Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные. Астрономам из NYUAD удалось разгадать тайну того, как странный пульсар J1023 меняет свою яркость почти ежесекундно. Все самые свежие космические разработки, новости астрономии и космонавтики.
Российский орбитальный телескоп первым «увидел» рентгеновское излучение сверхновой
На первой анимации показана Крабовидная туманность — она вспыхнула в 1054 году и находится на расстоянии 6,5 тысячи световых лет от Земли. В ее центральной зоне находится быстровращающаяся нейтронная звезда-пульсар , которая инжектирует в окружающее вещество релятивистские потоки заряженных частиц, что приводит к возникновению ударной волны в виде внутренней кольцеобразной структуры. Две джетоподобные структуры, перпендикулярные кольцу, возникают из-за потоков частиц, выбрасываемых из полярных областей пульсара. Сам пульсар виден как яркий переменный точечный источник в центре. Анимация составлена из данных наблюдений «Чандры» за 2000, 2001, 2004, 2005, 2010, 2011 и 2022 год, благодаря большой длительности наблюдений удалось впервые заметить сильные изгибы внешних краев джетов.
Причем, вращение может быть очень быстрым — до нескольких сотен оборотов в секунду. Он находится на расстоянии около 27 400 световых лет от Земли и вращается с периодом 8,39 миллисекунды. То есть за одну секунду делает почти 120 оборотов вокруг своей оси. PSR J1744-2946 находится в двойной системе с орбитальным периодом около 4,8 часа.
Как отметили в Роскосмосе, звуковой ряд был создан на основе данных космического телескопа «Спект-Р» проекта «Радиострон». А переведя частоту сигналов в звуковые волны, мы получили музыку», - говорится в сообщении. Она проработала на орбите восемь лет.
При вращении он светится как маяк. Новый снимок демонстрирует, как выглядит это уникальное свечение. На этом изображении показана ветровая туманность пульсара Вела. Розовый и фиолетовый цвета соответствуют данным рентгеновской обсерватории NASA «Чандра», которая ранее наблюдала за Велой. Он регулярно становится ярче при вращении, поэтому ученые называют его космическим маяком.
С поверхности пульсара вылетают ветры частиц.
Найдено неожиданное объяснение странному мерцанию далекого пульсара
На снимке орбитального телескопа Чандра представлен пульсар IGR J11014-6103. Не прошло и двух месяцев с момента открытия российскими учеными нового чрезвычайно яркого пульсара, как последовал очередной решительный успех. Пульсар — это быстровращающаяся нейтронная звезда с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего от него на Землю излучения. Теоретики давно, сразу после открытия в 1967 году пытались понять детали того, как работают пульсары, в особенности, как именно они излучают настолько точ.
Новый российский космический телескоп сфотографировал пульсар
Пульсар в туманности Вела находится на расстоянии примерно 1000 световых лет от Земли. Один из пульсаров 4U 0142+61 был замечен в формировании планетарного диска вокруг себя. Космос: новости космоса, новости космонавтики, новости науки, новости астрономии и астрофизики, открытия, новые теории, только факты из авторитетных источников. В ходе нового исследования ученые обнаружили пульсар с периодом обращения в 8,39 миллисекунд. Пульсар, получивший обозначение J0002, был обнаружен в 2017 году при помощи космического телескопа гамма-излучения Fermi. Некоторые задаются вопросом, могут ли пульсары — быстро вращающиеся нейтронные звёзды, периодически излучающие радиацию, быть источником инопланетных посланий?
Сообщить об ошибке в тексте
- Пульсары - Ин-Спейс
- Астрономы поймали необычно упорядоченный «радиосигнал пришельцев»
- Астрономы обнаружили летящий в космосе пульсар
- Сообщить об ошибке в тексте
- Магнитные бури на Земле
Поделиться
- Газета «Суть времени»
- Все о космосе и НЛО - Главная страница
- Новости космоса и науки - RW Space
- Навигация по записям
- В центре галактики обнаружили новый пульсирующий объект
- В сторону Земли со скоростью более 2 миллионов километров в час летит нейтронная звезда
Астрономы изучают космические объекты – пульсары
Так как пульсар в космосе постоянно вращается с большой скоростью, то для наблюдателей испускаемые им потоки узконаправленного излучения приходят через примерно равные. Не прошло и двух месяцев с момента открытия российскими учеными нового чрезвычайно яркого пульсара, как последовал очередной решительный успех. Обычно, «раскручивая» миллисекундный пульсар за счет собственного вещества, звезда преобразовывается в белый карлик – маленькую компактную «перегоревшую» звезду. астрономические объекты, испускающие мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне.
Читайте также:
- В центре галактики обнаружили новый пульсирующий объект
- Main navigation
- Далекую галактику спутали с самым ярким известным науке внегалактическим пульсаром
- Обнаружен самый яркий пульсар во Вселенной | Техкульт
- Читайте также:
Новости космоса и науки
То, что мир пережил в тот день, теперь известное как событие...
Каждая такая звезда равна по массе гигантской звезде, но эта масса стиснута в чрезвычайно малом объеме. Одна чайная ложка вещества нейтронной звезды весит миллиард тонн. Как образуются пульсары? Вот как это происходит. После того как звезда взрывается, ее остатки сжимаются под действием гравитационных сил. Ученые называют этот процесс коллапсом звезды.
По мере развития коллапса сила гравитации растет, а атомы вещества звезды все теснее и теснее прижимаются друг к другу. В нормальном состоянии атомы находятся на значительном расстоянии друг от друга, потому что электронные облака атомов взаимно отталкиваются. Но после взрыва гигантской звезды атомы так сильно прижаты и спрессованы, что электроны буквально впрессовываются в ядра атомов. Интересно: Интересные факты о космосе, фото и видео Жизненный цикл звезд, образование пульсаров Ядро атома состоит из протонов и нейтронов. Электроны, втиснутые в ядро, реагируют с протонами, и в результате образуются нейтроны. С течением времени все вещество звезды становится гигантским клубком спрессованных нейтронов. Рождается нейтронная звезда.
Когда возникли пульсары? Ученые полагают, что пульсары звезды существуют с незапамятных времен. Во всяком случае, они были задолго до того, как их открыли. Первые свидетельства их существования получены в ноябре 1967 года, когда несколько радиотелескопов в Англии нащупали в небе неведомый ранее источник излучения. В космосе есть много источников радиоволн. Например, молекулы воды и аммония, дрейфующие в межзвездном пространстве, излучают радиоволны.
Впрочем, даже ближайшая к нам галактика Андромеды и та отстоит от нас на 2,5 миллиона световых лет. В этой «Сигаре» и наблюдают странный объект M82 X-2, вот он. Розовым цветом выделены сразу несколько небесных тел, но учёные говорят, что здесь наблюдается двойная система. И больше всего интересует самый яркий объект. Объект M82 X-2 в галактике Messier 82. Поэтому сначала все подумали, что это чёрная дыра. То есть, конечно, не сама чёрная дыра, а гигантский диск окружающего её и падающего в неё вещества. А тут есть откуда падать: у неё есть звезда-компаньон, которую она благополучно поедает. Как подсчитали учёные, каждый год она проглатывает массу в полторы Земли. И будь это действительно чёрная дыра массой, скажем, хотя бы в 50 или в 100 Солнц, то такое свечение было бы совершенно нормальным проявлением этого космического каннибализма. Но потом за её поведением стали наблюдать и обнаружили, что это нечто интенсивно пульсирует с интервалом в секунду с небольшим, а каждые 2,5 дня характер этой пульсации меняется. Так вот, чёрные дыры не имеют такой привычки — пульсировать. Этим занимаются другие объекты — нейтронные звёзды, за что их и называют пульсарами. Почему они пульсируют: очень-очень быстро вращаются, как юла, и из обоих их полюсов вырывается мощнейшее рентгеновское излучение. Ось этого вращения сильно «ходит», и за счёт этого звезда то поворачивается к нам своим полюсом, то отворачивается. Излучение то бьёт в телескоп, то не бьёт.
С 1925 года он работал в Калифорнийском технологическом институте Лос-Анджелеса Калтек. В основу рассуждений ученый положил открытие Эдвина Хаббла, согласно которому галактики разлетаются, о чем свидетельствует так называемое красное смещение red shift. Расширение Вселенной, считал Цвики, сдерживается темной материей ТМ , гипотеза о существовании которой считается его главным достижением. Сегодня астрономия давно «оторвалась» от оптики, поскольку есть детекторы подземные и подводные , «жидкие» черенковские датчики космического излучения и радиотелескопы. В 1960-е Джоселин Белл с помощью радиотелескопа открыла первый пульсар, оказавшийся нейтронной звездой, оборот которой вокруг оси не превышает миллисекунд. Орбитальный телескоп Хаббл работает в оптическом диапазоне. А недавно в точку Лагранжа точка равновесия в космосе, в которой гравитационные силы двух массивных тел уравновешены выведен телескоп Уэбб с инфракрасным инструментом, который «видит» Вселенную чуть ли не с момента Большого взрыва Big Bang. Такая прозорливость его связана с тем, что инфракрасные лучи практически ни с чем не взаимодействуют, поэтому сейчас можно видеть то, что происходило более 10 млрд лет назад. Кроме того, Уэбб посылает на Землю четкие и ясные изображения с невиданным до того разрешением. Одно из важных открытий, сделанных с помощью телескопа Уэбба, — опровержение прежних гипотез. Так, обычно принимается, что Вселенная после Big Bang представляла собой кварк-глюонную плазму, которая по мере остывания стала основой порождения атомов. Постепенно они сочетались в молекулы и затем стали формировать газ.