Новости обучение нейросетям и искусственному интеллекту

Искусственный интеллект и нейросети: создание текстов и креативов — Инфоурок. Основные понятия и определения искусственного интеллекта. Базовые методы машинного обучения: линейная регрессия, логистическая регрессия, деревья решений, метод ближайших соседей. «Акулы нейронных сетей» — это коллаборация журналистики и искусственного интеллекта. В рабочую программу обновлённого модуля по искусственному интеллекту от Минобрнауки входят «Основы программирования на Python», «Математический анализ», «Линейная алгебра» и «Теория вероятностей и математическая статистика».

Долго, но эффективно

  • Загрузка интерфейса...
  • ТОП-10 актуальных курсов по нейросетям и искусственному интеллекту (AI) в 2024 году
  • Интенсив по нейросетям в образовании
  • ChatGPT, Lexica и другие нейросети: мнение учителей о новых инструментах в руках школьников

Нейросеть онлайн [34 режима]

Искусственный интеллект и нейросети: создание текстов и креативов — Инфоурок. Кадр из фильма об искусственном интеллекте Ex Machina, пропущенный через нейросеть проекта Dreamscope. Нейросетевая революция искусственного интеллекта и варианты её развития. Поскольку технологии искусственного интеллекта и машинного обучения постоянно меняются и совершенствуются, от специалистов требуется готовность непрерывно учиться и осваивать новые навыки работы с нейронными сетями. Искусственный интеллект (ИИ) все активнее внедряется в различные отрасли, включая образование. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем.

Нейронные сети: принцип работы, перспективы и 159 современных нейронок

На чем акцентируются университеты при обучении студентов и что ищут работодатели ИИ стоит свеч Архитектор систем компьютерного зрения Softline Digital Иван Корсаков придерживается мнения, что важно установить баланс между использованием данных для улучшения обучения и защитой конфиденциальности студентов. Учителя, учебные заведения и разработчики ИИ должны работать вместе, чтобы гарантировать, что ИИ используется этично и ответственно. Дальнейшее проникновение ИИ кардинально изменит сферу образования, это лишь вопрос времени. Очень здорово, если прогрессивный взрослый родитель или учитель познакомит детей с нейросетями и научит не просто пользоваться готовыми ответами, а создавать свои собственные креативы, анализировать полученные ответы, — считает создатель искусственного интеллекта NIKA Никита Дмитрук.

В этом году стало известно, что ИИ будет интегрирован в один из самых востребованных курсов по программированию в «Гарварде». Начиная с осени, учащиеся смогут использовать ИИ, чтобы находить ошибки в своем коде, оставлять отзывы о дизайне студенческих программ. Об этом «Известиям» рассказал генеральный директор компании «Дататех» Юрий Евтушик.

Менеджер проекта «Контур. Класс» Алиса Кричевская выделяет две проблемы интеграции ИИ в образовательный процесс.

Во вводных объясняют, почему в 2022 году все заговорили об искусственном интеллекте и как написать идеальный запрос для ChatGPT. Дальше расскажут, как упрощать быт, писать тексты, работать с данными и генерировать идеи с ChatGPT, а потом — как создавать иллюстрации в Midjourney. Авторы обещают дать примеры готовых сценариев для запроса к нейросети, а еще научат, как писать их под свои нужды. Все советы отрабатывают на упражнениях с примерами запросов.

Источник: datacamp. Тренинг ведет Пол Чапмен, менеджер учебных программ платформы Datacamp, которая специализируется на искусственном интеллекте и больших данных. Программа разделена на две части: первая рассказывает о возможностях и ограничениях ChatGPT и учит писать эффективные промпты.

В университете эти предметы часто оторваны от реальности, поэтому важно найти курсы, где базу дадут с примерами из задач бизнеса.

Например, в GeekUniversity на факультете Искусственного интеллекта математический анализ и линейную алгебру сразу преподают с точки зрения использования методов и алгоритмов в машинном обучении. Знания ложатся в голову гораздо быстрее, если понимаешь, как будешь применять их в своей будущей работе. На курс по нейросетям лучше идти уже с небольшой базой: будет достаточно тех знаний по математике, Python и SQL, которые вы изучали самостоятельно или в университете. Курсы помогут обновить и дополнить базу, чтобы двигаться к главному — Machine Learning и работе с искусственным интеллектом.

Погружаемся в машинное обучение Зная методы линейной алгебры и владея языком программирования Python, вы можете строить модели анализа данных, которые помогают реальному бизнесу оптимизировать процессы и больше зарабатывать. Сначала вы получаете задачу: например, спрогнозировать отток клиентов в следующем месяце. Для решения этой задачи вам нужно собрать данные за прошлые периоды, очистить их, подготовить признаки, по которым модель будет работать с информацией, а затем построить и внедрить эту модель. На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей.

Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными. На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении.

Это процесс, в ходе которого нейросеть учится выполнять задачи на основе данных. В результате она начинает анализировать примеры, находить закономерности, делать прогнозы, составлять классификации. Поэтому может решать конкретные задачи, например писать текст или рисовать иллюстрации.

В чем заключается обучение нейронной сети? Обучением занимаются AI-тренеры. Они готовят эталонную информацию, на которую ориентируются алгоритмы нейросетей, оценивают их ответы и проверяют, насколько они точные. Сначала с помощью формул и числовых значений AI-тренеры предоставляют информацию с пояснением, что это такое. Например, «собака» — 1, «кошка» — 2, «курица» — 3.

Обычно данных очень много — в 10 раз больше, чем нейронов. Информация автоматически обрабатывается и преобразуется в математические коэффициенты. Это можно сравнить с работой человеческого организма, когда увиденное глазами превращается в нервные импульсы, которые передаются в мозг. У каждого нейрона есть вес, который показывает, насколько информация в конкретном нейроне значима для всей сети. Во время обучения этот показатель автоматически меняется.

В результате определенные нейроны реагируют, например, на силуэт собаки и преобразуются в ответ «Это собака». Какие есть методы обучения нейронных сетей? Чаще всего применяют один из двух методов: С учителем. Нейросеть получает набор информации, в котором отмечены значения данных. Иными словами — вопросы и ответы, которые она должна давать.

Нейросеть анализирует большой объем информации и благодаря этому учится генерировать правильный результат по запросам человека. Без учителя.

🤖 8 лучших бесплатных курсов по ИИ и глубокому обучению

сервис Университета искусственного интеллекта, который позволяет создавать нейросети без единой строчки кода. Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение. Искусственный интеллект будут использовать в области диагностики психологического состояния, поддержки одиноких людей — в отличие от существующих голосовых помощников нейросеть является полноценным собеседником. С тех пор как технологии искусственного интеллекта стали достоянием широкой общественности, в мире многое изменилось. Курс "Нейросети для Digital Art" обучает созданию высококачественного контента с помощью искусственного интеллекта. Почему стоит начать изучение машинного обучения и нейронных сетей с нашего курса?

Нейросети школьникам

Программа курса в зависимости от направления подготовки студентов подразделяется на три уровня: базовый, продвинутый и экспертный. Профильный эксперт считает, что основной целью авторов модуля было «увеличение охвата и внедрение его как можно в большем количестве университетов». Он уточнил СМИ, что вузам стоит отбирать программы по ИИ исходя из запросов работодателей, так как только в партнёрстве с представителями бизнеса удастся понять, каким специалистам необходимы подобные навыки. Заместитель директора по учебно-воспитательной работе Физтех-школы прикладной математики и информатики МФТИ Александр Ширяев пояснил СМИ, что в вузе дисциплины модуля преподаются не только для профильных специалистов, но и в рамках так называемой цифровой кафедры доступны для остальных студентов. Руководитель департамента больших данных и информационного поиска ВШЭ Евгений Соколов заявил СМИ, что «сейчас абсолютно все студенты бакалавриата изучают цифровую грамотность, программирование и анализ данных».

По его словам, текущие курсы по ИИ разработаны под каждую программу, например, историки скорее учатся писать небольшие скрипты на Python и обрабатывать табличные данные с их помощью, а студенты факультета компьютерных наук изучают машинное и глубинное обучение.

В период с 2022 по 2030 г. Все это в конечном итоге должно стимулировать работодателей увеличивать долю высококвалифицированных работников и переходить к концепции «экономики высоких зарплат». Общество Указ президента был подписан 15 февраля. Предыдущий вариант стратегии был утвержден в октябре 2019 г. Среди ее целей были разработка и совершенствование профильного программного обеспечения и оборудования, повышение доступности и качества данных, а также создание комплексной системы регулирования в сфере ИИ. В обновленной версии нацстратегии прописаны целевые показатели. Но официальные данные о том, какую роль играет ИИ в современной экономике, разнятся.

Приятное интеллектуальное общение с коллегами, разделяющими интерес к использованию ИИ, добавило особый шарм этому опыту. Обмен идеями создало прекрасное сообщество единомышленников. Мероприятие проходило в офлайн формате, что создало уникальную возможность для профессионального взаимодействия. Если повторится подобное событие, настоятельно рекомендую присоединиться — это отличная возможность не только для обучения, но и для ценных профессиональных связей. Участница интенсива по нейросетям в образовании, ноябрь 2023 г. Интенсив был очень полезным, интересным, насыщенным. Все, что было заявлено, выполнили. Участник интенсива по нейросетям в образовании, ноябрь 2023 г. Интенсив был суперполезный! Особенно понравился набор инструментов сеток , которые давались в самом конце, я многое взяла в работу. Яков — отличный спикер, 6 часов пролетели незаметно! И сделать какое-то централизованное питание, это было не продумано.

Корпорация Meta также не осталась в долгу, выпустив сразу две модели для создания изображений буквально чего угодно. Да что уж там, сегодня телефоны Google со встроенным ИИ позволяют редактировать фотографии в невиданной ранее степени, заменяя грустные лица счастливыми, а пасмурные дни — идеальными закатами. И хотя первичный ажиотаж сходит на нет, а разговоры о том, что ИИ уничтожит нашу цивилизацию, кажется, остались в 2023 году, эти новаторские интеллектуальные системы стали символом перемен буквально во всех отраслях — от экономики до образования. Сегодня чат-боты переводят тексты любой сложности за несколько секунд, что неизменно влияет на рынок труда Миллионы людей посмотрели в лицо искусственному интеллекту, а значит вопрос о том, хорошо ли мы понимаем эти системы и умеем ли ими пользоваться актуален как никогда. Вспомните, чем закончилась одна из главных дискуссий 2023 года о роли ChatGPT и подобных чат-ботов в образовании — все были сосредоточены на том, что учащиеся могут использовать ИИ для мошенничества, однако по прошествии года стало понятно, что неспособность преподавателей обучить школьников и студентов взаимодействию с чат-ботами может поставить их в невыгодное положение. И да, никакой «революции» в системе образования так и не произошло. Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram — так вы точно не пропустите ничего интересного! Тем не менее, понимание того, как работать с нейросетями чрезвычайно важно — чем больше мы знаем о том, что именно представляют собой эти интеллектуальные системы, тем больше у нас возможностей. Нейросети в 2024 году Итак, с момента релиза ChatGPT разработка моделей генеративного искусственного интеллекта продолжается головокружительными темпами — новый класс ИИ-систем учится быть мультимодальным. Это означает, что данные, используемые для обучения нейросетей, поступают не только из текстовых источников, таких как Википедия, но и из видео на YouTube и других аудио и визуальных источников информации. Все это в очередной раз поднимает один из главных вопросов, связанных с ИИ-системами — достоверностью информации. Достоверность информации Чат-боты щедро делятся с нами фейковыми фото и видео причем, понять что перед нами фейк довольно трудно и в будущем эта проблема усугубится, нанося все больший вред как отдельным лицам, так и крупным компаниям и даже государствам. Все это происходит несмотря на зарождающееся регулирование, в связи с чем многие эксперты предрекают появление новых, ранее невиданных классов проблем. Одна из главных проблем ИИ — достоврность информации Это интересно: «Темная сторона» чат-ботов: от признаний в любви до разговоров с мертвыми Сегодня ИИ позволяет буквально автоматизировать создание фейков — как текстовых, так и видео, а значит имитирующего правду контента на просторах сети становится все больше.

Яндекс, ВШЭ и Сириус запустили бесплатный курс по ИИ для школьников

Опыт разработки в реальных проектах. Стратегию поиска работы, составления резюме, которое заинтересует работодателей. Помощь в прохождении собеседования и трудоустройстве. Диплом о профессиональной подготовке. При беспроцентном кредите на 36 месяцев — 3654 руб. При оплате всей суммы сразу: 131 537 руб.

Нейронные сети и Deep Learning от Skillfactory Для прохождения курса требуются навыки Data Science, знание основ машинного обучения, Python. Продолжительность: три месяца. Вы получите: Навыки программирования на Python, создания собственных нейросетей, их оптимизации и применения для реальных задач. Поддержку кураторов и общение с сокурсниками в закрытых группах. Готовые проекты для портфолио.

Помощь в трудоустройстве: резюме 10 лучших выпускников передаются партнерам. Сертификат о прохождении курса. При покупке в рассрочку на 12 месяцев — 3890 руб. Основы искусственного интеллекта и нейронные сети от корпорации «Синергия» Это вариант для тех, кто вообще не понимает, как работает ИИ и для чего он нужен. Даются основы, много материала нужно изучать самостоятельно.

Продолжительность: два месяца. Вы получите: Понимание основ ИИ и нейросетей. Практические навыки по использованию нейросетей и ИИ для решения реальных задач. Диплом об окончании курса. Компьютерное зрение на базе нейронных сетей от Яндекс.

Практикум Интенсивная программа по компьютерному зрению — технология, которая позволяет беспилотным автомобилям не наезжать на пешеходов, а смартфону «узнавать» вас по лицу. Вы научитесь давать «глаза» машинам и сразу отработаете теорию на практике. Курс не подходит для новичков, необходимо знать Python и Git, иметь опыт работы с моделями машинного обучения. Что вы получите: Навыки решения задач по классификации, детекции и сегментации объектов. Практический опыт работы с фреймворком PyTorch и основными библиотеками.

Обратную связь от практикующих экспертов по компьютерному зрению. Инфраструктуру для обучения и развертывания ML-моделей в Yandex Cloud. Тренажер для оттачивания навыков. Четыре готовых объекта в портфолио. Помощь в трудоустройстве от Карьерного центра.

Диплом о профподготовке или сертификат. При оплате частями 47 тыс. Полная стоимость: 120 тыс. Data Scientist от «Нетологии» Полный курс обучения с нуля до специалиста. Два тарифа: базовый, для быстрого старта в профессии — за 7 месяцев до уровня Junior, и продвинутый — углубленное изучение Data Science, три специализации на выбор: ML-инженер, CV-инженер, NLP-разработчик.

Продолжительность курса: на базовом тарифе 10 месяцев, на продвинутом — от двух до пяти месяцев в зависимости от специализации. Вы получите: Навыки работы с большими объемами данных, поиска закономерностей и прогнозирования. Практический опыт по построению ML-моделей, обучению нейросетей. Модуль английского языка для специалиста по работе с данными.

Они не только отлично разбираются в теме искусственного интеллекта, но и умеют донести свои знания до широкой аудитории. Интенсив был организован на высшем уровне.

Организаторы позаботились о том, чтобы участники получили максимум полезной информации и смогли применить ее на практике. Кроме того, организаторы были очень внимательны к участникам и отвечали на все их вопросы. Они помогали им разобраться в сложных темах и найти решения проблем. Я очень благодарен организаторам интенсива за их профессионализм и заботу о нас. Я уверен, что этот интенсив помог мне стать более компетентным в области искусственного интеллекта и применить полученные знания на практике. Москва, Петербург, июнь Интенсивное погружение в технологии для преподавателей и специалистов в образовании.

Обучение очное. Особые условия для групп. Зачем Обучить преподавателей базовым навыкам работы с сервисами на основе нейросетей ИИ Подготовить преподавателей к реальности, в которой студенты массово используют нейросети для обхода проверочных заданий Подготовить проводников и амбассадоров новых образовательных технологий на кафедрах и факультетах Показать руководителям и методистам в области смешанного и онлайн-образования, что сервисы на основе нейросетей ИИ могут существенно изменить образовательный процесс и технологию изготовления образовательного контента и проверочных заданий Для кого Преподавателей и учителей, желающих повысить свою профессиональную компетентность Руководителей образовательных учреждений, стремящихся к модернизации учебного процесса Студентов и исследователей, которые интересуются темой AI в образовании Разработчиков образовательных курсов, технологий и сервисов.

Использование продуктов и услуг, созданных при помощи технологий ИИ, позволит расширить возможности и результаты приоритетных отраслей национальной экономики и социальной сферы. Для достижения цели программы необходимы компетентные специалисты и визионеры, способные использовать мировой опыт в области ИИ для развития научно-технической отрасли России и создания новаторских разработок на базе отечественных цифровых технологий. По оценке Gartner, к 2025 году активное внедрение ИИ в различные отрасли экономики создаст 2 миллиона новых рабочих мест. К 2022 году каждый пятый сотрудник будет использовать технологии ИИ для решения нешаблонных задач.

По этой причине я постоянно повышаю свою квалификацию, осваиваю новые технологии. В программе ИИ меня привлекла возможность ознакомиться с алгоритмами искусственного интеллекта и научиться с ними работать. ИИ используется для анализа табличных данных, в анализе текстов, голосовых помощниках и других процессах. ИИ может значительно быстрее, чем человек, проанализировать, например, текущую дорожную ситуацию и принять решение», — поделилась Елена Жоголева. Выпускник Саратовского государственного аграрного университета Павел Никитин прошел программу переподготовки по курсу «Банковское дело», а затем окончил курс «Аналитик данных» в Финансовом университете при Правительстве РФ. В беседе с ИА REGNUM он пояснил: поскольку в настоящее время банковский бизнес строится на сборе, хранении и обработке клиентских данных, полученные знания уже дают положительные результаты в части принятия правильных решений, способствующих скорейшему достижению поставленных целей. Больше всего понравилась поддержка со стороны организаторов обучения в наших чатах. Впечатлила возможность побывать в Совете Федерации на вручении документов о прохождении обучения — было интересно познакомиться лично с коллегами. Что касается самого обучения, то оно проводилось с достаточно высоким темпом», — отметил Павел. Баумана Григорий Соколов выделил четыре главных преимущества обучения в области ИИ: востребованность специалистов на рынке; практически безграничные возможности развития; возможность удаленной работы.

"Мы для него материал": Учёный призвал срочно отключить все серверы с искусственным интеллектом

Нейросеть — это искусственный интеллект, который может обучаться и принимать решения, используя данные информационных баз, созданных на основе опыта и инструкций. Если вам интересно познакомиться со спецификой технологий обучения нейросетей, а возможно и принять участие в развитии передовых технологий, регистрируйтесь на вебинар «Кто и как обучает искусственный интеллект». Значение общей терминологии искусственного интеллекта, включая нейронные сети, машинное обучение, глубокое обучение и науку о данных. Можно послушать про «нейронный блицкриг», почему нейросети врут, как лингвисты обучают ИИ, во что искусственный интеллект превратится завтра и когда машины научатся нас понимать по-настоящему. Оператор Искусственного Интеллекта. Дмитрий Иванков, эксперт Центра искусственного интеллекта СКБ "Контур", отмечает, что есть ещё множество российских нейросетей, на которые стоит обратить внимание.

Виртуальный учитель: как ИИ меняет образование

Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Проходят обучение программированию нейронных сетей. Значение общей терминологии искусственного интеллекта, включая нейронные сети, машинное обучение, глубокое обучение и науку о данных. База знаний по ИИ и нейросетям: обучение, инструкции, промты ChatGPT, DALL-E, Midjourney, SD итд. Яндекс, факультет компьютерных наук НИУ ВШЭ и запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение».

Нейронные сети и компьютерное зрение

В своём официальном блоге «Ростелеком» рассказал, как обучался алгоритм: «Чтобы алгоритм точно распознавал поведение участников ЕГЭ и корректно фиксировала нарушения, его нужно было обучить на большом массиве данных. Что мы и сделали, собрав видеозаписи с уже зарегистрированными нарушениями на экзаменах за 2018—2019 годы. Процесс обучения состоял из нескольких этапов: На первом видеозаписи прогонялись через алгоритм детектирования людей с использованием нейросети Yolo. В результате получалось видео с маркированными участками, где люди находились в течение долгого времени.

Это было нужно, чтобы отсечь преподавателей, которые ходят по коридорам, например. Каждому региону с человеком присваивался идентификатор, и обработанное видео с отмеченными регионами и идентификаторами сохранялось. Затем это видео просматривал человек, который отмечал как можно более точно моменты начала и конца нарушения если оно, конечно, было , а также идентификаторы «нарушителей».

Также сохранялись моменты отсутствия нарушений как примеры нормального поведения, которые тоже нужны для обучения алгоритма. Так мы выявили еще и типичные нарушения — использование шпаргалок и телефонов, фотографирование материалов. Нам очень помогла открытая библиотека OpenPose, которая используется для определения положения людей в кадре, их поз и координат ключевых точек, относящихся к разным частям тела».

Первая версия алгоритма базировалась на использовании RandomForest — классификатора, обученного на результатах работы OpenPose. Но у нее был существенный недостаток: большая часть потенциально полезных данных просто выбрасывалась. Например, невозможно было увидеть, что у человека в руке — ручка или шпаргалка.

На сегодняшний день технология видеоаналитики отслеживает видеопоток из аудитории в режиме онлайн, а между экзаменами — архивные видео из офлайна. Для сравнения: один наблюдатель может следить максимум за четырьмя аудиториями одновременно, а алгоритм может обрабатывать видео из более чем 2000 аудиторий за один экзаменационный день. В дальнейшем применение искусственного интеллекта во время экзаменов может позволить полностью исключить человеческий фактор и оставить онлайн-наблюдателей только для верификации нарушений, выявленных нейросетью.

Представляем подборку бесплатных курсов с самым высоким рейтингом и самыми лучшими отзывами. Часть курсов — на русском языке, часть — на английском с русскими субтитрами. Доступ к материалам курсов на платформах Coursera и «Открытое образование» бесплатен, но есть нюансы: Российским пользователям для доступа к Coursera понадобится VPN. А еще можно подать заявку на финансовую помощь и получить сертификат бесплатно. На платформе «Открытое образование» необходимо заплатить 3600 рублей за прохождение экзамена, зачет в вузе и сертификат. Если же зачет в вузе и сертификат вам не нужны — везде можно учиться совершенно бесплатно. Мягких , И.

Трусов , М. Бурова Уровень сложности: для начинающих Сертификат: выдается стоимость — 3600 руб.

IT-гиганты повышают секретность в отношении своих проприетарных моделей. Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами.

Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы.

А взлом с помощью джейлбрейк-промптов постепенно станет невозможным. Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров. А совершенствование свойств, которые уже проявились, замедлится. При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей. Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований. Однако в 2024-м этот разрыв может сократиться: главным драйвером здесь может стать Fusion Brain от «Сбера», развивающий идею MoE для мультимодальных решений и VisualQA. Ещё одним драйвером может стать разработка собственной модификации архитектуры «трансформер» — особенно если учесть, что за рубежом даже небольшие компании разрабатывают модификации моделей с механизмом внимания attention model.

Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — LLM продолжат развиваться в сторону мультимодальных моделей и роста числа параметров. Но всё это лишь количественные показатели. Да, они будут расти. Но приведёт ли этот тренд к качественным прорывам? Я сомневаюсь. Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово. Они по своей сути такими и останутся, что бы мы с ними ни делали. Используемая сегодня архитектура нейросетей просто не позволит им совершить качественный скачок.

Поэтому стоит ожидать концентрации усилий разработчиков на создании когнитивных архитектур, которые называют BICA biologically inspired cognitive architectures. Здесь могут появиться очень интересные решения. Такие модели способны конвергировать с архитектурами, основанными на других принципах.

Пройти обучение 6. Искусственный интеллект для руководителей от Агентства искусственного интеллекта Теоретический курс от тех, кто в числе первых внедряет умные решения на территории РФ в самых разных сферах — от создания цифровых копий людей до систем поддержки принятия решений в медицине. Программа заточена под корпоративное обучение и включает в себя 4 образовательных модуля по 1. Для кого: владельцев и сотрудников современного бизнеса. Чему научат: пониманию того, что есть ИИ, разбираться в основных интеллектуальных технологиях и чат-ботах, применению новых технологий в жизни и деле.

Пройти обучение 7. Включает в себя 35 онлайн-уроков, затрагивающих все возможности нейронки от OpenAI — от написания сценария для фильма до создания рабочего сайта за несколько минут. Для кого: всех, кому интересны высокие технологии. Чему научат: обходить ограничения при создании аккаунта для Ру-региона, генерировать тексты, код и пароли, зарабатывать на нейронной сети. Пройти обучение 8. Компьютерное зрение на базе нейронных сетей от Яндекс Практикум Если вы, работая в области Data Science, задумались о повышении квалификации, то рекомендуем освоить перспективную в наших реалиях технологию компьютерного зрения. Небольшой курс от Практикума всего на 3 месяца содержит 100 практических задач, а к концу обучения в вашем портфолио будет 4 готовых проекта. Для кого: опытных дата-сайентистов, специалистов по компьютерному зрению.

Пройти обучение 9.

Конференция Сбера по искусственному интеллекту AIJ 2023. Текстовая трансляция первого дня

Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени. Значение общей терминологии искусственного интеллекта, включая нейронные сети, машинное обучение, глубокое обучение и науку о данных. Поскольку технологии искусственного интеллекта и машинного обучения постоянно меняются и совершенствуются, от специалистов требуется готовность непрерывно учиться и осваивать новые навыки работы с нейронными сетями. Яндекс, факультет компьютерных наук НИУ ВШЭ и запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение».

Вопросы и ответы

  • Путешествие в мир искусственного интеллекта
  • Перспективы развития и применения нейронных сетей | Статья в журнале «Молодой ученый»
  • ИИ в образовании: как нейросети помогают ученикам и преподавателям
  • Похожие статьи
  • Сколько времени нужно, чтобы начать работу с ИИ?

Искусственный интеллект

Структура нейросети Структура Главное отличие нейросетевых моделей от классических заключается в их структуре. Основные элементы, из которых он состоит — искусственные нейроны и связи между ними. Искусственные формальные нейроны Искусственные нейроны также называются словом «узлы» — элементарные вычислительные единицы, связанные между собой. Они представляют собой нелинейные функции с одним аргументом. Нейрон получает общую информацию, производит вычисления и передает данные дальше. Каждый нейрон имеет два параметра: входные данные input data и выходные данные output data. Синапс Синапсы — соединения, которые используются для того, чтобы отправлять сообщения между нейронами. Каждое из них имеет определенный вес. Это число, на которое умножается значение входящего сигнала, коэффициент, определяющий взаимосвязь между нейронами. Чем это значение выше, тем более важной является связь между узлами.

Если значение веса на выход превышено, узел активируется и отправляет данные следующему нейрону. Если показатели значений ниже, передача данных не происходит — в этом случае говорят об упреждающей связи, когда данные проходят только в одном направлении. Таким образом, проходя через синапсы, сигнал ослабевает, усиливается либо остается равным и неизменным, что в конечном итоге влияет на результат. Мозг системы — матрица весов, то есть все веса нейронной сети. Именно благодаря им информация обрабатывается и передается дальше. Слои Нейронов в нейросети много, поэтому они объединяются в слои: Входной, куда поступают данные. Они могут иметь любой формат — файлы, тексты, музыка, картинки, видео и другие. Скрытые, в которых производятся вычисления и обработка. Обычно скрытых слоев не больше трех.

Выходной — отсюда выходят результаты. Таким образом, чем большее число слоев в нейронной сети, тем сложнее задачи, с которыми она может справляться. Принцип работы Принцип работы нейронной сети схематично выглядит так: Принцип работы Информация в виде текста, изображений или в ином формате поступает на внешний слой. Нейроны внешнего слоя распознают ее, классифицируют и передают дальше. В скрытом слое происходит основная работа. Скрытых слоев может быть несколько, иногда их количество доходит до миллиона. При прохождении через скрытые слои предыдущие значения данных умножаются на вес связи, после чего результаты суммируются. Ответ сети формируется в выходном слое. Формат ответа также может быть любым.

Если сеть не обучена, классификация весов происходит рандомно. Значимость каждого нейрона повышается в процессе обучения, если они приводят к правильному решению. Этот сложный алгоритм можно сравнить с работой человеческого мозга: он учится чему-то новому, благодаря чему нейронные связи укрепляются.

ДМИТРИЙ AI и нейросети я воспринимаю сейчас, как глоток свежего воздуха в ежедневном рабочем процессе, как элемент творчества в своей повседневной работе. Он дает возможность объединять то, чему я учился по ходу своей жизни от азов программирования еще на Basic до решения реальных рабочих задач на производстве.

Это реальный путь вывести многие бизнес-процессы компании на новый уровень! И это действительно круто! Это и моделирование, и прогноз, и аналитика... Захватывает дух от новых возможностей, которые хочется попробовать реализовать на практике! AI дает возможность взглянуть на свою работу и на свою жизнь по-новому!

Но самое главное, по-моему, это возможность для самого себя стать Творцом и улучшать себя в этом каждый день! Хочу применить полученные знания по AI для создания нейронной сети по выявлению инцидентов на перегонах на основе данных с детекторов транспортного потока и параметрам движения общественного транспорта. ОЛЕГ Мне 55 лет и я никак не связан с программированием. Но мне интересна область IT, пробовал делать сайты, писать их начал изучать Python, бросил и на различных конструкторах.

Стилизация изображений. Создание кода своего стиля. Инструмент Style Tuner. Преимущества Есть два тарифа на выбор. Одна из лучших программ по работе с Midjourney. Можно обучаться без опыта.

Получив новые знания, вы будете быстро создавать уникальные проекты.

По задумке авторов, такой мультимедийный процесс помогает детям и подросткам лучше воспринимать и запоминать скучную информацию. Евгений Тимаков, главный врач медицинского центра, врач-педиатр : «Например, тот же самый текст мы с вами запомнить можем очень тяжело — приходится читать текст несколько раз. Текст с картинкой запоминается уже лучше. А если картинка движется, да еще и показывают какие-то.

Похожие новости:

Оцените статью
Добавить комментарий