Новости вл80 электровоз

Так на электровоз ВЛ80Т в середине 1980-ых были установлены новые экспериментальные электродвигатели.

Электровоз ВЛ80тк

Электровоз ВЛ80, работающий на переменном токе, показал себя довольно надежной, мощной и неприхотливой техникой. По уточнённым данным на постоянном токе (депо Белово и, возможно, Тайга) осталось несколько зелёных ВЛ10/ВЛ10У. Электровоз ВЛ80С-1759 Дорога приписки: Забайкальская ж/д Депо: ТЧЭ-3 Чита Построен: На Новочеркасском электровозостроительном заводе в1986 году. Смотрите видео на тему «вл80с» в TikTok (тикток). Деятельность возобновилась с выпуска шестиосных электровозов постоянного тока ВЛ22м.

Электровоз ВЛ80

Во второй декаде ноября завод успешно прошел проверку межведомственной комиссии по приемке в эксплуатацию после заводского ремонта электровоза ВЛ-80С и выпустил первый в истории завода электровоз ВЛ80С. Решение об освоении ремонта грузового электровоза ВЛ-80С было принято в 2016 году. Первый ВЛ-80С поступил на завод в сентябре 2016 года. Для освоения нового вида ремонта была проведена серьезная работа по изучению аппаратной части электровоза.

Аппаратура микропроцессорной системы управления и диагностики МСУД выполняет автоматическое управление электроприводом и электрическими аппаратами магистрального серийного пассажирского электровоза ЭП1 и модернизированного грузового электровоза ВЛ80тк в режиме тяги и торможения. Применение современной элементной базы, такой как высокопроизводительные IBM PC-совместимые микропроцессорные контроллеры для тяжёлых условий эксплуатации, высоконадёжные преобразователи напряжения крупнейших в мире поставщиков, электролюминесцентные и ЖК дисплеи для низких температур, позволило создать систему управления и контроля, практически не требующую обслуживания. Аппаратура МСУД состоит из шкафа с тремя контроллерами: центрального и двух технологических с разделёнными функциями управления электрооборудованием, диагностики и возможностью передачи управления друг другу при реконфигурации в случае повреждения одного из контроллеров, а также блока индикации.

Центральный контроллер обеспечивает обмен информацией между всеми контроллерами управления и пультом машиниста по дублированному интерфейсу RS-485, диагностику состояния электрооборудования и связь с приборами АСУ безопасности по интерфейсу RS-232.

Рамы тележек сварные, буксы с роликовыми подшипниками связаны с рамой тележки поводками с сайлент-блоками резинометаллическими шарнирами. Тяговые и тормозные усилия передаются от тележек к кузову через шкворни. Зубчатая передача от тягового двигателя к колёсным парам двухсторонняя, косозубая, с жестким венцом зубчатого колеса. Диаметр колесных пар при новых бандажах по паспорту — 1250 мм, фактически — 1280—1290 мм.

На каждой секции установлено следующее основное оборудование: пантограф для токосъёма с контактной сети, расположенный над кабиной машиниста, и главный выключатель ГВ ВОВ-25М; тяговый трансформатор с масляным мотор-насосом МН , две выпрямительные установки ВУК той или иной модификации и главный контроллер ЭКГ-8Ж на электровозе ВЛ80р ВУК и ЭКГ-8Ж заменены двумя преобразователями ВИП-2200 ; фазорасщепитель ФР НБ-455А, вырабатывающий третью фазу первой и второй фазами становятся выводы обмотки собственных нужд для питания асинхронных двигателей остальных вспомогательных машин; 4 мотор-вентилятора МВ для охлаждения оборудования и наддува кузова, среди которых обязательно имеются два МВ для охлаждения ТЭД, по одному на тележку; мотор-компрессор МК КТ-6Эл для обеспечения воздухом тормозов на локомотиве и в поезде, силовых электроаппаратов, блокировок высоковольтной камеры, подачи звуковых сигналов свистком тихий и тифоном громкий , работы пневмопривода стеклоочистителей. Трансформатор имеет тяговую обмотку и обмотку собственных нужд ОСН с напряжением холостого хода 399 В напряжение под номинальной нагрузкой около 380 В , служащую для питания вспомогательных машин и цепей управления. Для стабилизации напряжения на вспомогательных двигателях при значительных колебаниях напряжения в контактной сети ниже 19 кВ и выше 29 кВ предусмотрены две отпайки ОСН с напряжением 210 и 630 В, переключаются они вручную на трансформаторе. Напряжение на тяговых двигателях регулируется оперативно в процессе управления электровозом. Цепи управления питаются напряжением 50 В от ТРПШ — трансформатора, регулируемого подмагничиванием шунтов, через диодный выпрямитель.

По внешнему виду он немного был похож на ВЛ-85. ВЛ-80М Электровоз, на котором был использована специальная система для выполнения плавной регулировки напряжения тяговых двигателей с использованием преобразователя ВИП-4000М выпрямительно-инверторного типа. Также были установлены усовершенствованные двигатели НБ-418КР. Локомотив оснащен системой управления с использованием микропроцессорной техники и диагностики. Именно она обеспечивает как ручное, так и автоматическое управление электровозом, гарантирует надежную защиту от буксования и юза, регулирует ток возбуждения в режиме рекуперативного торможения, управляет релейно-контакторными аппаратами и диагностирует все оборудование многотонной машины. Пульт управления локомотива стал еще более эргономичным и удобным.

Начали применяться кондиционеры и новые кресла для машиниста и его помощника. Техническое обслуживание Ремонт электровозов ВЛ проводится в двух вариантах: Средний ремонт — осуществляется для выведения на первоначальный уровень эксплуатационных характеристик, а также для частичного либо полного восстановления работоспособности главных деталей и узлов осмотр и ремонт кабелей, трубопроводов и прочего. Капитальный ремонт — восстанавливают ресурс абсолютно всех изношенных частей и деталей. При необходимости проводится полная замена изношенных узлов. Машина, по сути, разбирается до каждого винтика. Перед любым из вышеуказанных видов ремонт электровоз очищается от грязи и пыли, разбирается на сборочные узлы, которые впоследствии подвергаются очень тщательному осмотру с целью определения степени их износа.

В момент обмывки электрического оборудования все провода и аппаратура подвергаются надёжному изолированию от попадания внутрь них моющих растворов. Электровозы на основе ВЛ-80 Устройство электровоза ВЛ-80 оказалось настолько удобным и продуманным, что на его основе выпустили целый ряд других локомотивов. Так, в 1999 году на Демиховском машиностроительном заводе было построено четыре электропоезда ЭД1, которые состояли из десяти вагонов и непосредственно поезди ЭД9Т, а с обоих концов состава главные моторные вагоны были заменены на секции электровоза ВЛ80с. ЭД 1 были доставлены в депо Дальневосточной дороги и Хабаровск-2. Однако уже в 2009 году все эти поезда были полностью расформированы.

РЖД в I квартале поставили Октябрьской желдороге 6 пассажирских электровозов

На железнодорожном транспорте это приводит к тому, что при снижении сцепления колес с рельсами начинается лавинообразный процесс проскальзывания колес - как говорят железнодорожники - "боксование". Сериесный ТЭД склонен к боксованию, именно поэтому локомотив везет на борту запас песка, который подают под колеса специальными песочными форсунками. Кроме того, применяют и меры по ликвидации боксования со стороны схемы управления приводом. Другой недостаток этого двигателя связан с тем, что он коллекторный. Коллекторно-щеточный узел и так является довольно сложной и капризной частью двигателя.

А при увеличении мощности, неизбежно увеличение и габаритов этого узла, а конкретно - диаметра коллектора. В противном случае возникают проблемы коммутации на коллекторе, приводящие в конечном счете к быстрому выходу всего узла из строя. Коллекторный ТЭД невозможно бесконечно масштабировать по мощности - настанет момент, когда двигатель просто не впишется в габарит тележки. Этот момент наступает при мощностях ТЭД свыше 1000 кВт.

Электровоз ЧС200, часовой мощностью 8400 кВт, оснащен восемью сериесными ТЭД мощностью 1050 кВт Из того подвижного состава, что эксплуатируют наши железные дороги, к этому пределу подошел электровоз ЧС200. Он оснащен поистине монструозными сериесными ДПТ мощностью аж 1050 кВт. Дальнейшего ресурса увеличения осевой мощности у подвижного состава с коллекторными ТЭД нет и не может быть. Инженерам стало понятно, хотя во времена электромоторисы AEG они наверняка и догадывались, что перешагнуть предел в тысячу киловатт способен только бесколлекторный тяговый двигатель переменного тока.

Возвращение джедая Глазами инженера наших дней, цепочка преобразования энергии, пригодная для реализации управления моментом многофазного двигателя переменного тока выглядит элементарно. Однофазный переменный ток из контактной сети преобразуется к требуемой величине напряжения тяговым трансформатором Пониженное напряжение выпрямляется, обеспечивая так называемое "звено постоянного тока" напряжением 3 кВ. За это отвечает либо управляемый тиристорный выпрямитель, но чаще - 4-квадрантный преобразователь. Постоянное напряжение преобразуется в трехфазное напряжение с регулированием амплитуды и мгновенной фазы.

Это реализуется с помощью управляемого автономного инвертора напряжения АИН Если же линия, на которой эксплуатируется подвижной состав электрифицирована на постоянном токе, то это постоянное напряжение сразу подается на вход АИН. Одна беда - реализация АИН крайне трудна без использования так называемых двухоперационных силовых ключей. Двухоперационными они называются, потому, что обеспечивают возможность как открытия, так и закрытия в любой момент времени, по желанию системы управления преобразователем. Исторически первым полупроводниковым управляемым ключем стал силовой тиристор - но это ключ однооперационный, так открыть его можно, а вот закрыть - надо ещё постараться, ибо тиристор закрывается только при снижении прямого тока ниже порогового значения.

Однако, после появления достаточно качественных силовых тиристоров, на них стали строить автономные инверторы тока АИТ и автономные инверторы напряжения АИН , которые сразу стали пытаться применять на подвижном составе для питания АТЭД. И эта вторая итерация, произошедшая спустя полвека после рекорда AEG, хоть и оказалась довольно неудачной, но принесла понимание того, что внедрение АТЭД на подвижной состав не за горами. В нашей стране, традиционно отстававшей в области силовой электроники, тем не менее так же предпринимались попытки внедрить АТЭД на подвижной состав. Первой попыткой стал электровоз ВЛ80а, содержавший в себе макетную секцию с асинхронными тяговыми двигателями.

Электровоз ВЛ80а-751 содержал в себе макетную секцию с асинхронным тяговым приводом Структурная схема силовых цепей макетной секции электровоза ВЛ80а С появлением двухоперационных силовых ключей, которыми стали GTO-тиристоры, как за рубежом, так и в нашей стране, интерес к асинхронному тяговому приводу вспыхнул с новой силой. У нас это выразилось в создании совместно с финской фирмой Кюми-Стрёмберг, поставлявшей тяговые преобразователи опытного электровоза ВЛ86ф Электровоз ВЛ86ф-001 - самый мощный грузовой электровоз в мире, на момент своего создания Этот электровоз пал жертвой распада СССР, так и не войдя в серию. Ваш покорный слуга имел честь лицезреть и трогать своими руками одну из его секций на испытательной станции НЭВЗ в 2008 году. В 2013 году эту секцию порезали на металлолом.

Секция, оставшаяся на Щербинке прожила на 6 лет дольше и была утилизирована в 2019 году.

Эти двухсекционные мощные электровозы не переменном токе получили несколько грузовых модификаций и до сих пор исправно трудятся на протяженных железнодорожных магистралях России. В выпуске грузового ВЛ80 были заняты многие машиностроительные заводы Союза. Особенностью данного типа этой замечательной грузовой плеяды советских локомотивов было питание машин однофазным переменным током. Главным отличием нового локомотива от прежней модели ВЛ60 стало новое конструкционное решение. Этот локомотив выпускался двухсекционном и восьмиосном исполнении. Эта модель грузовых советских локомотивов стала крупнейшей серией машин переменного тока в Союзе и России. В качестве выпрямителей использовали ртутные дуговые агрегаты, что позднее был заменены более совершенными кремниевыми выпрямителями. Конструкция электровоза ВЛ80 Кузов Конструкционно кузова локомотива ВЛ был аналогией прежнего у Н8о с небольшими изменениями внешности старой машины.

Кабина машиниста была позаимствована создателями от ВЛ60 , а переход между секциями сконструировали по типу вагонного, резиновая рубашка защищала переход от пыли. Тележки были укомплектованы межбуксовыми гидравлическими амортизаторами, они пришли на замену прежним амортизаторам фрикционного типа. Эти агрегаты устанавливались во всех секциях новинки. У трансформатора был стальной магнитопровод с тремя обмотками. Сетевая обмотка рельсовой цепью присоединялась к контактному проводу. Тяговая обмотка питала тяговые двигатели и имела две регулировочные секции, которые подразделялись на 4 составляющих элемента. Трансформатор полностью погружался в масляный бак, в нем циркуляция масла осуществлялась насосами через охлаждаемые радиаторы. Регулировкой напряжения всех тяговых двигателей занимался машинист. Для этого он использовал групповой переключатель ЭКГ-8.

Электровоз способен работать от контактной сети или от бортового накопителя энергии. Он может заряжаться от контактной сети через штатные токоприемники 3кВ как в движении, так и на стоянке или от общепромышленных источников электроэнергии. Специальная зарядная инфраструктура для локомотива не требуется. Накопитель и тяговая система ЭМКА2 позволяют без подключения к контактной сети провести состав массой до 2000 т на расстояние до 14 км. Локомотив без поезда способен пройти за счет питания от батареи до 100 км. Два опытных образца литий-ионных накопителя энергии для контактно-аккумуляторного маневрового электровоза ЭМКА2 разработали в группе «ТехноСпарк». Такие локомотивы станут первыми серийными машинами в России, их создание — продолжение тренда на электродвижение, который мы наблюдаем во всех секторах экономики и сами активно участвуем в этих преобразованиях». Фото: ТМХ.

Затем секции регулируемых частей поочерёдно выводятся, напряжение на ТЭД растёт. На 17-й позиции ЭКГ регулируемые части полностью выключены. При переходе на 18-ю позицию регулируемые части включаются согласно с нерегулируемыми и далее происходит включение их секций, на 33-й позиции ЭКГ все секции регулируемых частей включены согласно с нерегулируемыми, напряжение на ТЭД максимально. ВЛ80Р имеют рекуперативное торможение, при котором электроэнергия возвращается в сеть. В качестве привода вентиляторов и компрессоров используются электродвигатели АЭ92-4 в некоторых модификациях используются электродвигатели АС82-4, АП82-4, ВЭ-6. Электровозам ВЛ80Т и ВЛ80С заменяется большая часть электрооборудования, в частности, устаревший аппарат ступенчатого регулирования ЭКГ-8Ж и диодные выпрямительные установки уступают место тиристорным преобразователям, ходовая часть при этом остаётся прежней. Помимо тиристорного регулирования напряжения на ТЭД электровоз получил смешанное возбуждение — параллельно обмоткам возбуждения подключены выпрямители возбуждения, в результате ток возбуждения можно плавно занижать или завышать, исключая разносное боксование. ВЛ80Р на заводе получают возможность работы в три секции.

Новая жизнь электровозов ВЛ-80

Во второй декаде ноября завод успешно прошел проверку межведомственной комиссии по приемке в эксплуатацию после заводского ремонта электровоза ВЛ-80С и выпустил первый в истории завода электровоз ВЛ80С. Новыми локомотивами сегодня никого не удивишь: канули в Лету времена, когда по всей стране колесили грузовые ВЛ10, ВЛ80 да 2ТЭ116, а в пассажирском движении трудились ЧСи ТЭП60 с подоспевшими им на смену ТЭП70. Если вам понравилось бесплатно смотреть видео электровоз вл80т после лобового столкновения с тепловозом онлайн которое загрузил POEZDATO 08 февраля 2018 длительностью 00 ч 03 мин 47 сек в хорошем качестве.

Электровоз ВЛ80С-499 с грузовым поездом

Папа и мама Лидия Александровна приехали сюда в 1950 году после окончания Ленинградского института инженеров железнодорожного транспорта им. Папа начинал бригадиром, затем мастером цеха промывочного ремонта паровозов. Получил второе высшее образование по специальности «Инженер — электрик», в 1959 году стал главным инженером Буйского отделения СЖД, в 1962 году — начальником депо, а затем — начальником Буйского отделения СЖД. В 1978 году его перевели в г. Ярославль и назначили на должность заместителя начальника СЖД.

В моей памяти Буй остался очень уютным городком. Мы жили сначала на улице Школьной ныне ул. Гединского , позже переехали в дом на ул. Октябрьской революции.

Двигатель, как преобразователь механической энергии Начнем, как положено, с определения: двигатель - это преобразователь энергии первичного источника в энергию механического движения. Вне зависимости от того, что является первичным источником энергии, эффективность любого двигателя определяется двумя основными показателями - его номинальной мощностью и коэффициентом полезного действия КПД. Отсюда легко делается вывод, что идеальным, с точки зрения минимизации потерь, является работа двигателя в режиме реализации постоянной мощности, близкой к номинальной. Этот принцип хорошо подходит для приводов, работающих в постоянном диапазоне скоростей и нагрузок. Подавляющее большинство промышленных механизмов, в которых требуется применение электрического привода удовлетворяют этому условию.

Иначе дело обстоит в тяговом приводе транспортных средств в том числе и железнодорожных экипажей , где диапазон реализуемых скоростей движения и нагрузок может варьироваться в весьма широких пределах. Тогда, исходя из условия обеспечения постоянной механической мощности, равной номинальной, мы придем к выводу, что момент, развиваемый двигателем должен находиться в обратной пропорции к скорости вращения его вала которая выражается в виде гиперболической части кривой, приведенной на графике ниже. Если обеспечить регулирование момента двигателя в соответствии с зависимостью 1 , то на гиперболическом участке данной характеристики, увеличение нагрузки на привод будет приводить к снижению угловой скорости его вращения, с одновременным увеличением развиваемого момента, и наоборот - уменьшение нагрузки приведет к увеличению скорости вращения двигателя при пропорциональном снижении момента. При этом будет обеспечиваться наиболее эффективный режим работы на постоянной мощности. Безусловно, при этом существуют как минимум два ограничения - по максимальному моменту, который способен развить двигатель данного типа, а так же по максимальной скорости вращения его вала, которую обуславливают динамические свойства самого двигателя, и того механизма, который он приводит в движение.

Зависимость, изображенную на рисунке принято называть тяговой характеристикой привода. При внешней похожести и смысле, не следует путать тяговую и естественную механическую характеристики двигателя, хотя по сути это одно и то же, с той лишь разницей, что тяговая характеристика является искусственной механической характеристикой, форма которой обусловлена законом управления двигателем в приводе. Естественная механическая характеристика, которая для электрического двигателя рассчитывается и строится при условии его прямого включения в питающую сеть может существенно отличатся от тяговой характеристики, которую следует обеспечить. Более того, для большинства известных типов электрических машин так оно и есть, за одним, очень важным, исключением. Это исключение и определило, на долгие годы, вектор развития тягового привода железнодорожных экипажей, но обо всем по порядку.

Для тягового привода наземного транспорта, в том числе и железнодорожного, в тяговой характеристике может присутствовать еще одно ограничение - ограничение по сцеплению движителя с опорной поверхностью. Для железнодорожной техники - ограничение по сцеплению колес с рельсами. В этом случае, типовая тяговая характеристика железнодорожного экипажа будет иметь такой вид Такая форма тяговой характеристики характерна для мощных локомотивов, в большинстве случаев грузовых, или пассажирских, предназначенных для вождения длинных поездов по сложному профилю, и имеющих тяговые возможности, достаточные для нарушения сцепления колес с рельсами. Для большинства серий моторвагонного подвижного состава, в виду применения распределенной по всему поезду тяги, ограничение по сцеплению, чаще всего, лежит выше ограничения по максимальному моменту, и тогда в качестве тяговой характеристики мы имеем кривую с предыдущего рисунка. В любом случае, приведенные кривые, характеризуют главные свойства тягового привода подвижного состава - обеспечивать регулирование тягового момента, в зависимости от текущей скорости движения, с целью обеспечения постоянной мощности на валах тяговых двигателей.

Вопрос только в том, какой двигатель вполне удовлетворяет этим условиям? Механическая характеристика называется "жесткой", если изменение момента нагрузки на валу двигателя приводит к незначительному изменению угловой скорости его вращения, что можно выразить условием Механическая характеристика называется "мягкой", если изменение момента нагрузки на валу двигателя, приводит к существенному изменению и скорости его вращения Нетрудно показать, что на гиперболической ветви тяговой характеристики, о которой мы говорили выше, в режиме реализации постоянной номинальной мощности, для малых отклонений момента и угловой скорости от номинального режима справедливо что говорит нам о том, что тяговая характеристика является "мягкой". Соответственно, для её реализации на практике, с применением в приводе двигателя с "жесткой" естественной механической характеристикой, неизбежно применение системы управления приводом. Асинхронный электродвигатель в качестве тягового в начале XX века В теме асинхронной электрический машины, её конструкции и теории, отметились масса ученых и инженеров, в том числе и легендарный Никола Тесла, получивший в 1888 году в США патент на машину такого типа. Однако, жизнь идея такого двигателя получила после получения немецким ученым русского происхождения Михаилом Осиповичем Доливо-Добровольским патента на трехфазный асинхронный двигатель с короткозамкнутым ротором типа "беличья клетка" в 1889 году.

Чуть позже, в 1890 году, им же разработана и система трехфазного тока для питания такого двигателя. Появление этого двигателя перевернуло мировую промышленность. Простая конструкция, а значит и высокая надежность, широкие возможности по реализации высоких мощностей сделали трехфазный асинхронный двигатель самым распространенным в промышленном электроприводе. Естественно, что железнодорожные инженеры сразу схватились за идею применения этого двигателя в качестве тягового. Участок BA двигатель быстро пролетает при пуске, при прямом включении в сеть, что обычно и реализуется для машин малой мощности.

С 1 октября 2023 года все электровозы семейства «Ермак» выпускаются с новыми усиленными кабинами машиниста, что позволяет существенно повысить уровень пассивной безопасности локомотива. Грузовые электровозы семейства «Ермак» выпускаются в двух-, трех- и четырехсекционном исполнении. Имеется опыт производства односекционных локомотивов Э5К. В общей сложности НЭВЗ выпустил к настоящему времени 5995 локомотивных секции этой модели. Электровозы «Ермак» являются второй по объему серией, когда-либо выпускавшейся на Новочеркасском заводе крупнейшая, ВЛ80, насчитывает 10 340 секций.

Это повлекло за собой серьезную перекомпоновку, которая была признана крайне неудачной. Для забора воздуха центробежными вентиляторами понадобилась врезка дополнительных жалюзи как на левой, так и на правой стенках кузова. В результате, форткамеры левых жалюзи пришлось разместить прямо в продольном проходе, что вызвало большие затруднения при смене кабины управления: приходится открывать и закрывать 8 дверей кабинные, межсекционные и по две двери на каждую форткамеру , либо оставлять их открытыми, что существенно снижает качество вентиляции. Начиная с 1970 года и далее на всех модификациях ВЛ80 начали устанавливать буферные фонари нового типа. Взамен двух больших фонарей, которые горели как белым, так и красным огнями, появились буферные фонари меньшего размера и буферными фонарями красного цвета, размер которых был еще меньше. Фонари установлены в общую овальную секцию. ВЛ80Т Всего выпущено 1317 единиц данной модификации. Выпуск осуществлялся с 1967 по 1984 годы. Однако в 1975 году начиная с электровоза под номером 1004 взамен боковых опор начали применять систему люлечного подвешивания — на четырех подпружиненных стержнях кузов подвешивается к каждой тележке. Стержни имеют отклонение к центру тележке для большей устойчивости кузова во время относа в сторону. Применены автоматические выключатели вместо плавких предохранителей. Незначительно изменена система вентиляции. Форткамеры с левой стороны кузова уменьшены в размерах и перенесены на крышу электровоза — теперь проходу они не мешают. На ВЛ80Т установлен реостатный тормоз, для работы которого потребовалась установка следующих элементов: БУРТ блок управления реостатным торможением , который устанавливается только в первую секцию. Необходим для управления работой контакторов расширенной зоны торможения и других аппаратов; выпрямительная установка возбуждения ВУВ. Во время работы тяговых электродвигателей в режиме генераторов тиристоры, из которых собрана установка, обеспечивают плавную регулировку возбуждения ТЭД; тормозные резисторы и контакторы переключения сопротивления резисторов; устройства переключения воздуха. В режиме реостатного торможения устройства переключения воздуха переключают его подачу на тормозные резисторы; тормозные переключатели. В режиме реостатного торможения они обеспечивают отключение тяговых электродвигателей от выпрямительной установки и подключение якорей ТЭД к тормозным резисторам. Одновременно обмотки возбуждения соединяются последовательно и подключаются к выпрямительной установке возбуждения. Такое серьезное изменение электрической схемы электровоза повлекло за собой изменение расположения оборудования в секциях. Электровоз получил обозначение ВЛ80Б-216. В этом же году был выпущен восьмиосный ВЛ80-238.

На Новосибирском ЭРЗ освоен ремонт грузового магистрального электровоза ВЛ-80

И в отличии от ВЛ80 он работает на вех электровозах и успешно применяется, значительно облегчая ведение поезда. Описаны механическая и электрическая части электровоза BЛ80С. Даны рекомендации по подготовке электровоза к работе, управлению им и устранению возможных неисправностей, техническому обслуживанию и текущим сравнению с 1-м изданием. Во второй декаде ноября завод успешно прошел проверку межведомственной комиссии по приемке в эксплуатацию после заводского ремонта электровоза ВЛ-80С и выпустил первый в истории завода электровоз ВЛ80С.

РЖД в I квартале поставили Октябрьской желдороге 6 пассажирских электровозов

В электровозе внедрена практически новая электрическая схема, увеличен размер и обновлен дизайн кабины машинистов. Первые восемь опытных электровозов уже отданы в эксплуатацию.

Именно она обеспечивает как ручное, так и автоматическое управление электровозом, гарантирует надежную защиту от буксования и юза, регулирует ток возбуждения в режиме рекуперативного торможения, управляет релейно-контакторными аппаратами и диагностирует все оборудование многотонной машины. Пульт управления локомотива стал еще более эргономичным и удобным. Начали применяться кондиционеры и новые кресла для машиниста и его помощника. Техническое обслуживание Ремонт электровозов ВЛ проводится в двух вариантах: Средний ремонт - осуществляется для выведения на первоначальный уровень эксплуатационных характеристик, а также для частичного либо полного восстановления работоспособности главных деталей и узлов осмотр и ремонт кабелей, трубопроводов и прочего. Капитальный ремонт - восстанавливают ресурс абсолютно всех изношенных частей и деталей. При необходимости проводится полная замена изношенных узлов. Машина, по сути, разбирается до каждого винтика. Перед любым из вышеуказанных видов ремонт электровоз очищается от грязи и пыли, разбирается на сборочные узлы, которые впоследствии подвергаются очень тщательному осмотру с целью определения степени их износа. В момент обмывки электрического оборудования все провода и аппаратура подвергаются надёжному изолированию от попадания внутрь них моющих растворов.

Электровозы на основе ВЛ-80 Устройство электровоза ВЛ-80 оказалось настолько удобным и продуманным, что на его основе выпустили целый ряд других локомотивов. Так, в 1999 году на было построено четыре электропоезда ЭД1, которые состояли из десяти вагонов и непосредственно поезди ЭД9Т, а с обоих концов состава главные моторные вагоны были заменены на секции электровоза ВЛ80с. ЭД 1 были доставлены в депо Дальневосточной дороги и Хабаровск-2. Однако уже в 2009 году все эти поезда были полностью расформированы. В 2001 году был создан проект по формированию двух системного поезда с повышенной комфортностью. С этой целью были использованы вагоны электрического поезда ЭД4ДК, которые были размещены между секциями постоянного и переменного тока. Однако в процессе дальнейшей работы стало ясно, что совместная работа двух этих агрегатов невозможна по техническим причинам. Ярким подтверждением тому послужила сгоревшая дотла секция ВЛ-10-315. Заключение Товарный поезд ВЛ-80 получил настолько широкое признание в нашей жизни, что создатели компьютерных игр даже задействовали его в одном из своих детищ - Railroad Tycoon 3. Кроме того, абсолютно достоверная копия электровоза нашла свое место в игре S.

Электровозы ВЛ80 к Последний электровоз выпуска 1963 г. ВЛ80к-015 вместо игнитронных выпрямителей был оборудован кремниевыми выпрямителями. Защита выпрямительных установок выполнена при помощи быстродействующих автоматов, работающих от электронных датчиков. Электровоз ВЛ80к-015 в марте-апреле 1964 г. В июне 1964 г. Вместо быстродействующих автоматов для защиты выпрямительных установок применен блок дифференциальных реле, воздействующих на главный выключатель. С электровоза ВЛ80-026 тяговые электродвигатели НБ-414Б имеют увеличенное сечение меди дополнительных полюсов при сохранении полной взаимозаменяемости катушек.

Управлять данными преобразователями должны микропроцессорные системы МКС как в режимах тяги, так и рекуперативного торможения. При этом они обеспечат поддержание заданных машинистом значений силы тяги и ограничений скорости. С помощью МКС электровоз будет защищен от боксования и юза.

При создании этого, практически нового, локомотива широко используют опыт, накопленный при постройке электровозов ВЛ85, ВЛ65, ЭП1. На рис. Рис 1. Силовая электрическая схема системы тягового электропривода секции электровоза Н80М Первая зона — глубокое фазовое регулирование напряжения на тяговых двигателях от нуля до 250 В, питание поступает соответственно от выводов тягового трансформатора 1 — 3 и 5 — 7. На второй зоне регулирования происходит наложение напряжения с выводов тягового трансформатора 3 — 01 и 7 — 02 на ранее выпрямленное напряжение. Диапазон изменения выходного напряжения — от 250 до 500 В. После полной выборки второй зоны тяговая нагрузка переключается на обмотки а1 — х1 и а2 — х2. При переходе напряжение на выходах ВИП увеличивается на величину около 50 В. На третьей зоне регулирования к напряжениям тяговых обмоток а1 — х1 и а2 — х2 плавно добавляется напряжение обмоток 1 — 3 и 5 — 7. Выпрямленные напряжения при этом растут с 570 до 820 В.

На последней, четвертой, зоне также наложением напряжения обмоток 3 — 01 и 7 — 02 итоговая величина увеличивается до номинального 950 В. В режимах тяги двигатели работают с последовательным возбуждением, как и на всех электровозах. Однако при переходе в режим рекуперации они переключаются на генераторный режим с независимым возбуждением.

Управление же моментом АТЭД реализуется, в силу принципа его действия, путем регулирования амплитуды и мгновенной фазы питающего напряжения. По состоянию на 1903 год в распоряжении железнодорожников не было эффективных силовых преобразователей электрического напряжения, пригодных для решения этой задачи. Идею использовать асинхронную машину в качестве тяговой инженерам пришлось положить на полку. Коллекторный двигатель постоянного тока, в качестве тягового Коллекторная машина постоянного тока обладает различными свойствами, в зависимости от того, какая схема возбуждения используется при её работе. При независимом обмотки возбуждения и обмотки якоря питаются от разных источников и параллельном возбуждении когда обмотка возбуждения включена параллельно обмотке якоря , двигатель постоянного тока ДПТ имеет "жесткую" естественную механическую характеристику, и так же мало пригоден в качестве тяговой машины. Но всё меняется, если обмотку возбуждения и обмотку якоря соединить последовательно На рисунке справа показана естественная механическая характеристика для ДПТ с последовательным сериесным возбуждением. Ничего не напоминает?

Нет, конечно же это не гипербола, но кривая достаточно близкая к ней. Соответственно, при прямом включении в сеть, ДПТ с последовательным возбуждением приблизительно обеспечивает требуемый режим работы тягового привода. Конечно, при пуске тягового двигателя, он не сразу включается в сеть, а работает на искусственных, реостатных характеристиках - напряжение, подаваемое на двигатель ограничивается пусковыми реостатами, выводимыми из цепи, по мере разгона двигателя. К тому же, при использовании на локомотиве нескольких ТЭД, используют группировку тяговых двигателей, соединяя их последовательно С-соединение , последовательно-параллельно СП-соединение и параллельно П-соединение. В дополнение ко всему, на каждом виде соединения двигателей применяют несколько ступеней ослабления возбуждения ТЭД, путем шунтирования обмотки возбуждения резисторами. Такая технология была доступна железнодорожным инженерам начала XX века. Она позволила достаточно гибко управлять мощностью тягового привода на электровозах и электропоездах. Именно поэтому первые линии, где эксплуатировался электрический подвижной состав стали электрифицировать постоянным током. В нашей стране напряжение в контактной сети постоянного тока было приято на уровне 1,5 кВ, по величине номинального напряжения ДПТ работавших в качестве ТЭД. Затем, довольно быстро, его подняли до 3 кВ.

Были планы электрификации участков железных дорог на постоянном токе напряжением 6 кВ, но тут подоспели ртутные выпрямители игнитроны , и железная дорога быстро перебралась на электрификацию однофазным переменным током с напряжением 25 кВ, как более перспективную для участков большой протяженности. Но трудился в электровозах переменного тока по прежнему старый добрый ДПТ с последовательным возбуждением. ДПТ с последовательным возбуждением, дешево и сердито, без применения сложной системы управления позволял реализовывать требуемые подвижному составу тяговые свойства. Но при этом он обладает массой недостатков. Сериесный тяговый двигатель, из-за своей "мягкой" естественной механической характеристики склонен к резкому увеличению скорости вращения, при снижении нагрузки на его валу. Без нагрузки такой двигатель вообще нельзя запускать - он пойдет "вразнос". На железнодорожном транспорте это приводит к тому, что при снижении сцепления колес с рельсами начинается лавинообразный процесс проскальзывания колес - как говорят железнодорожники - "боксование". Сериесный ТЭД склонен к боксованию, именно поэтому локомотив везет на борту запас песка, который подают под колеса специальными песочными форсунками. Кроме того, применяют и меры по ликвидации боксования со стороны схемы управления приводом. Другой недостаток этого двигателя связан с тем, что он коллекторный.

Коллекторно-щеточный узел и так является довольно сложной и капризной частью двигателя. А при увеличении мощности, неизбежно увеличение и габаритов этого узла, а конкретно - диаметра коллектора. В противном случае возникают проблемы коммутации на коллекторе, приводящие в конечном счете к быстрому выходу всего узла из строя.

Электровоз ВЛ80С-499 с грузовым поездом

В электровозе внедрена практически новая электрическая схема, увеличен размер и обновлен дизайн кабины машинистов. ВЛ80ТК — электровозы ВЛ80Т, прошедшую глубокую модернизацию. Электровозы после ремонта помимо новой кабины имеют еще ряд существенных конструктивных отличий. Вл80 электровоз. И в отличии от ВЛ80 он работает на вех электровозах и успешно применяется, значительно облегчая ведение поезда.

ЭЛЕКТРОВОЗ ВЛ8

ВЛ80С-2437. Россия, Ростовская область, станция Ростов-Главный Russia, Rostov region, Rostov-Glavny station. Если вам понравилось бесплатно смотреть видео электровоз вл80т после лобового столкновения с тепловозом онлайн которое загрузил POEZDATO 08 февраля 2018 длительностью 00 ч 03 мин 47 сек в хорошем качестве. Электровоз ВЛ80р-1718, выпущенный НЭВЗом в конце 1982 г., стал десятитысячным локомотивом этого завода. магистральный грузовой электровоз советского (а позже и российского) производства переменного тока. ВЛ80т – восьмиосный электровоз переменного тока с реостатным торможением.

Похожие новости:

Оцените статью
Добавить комментарий