лежать на прямой содержащей высоту конуса, а радиус этой сферы будет равен радиусу окружности, описанной около осевого сечения конуса это сечение является равнобедренным треугольником. Примеры: Сфера шар называется вписанной в конус , если сфера шар касается основания конуса и каждой его образующей.
При этом конус называется описанным около сферы шара. В прямой круговой конус всегда можно вписать сферу. Её центр будет лежать на высоте конуса, а радиус вписанной сферы будет равен радиусу окружности, вписанной в осевое сечение конуса это сечение является равнобедренным треугольником. Примеры: Конус и пирамида Конус называется вписанным в пирамиду пирамида — описанной около конуса , если основание конуса вписано в основание пирамиды, а вершины конуса и пирамиды совпадают. Пирамида называется вписанной в конус конус — описанным около пирамиды , если ее основание вписано в основание конуса, а боковые ребра являются образующими конуса. Высоты у таких конусов и пирамид равны между собой.
Примечание: Подробнее о том, как в стереометрии конус вписывается в пирамиду или описывается около пирамиды уже говорилось в Как успешно подготовиться к ЦТ по физике и математике? Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия: Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач. Выучить все формулы и законы в физике, и формулы и методы в математике.
На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию.
В них нет ничего сложного, если разобраться с базовыми формулами по нахождению объёма и площади поверхности. Я репетитор и занимаюсь частными индивидуальными занятиями с учениками, чтобы заниматься со мной пиши? Задачи из первой части может решить каждый, а я буду максимально тебе в этом помогать!
Справочный материал по стереометрии. Формулы по геометрии для ЕГЭ. Формулы объемов многогранников и тел вращения. Формулы площадей и объемов всех фигур.
Все формулы объемов и площадей фигур. Формулы площади и объёма геометрических фигур. Объёмы фигур формулы ЕГЭ математика. Шпаргалка ЕГЭ формулы площадей и объемов стереометрических фигур. Площади геометрических фигур формулы таблица. Формулы нахождения площадей плоских фигур. Формулы площадей плоских фигур по геометрии.
Формулы площадей всех геометрических фигур в таблице. Формулы площадей и объемов фигур. Формулы площадей и объемов геометрических фигур таблица. Формулы объема и площади геометрических фигур для ЕГЭ. Формулы объемов Призмы и пирамиды. Стереометрия Призма формулы. Формулы площадей поверхности многогранников Призма.
Площадь поверхности и объем многогранника. Формулы площадей геометрических фигур стереометрия. Формулы геометрия 11 класс. Формулы геометрия 11 класс ЕГЭ. Формулы объёма геометрических фигур таблица. Формулы объёмов всех фигур. Объемы фигур формулы таблица шпаргалка 11 класс.
Таблица площадей и объемов многогранников и тел вращения. Формулы тел вращения геометрия 11 класс. Стереометрия тела вращения формулы. Формулы по стереометрии Призма. Основные формулы геометрия 11 класс. Шпаргалка по стереометрии ЕГЭ. Формулы по стереометрии таблица.
Стереометрия шпаргалка. Формулы нахождения площади и объема геометрических фигур. Геометрия формулы площадей и объемов. Формулы площадей объемных фигур таблица. Площади и объемы тел формулы. Стереометрия профильная математика. Стереометрия ЕГЭ профиль.
Задачи стереометрия ЕГЭ. Формулы для профильной математике ЕГЭ. Формулы по математике для ЕГЭ. Важные формулы для ЕГЭ по математике профильного. Формулы для ЕГЭ по математике профиль. Стереометрия формулы ЕГЭ тела вращения. Площадь боковой поверхности сферы.
Площадь боковой поверхности сферы и шара.
Все формулы объемов и площадей фигур для ЕГЭ. Формулы площадей фигур для ЕГЭ.
Площади поверхности фигур формулы ЕГЭ. Формулы объемов геометрических фигур таблица ЕГЭ. Формулы площадей для ЕГЭ профильная математика.
Формулы площади и объёма геометрических фигур. Формулы площадей фигур стереометрия. Формулы площадей всех фигур для ЕГЭ.
Стенд для кабинета математики планиметрия. Формулы планиметрии для ЕГЭ профиль 1 часть. Формулы планиметрия для ЕГЭ математика профильный.
Формулы для планиметрии ЕГЭ математика профиль. Формулы ЕГЭ математика стереометрия. Стереометрия формулы площадей и объемов.
Формулы площадей фигур планиметрия. Формулы планиметрии для ЕГЭ. Площади фигур ЕГЭ математика профиль планиметрия.
Формулы объёмов фигур 11 класс. Формулы тел вращения геометрия 11 класс. Формулы объемов тел вращения 11 класс.
Площади фигур формулы стереометрия 11 класс. Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы для профильной математики ЕГЭ.
Формулы шпоры по математике ЕГЭ 2022. Формулы ЕГЭ математика профильный уровень Алгебра. Справочные материалы ЕГЭ математика профиль 2021.
Справочный материал ЕГЭ математика 2022. Базовая математика ЕГЭ 2022. Справочные материалы ЕГЭ математика 2022.
Геометрические формулы для ЕГЭ база. Геометрические формулы для ЕГЭ база математика. Теоремы планиметрии 10 класс.
Основные формулы планиметрии для ЕГЭ. Шпаргалки по геометрии для подготовки к ОГЭ. Геометрические задания ЕГЭ профиль математика.
Теоремы по геометрии для ОГЭ 2023. Геометрия на готовых чертежах 7-9 классы теорема Пифагора. Шпоры на ОГЭ по математике 2022.
Формулы для ОГЭ по математике 2022. Шпаргалки по алгебре 9 класс ОГЭ. Шпаргалки ОГЭ математика 9 класс.
Формулы для ЕГЭ профильная математика геометрия. Шпоры для ЕГЭ по математике 2021 профильный уровень геометрия. Формулы геометрии и стереометрии шпаргалка.
Формулы по стереометрии профильная математика. Объёмы фигур формулы ЕГЭ шпаргалка. Формулы для ЕГЭ по математике профиль планиметрия.
Основные теоремы планиметрии для ЕГЭ. Основные формулы планиметрии для ЕГЭ профиль. Планиметрия теория для ЕГЭ формулы.
Шпаргалка по планиметрии на ЕГЭ. Планиметрия шпаргалки для ЕГЭ. Геометрия - теоремы планиметрии.
Вся теория по геометрии планиметрия таблица. Формулы планиметрии таблица. Шпаргалки для ОГЭ по математике 2022.
Шпоры ОГЭ математика 2021. Формулы по алгебре для ОГЭ 9 класс шпаргалка. Шпоры для экзамена по математике 9 класс 2021.
Шпаргалка по геометрии для ОГЭ 9 класс шпаргалка. Шпаргалки по стереометрии 11 класс для ЕГЭ. Формулы математика профиль ЕГЭ геометрия.
Объем формулы ЕГЭ математика. Формулы на профильной математике ЕГЭ. Формулы профильная математика ЕГЭ.
Основные формулы ЕГЭ математика профиль. Формулы ЕГЭ математика профиль 2022.
Формулы объемов и площадей геометрических фигур
Соответствующие формулы нужно знать наизусть. Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда. Все формулы для ЕГЭ по математике профильного уровня 2024 года можно найти на официальном сайте Министерства образования РФ или скачать в виде pdf-файла по этой ссылке.
5 задание Формулы стереометрии -2 - Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ
Структура экзамена Задания ЕГЭ профильной математики разделены на два блока. Поэтому при подготовке к ЕГЭ теорию по математике всегда подкрепляйте решением практических задач. Как будут распределять баллы Задания части первой КИМов по математике близки к тестам ЕГЭ базового уровня, поэтому высокого балла на них набрать невозможно. Баллы за каждое задание по математике профильного уровня распределились так: Длительность экзамена и правила поведения на ЕГЭ Для выполнения экзаменационной работы отведено 3 часа 55 минут 235 минут.
В это время ученик не должен: За подобные действия экзаменующегося могут выдворить из аудитории. На государственный экзамен по математике разрешено приносить с собой только линейку, остальные материалы вам выдадут непосредственно перед ЕГЭ. Справочные материалы выдаются на месте.
Эффективная подготовка — это решение онлайн тестов по математике 2022. Выбирай тренировочные задания и получай максимальный балл! Формулы стереометрии.
Общий обзор! В этой статье общий обзор формул для решения задач по стереометрии. Нужно сказать, что задачи по стереометрии довольно разнообразны, но они несложны.
Это задания на нахождение геометрических величин: длин, углов, площадей, объёмов. Рассматриваются: куб, прямоугольный параллелепипед, призма, пирамида, составной многогранник, цилиндр, конус, шар. Печалит тот факт, что некоторые выпускники на самом экзамене за такие задачи даже не берутся.
Остальные требуют небольших усилий, наличия знаний и специальных приёмов. В будущих статьях мы с вами будем рассматривать все эти задачи, не пропустите! Для решения необходимо знать формулы площадей поверхности и объёмов параллелепипеда, пирамиды, призмы, цилиндра, конуса и шара.
Производные; Первообразные. Список внушительный, но вполне реальный, чтобы его выучить. Для того, чтобы лишний раз не гуглить в интернете «формулы для ЕГЭ по математике профильный уровень», приложим их ниже. А начнем по порядку из списка выше. Вам встретятся задачи на преобразование выражений, поэтому умение это делать будет вознаграждено баллами.
Алгебра Этот раздел охватывает множество тем, от самых простых, которые мы изучали еще в самом начале до сложных понятий математического анализа и теории вероятности.
Итак, важно изучить формулы, связанные со свойствами степеней и корней, модулем числа, принципы решения уравнений и неравенств, свойства логарифмов и логарифмические уравнения и неравенства, формулы сокращенного умножения. Также пригодится теорема Виета, таблица производных и правила дифференцирования. А еще нужно знать формулы, которые помогут разобраться с вероятностями событий. Все эти формулы, которые пригодятся тебе на экзамене, преподаватели «Сотки» собрали в «Шпаргалке по алгебре». Скачать ее можно здесь. Кроме того в задачах могут встретиться прогрессии, о них подробнее мы рассказывали в статье.
Профиматика - Владислав Вуль 06. Профиматика - Владислав Вуль 30. Можно ли заботать всю стереометрию за 4 часа? Профиматика - Игорь Уколов, Владислав Вуль 17. Задание 3. Ященко 36 вариантов.
Стереометрия: формулы и методы
Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ. Главная» Новости» Формулы для 3 задания егэ математика профиль 2024. Шпаргалка по стереометрии для ЕГЭ. Скачать 0.82 Mb.
Вся геометрия для егэ профиль
Подготовка к экзамену по формулам стереометрии для ЕГЭ профиль 2023 требует систематического изучения материала, практических заданий и проверки своих знаний. Все формулы по стереометрии для ЕГЭ. Стереометрия, часть С. Теория к заданию 14 из ЕГЭ по математике (профильной). Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ.
Формулы по стереометрии для ЕГЭ. Шпаргалка по стереометрии для ЕГЭ
На выполнение работы отводится 3 часа 180 минут. Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки. При выполнении заданий можно пользоваться черновиком.
На вычисление объема это не влияет. В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ.
Мы советуем сохранить их себе, чтобы пользоваться при подготовке к ЕГЭ и быстро повторить теорию перед экзаменом.
Справочные материалы по геометрии.
Формулы геометрии шпаргалка. Справочный материал по стереометрии. Справочный материал по геометрии для ЕГЭ.
Математика 11 класс формулы планиметрии. Основные геометрические формулы планиметрия. Формулы площадей ЕГЭ планиметрия.
Основные формулы по геометрии планиметрия. Шпаргалка ЕГЭ математика профильный уровень геометрия. Геометрические формулы для ЕГЭ.
Шпаргалка по математике ЕГЭ планиметрия стереометрия. Шпаргалки по геометрии 11 класс ЕГЭ геометрия. Формулы для ЕГЭ по математике планиметрия.
Шпаргалка ЕГЭ математика планиметрия. Формулы площадей планиметрия. Формулы по планиметрии для ЕГЭ.
Формулы площадей стереометрических фигур. Формулы для задач по стереометрии ЕГЭ. Формулы объёма геометрических фигур таблица.
Все формулы объемов и площадей фигур для ЕГЭ. Формулы площадей фигур для ЕГЭ. Площади поверхности фигур формулы ЕГЭ.
Формулы объемов геометрических фигур таблица ЕГЭ. Формулы площадей для ЕГЭ профильная математика. Формулы площади и объёма геометрических фигур.
Формулы площадей фигур стереометрия. Формулы площадей всех фигур для ЕГЭ. Стенд для кабинета математики планиметрия.
Формулы планиметрии для ЕГЭ профиль 1 часть. Формулы планиметрия для ЕГЭ математика профильный. Формулы для планиметрии ЕГЭ математика профиль.
Формулы ЕГЭ математика стереометрия. Стереометрия формулы площадей и объемов. Формулы площадей фигур планиметрия.
Формулы планиметрии для ЕГЭ. Площади фигур ЕГЭ математика профиль планиметрия. Формулы объёмов фигур 11 класс.
Формулы тел вращения геометрия 11 класс. Формулы объемов тел вращения 11 класс. Площади фигур формулы стереометрия 11 класс.
Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы для профильной математики ЕГЭ. Формулы шпоры по математике ЕГЭ 2022.
Формулы ЕГЭ математика профильный уровень Алгебра. Справочные материалы ЕГЭ математика профиль 2021. Справочный материал ЕГЭ математика 2022.
Базовая математика ЕГЭ 2022. Справочные материалы ЕГЭ математика 2022. Геометрические формулы для ЕГЭ база.
Геометрические формулы для ЕГЭ база математика. Теоремы планиметрии 10 класс. Основные формулы планиметрии для ЕГЭ.
Шпаргалки по геометрии для подготовки к ОГЭ. Геометрические задания ЕГЭ профиль математика. Теоремы по геометрии для ОГЭ 2023.
Геометрия на готовых чертежах 7-9 классы теорема Пифагора. Шпоры на ОГЭ по математике 2022. Формулы для ОГЭ по математике 2022.
Шпаргалки по алгебре 9 класс ОГЭ. Шпаргалки ОГЭ математика 9 класс. Формулы для ЕГЭ профильная математика геометрия.
Шпоры для ЕГЭ по математике 2021 профильный уровень геометрия. Формулы геометрии и стереометрии шпаргалка. Формулы по стереометрии профильная математика.
Объёмы фигур формулы ЕГЭ шпаргалка. Формулы для ЕГЭ по математике профиль планиметрия. Основные теоремы планиметрии для ЕГЭ.
Формулы объемов фигур стереометрия. Стереометрия формулы площадей и объемов. Формулы объемов стереометрических фигур. Формулы площадей стереометрических фигур. Объёмы фигур формулы таблица шпаргалка. Шпаргалка по геометрии для ОГЭ 9 класс шпаргалка. Шпаргалки на ЕГЭ по математике планиметрия. Шпаргалки по стереометрии 11 класс для ЕГЭ. Шпаргалка по планиметрии на ЕГЭ.
Площади всех фигур стереометрии. Формулы ЕГЭ математика стереометрия. Стереометрия 11 класс формулы ЕГЭ. Формулы для ЕГЭ профильная математика геометрия. Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы стереометрии для ЕГЭ. Геометрические формулы для ЕГЭ база математика. Формулы площадей фигур стереометрия. Площади фигур стереометрия формулы таблица.
Шпаргалка по стереометрии 10 класс. Стереометрия формулы 9 класс. Справочные материалы по стереометрии. Стереометрия таблица. Стереометрия 10 класс формулы. Площади фигур стереометрия. Теория по стереометрии формулы. Стереометрия ЕГЭ. ЕГЭ по математике геометрия стереометрия.
Задачи стереометрия ЕГЭ. Лайфхаки по ЕГЭ стереометри. Шпаргалка по стереометрии ЕГЭ профиль. Ыормулыпо стереометрии. Формулы объёмных фигур стереометрия. Стереометрия профильная математика. Стереометрия ЕГЭ профиль. Основные формулы по геометрии планиметрия. Формулы геометрии и стереометрии шпаргалка.
Стереометрия 10 класс шпаргалка ЕГЭ. Справочный материал по стереометрии. Теория по стереометрии. Вся стереометрия для ЕГЭ. Объемы фигур стереометрия ЕГЭ. Площади фигур формулы ЕГЭ стереометрия. Формулы для ЕГЭ по математике профиль 2022. Предмет стереометрии. Шпаргалка по стереометрии.
Стереометрия чертежи.
Теория по математике на тему "Формулы стереометрии"
Комбинация тел Тригонометрические уравнения Уравнения Стереометрия Стереометрия. § 1. Аксиомы стереометрии и следствия из них. Формулы ЕГЭ профильная математика по заданиям в 2021: какие формулы необходимы для сдачи ЕГЭ по профильной математике? Полный список с пояснениями.