Что такое додекаэдр? Додекаэдр – это многогранник, состоящий из двенадцати граней. Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр.
Еще термины по предмету «Высшая математика»
- Додекаэдр — большая загадка римской истории
- Римский додекаэдр – загадка истории: iriszhaleika — LiveJournal
- Вход в систему
- Проект по математике: "Звёздчатые формы додекаэдров"
- Загадочный додекаэдр возрастом 1600 лет найден в Бельгии
Что такое Додекаэдр простыми словами
В общем и целом получившаяся фигура напоминает классический усечённый икосаэдр. Классический усечённый икосаэдр имеет 32 грани: 12 пятиугольных и 20 шестиугольных. Четырехслойный FROIM усечённый икосаэдр также имеет 32 грани-стороны: 12 граней составленных из пяти додекаэдров и 20 сторон шестиугольников. Как называть эти грани-стороны, еще предстоит решить. Это не обычные плоские грани, а объемные структуры, состоящие из модулей — додекаэдров. Единственное, что их связывает с классическими гранями-многоугольниками, это численное совпадение числа додекаэдров в объёмных гранях с числом сторон в плоских многоугольниках. Четырехслойная FROIM структура ещё недостаточно жесткая, додекаэдры образовали плотное соединение в местах контакта друг с другом. Но этот контакт осуществляется только вдоль линии ребер соседних додекаэдров.
Гораздо более жесткая структура образуется с добавлением следующего слоя пятого. Для начала, мы добавим только 30 тридцать додекаэдров к уже имеющимся в нашей структуре. Очевидно, что имеется множество незаполненных мест, куда можно поместить дополнительные додекаэдры, но нас сейчас интересует минимально возможная структура, которая наиболее удобна для анализа. Обычный икосододекаэдр состоит из 12 пятиугольников и 20 треугольников. Для сравнения представлены два изображения: Сверху отдельно воспроизведённый верхний пятый слой нашего 115 элементного FROIMа, с наложенными на него полупрозрачными пятиугольными плоскостями. Размеры этих вспомогательных плоскостей примерно совпадают с размерами пятиугольных структур, образованных додекаэдрами пятого слоя. Зазоры между пятиугольниками имеют треугольную форму, как и у обычного икосододекаэдра, представленного снизу для сравнения.
Количество треугольных структур также равно 20, как и в классическом икосододекаэдре. Теперь, более подробно о жесткости образовавшейся структуры. На изображении ниже предоставлено в увеличенном виде сопряжение додекаэдров пятого слоя желтых с нижележащими додекаэдрами четвертого слоя бордовый и сиреневый цвета. Как можно видеть, прилегание между додекаэдрами идеальное, зазоры отсутствуют. Этот факт говорит о том, что FROIM пятого порядка обладает максимальной жесткостью по отношению к внешнему давлению. Шестислойный FROIM опять напоминает обычный икосододекаэдр, так как составлен из 12 пятиугольных структур и 20 треугольных. Но пятиугольные структуры неявно выражены, а треугольные имеют меньшие относительные размеры по сравнению с пятиугольными.
Но тем не менее формальное сходство с обычным икосододекаэдром имеется. Как и раньше, когда мы говорили о четырехслойном FROIMе структура шестислойного FROIMа ещё недостаточно жесткая, додекаэдры образовали плотное соединение в местах контакта друг с другом. Гораздо более жесткая структура образуется с добавлением следующего слоя седьмого. Внешняя оболочка семислойного FROIMа является гигантским додекаэдром составленным из 20 структурных додекаэдров.
Или симметричное пересечение пяти трехмерных пространств. Ближайшая параллельная к произвольно выбранной грани плоскость, в которой лежат пять вершин, не принадлежащих выбранной грани, отстоит от этой грани на расстояние радиуса описанной вокруг данной грани окружности. А радиус описанной вокруг этих пяти вершин окружности равен диаметру вписанной в любую из граней окружности. Эти две величины равны, соответственно, 5.
Все римские додекаэдры имеют пять шаровидных выступов в вершинах пятиугольных граней. Различия в размерах и конструкции додекаэдров, помимо их отверстий, вызывают недоумение. Платоновы тела. Платон описал пять правильных многогранников. Другие появились в результате контролируемых научных раскопок. Археологи обнаружили самый южный римский додекаэдр в Арле во Франции. Самый северо-западный пример взят из места Адриана в Северной Британии. Еще один экземпляр родом из Бордо. Кроме того, они также «всплывали» далеко на восток, в Вене и Загребе. Существует явное несоответствие в археологическом контексте отлитых додекаэдров. Они были обнаружены в римских военных лагерях, общественных банях и храмах. Додекаэдры появлялись в римском театре, гробнице и колодце, в которых хранились многочисленные выброшенные предметы. Некоторые из них также были обнаружены в кладовых с монетами, предполагая, что это ценные предметы. Даже анализ слоев грязи вокруг мест раскопок со второго по четвертый век н. В результате эти вариации открытий сбили с толку тех, кто пытается уточнить их функцию. Кроме того, полное отсутствие упоминания о них в римских текстах добавляет их загадочности. С момента первого сообщения о додекаэдре в 1739 году до сегодняшнего дня. Более двухсот археологов, историков, математиков выдвинули теории о назначении этих странных объектов. Додекаэдры, по большей части, происходят из галло-римских земель.
Возможно, что новые химические исследования земных фуллеренов приоткроют другие страницы богатой истории планеты Земля! В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир ,потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура — это додекаэдр в действительности, додекаэдро-икосаэдральная взаимосвязь. Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса — а предел тут есть — то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна. На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, по которым построена вся жизнь.
Что такое додекаэдр? »Его определение и значение
Твоим Приказом океан замолкает и вихри черты невидимых знаков наносят. И Она, Лик Сокрывшая, встанет на страже Одна в сиянии знаков. И никто не взойдёт на вершину, никто не увидит сияние Додекаэдра, знака Её Мощи. Из спирали Света знак соткала Сама в молчании. Она Водительница идущих на подвиг! Таково апокрифическое, то есть тайное предание, где за прекрасными образами сокрыта великая истина… Знак Мощи Матери Мира — сияющий спиральный Додекаэдр. Какая сила заключена в нём? Ясно, что это — красивая объёмная геометрическая фигура, состоящая из двенадцати правильных пятиугольников рис. Но чтобы понять и вместить её мощь и величие, обратимся к эзотерическим источникам, которые помогут приблизиться к истине, сокрытой в этой фигуре и составляющих её числах 12 и 5.
Додекаэдр «Гармония и математическая уравновешенность двойной эволюции — духовной и физической — могут быть объединены только универсальными числами Пифагора… из мистической связи каждого числа со всем, что может постичь человеческий ум» [ 4]. Первые есть лишь условные глифы; последние являются основными символами всего… И те и другие стоят по отношению друг к другу как Материя к Духу — крайние полюсы Единой Сущности. Как говорит где-то Бальзак, бессознательный эзотерик литературы, Число есть Сущность и в то же время Дыхание, исходящее от того, что он называл Богом и что мы называем ВСЕМ. Дыхание, которое одно могло образовать физический Космос, где ничто не обретает свою форму иначе, как только из Божества, которое есть следствие Числа» [ 5]. Блаватская в своих трудах «Разоблачённая Изида» и «Тайная Доктрина» неоднократно пишет о том, что именно додекаэдр является основной формой Мысли-Воли для создания нашей Вселенной. В «Теософском словаре» она снова подтверждает, что «Вселенная построена «перворождёнными» на основе геометрической фигуры Додекаэдр» [ 7]. В посвятительных храмах учили, что Вселенная Духа и Материи есть лишь конкретное Изображение Идеальной Абстракции; она была создана по образцу Первой Божественной Мысли. Наша Вселенная существовала в потенциальном состоянии от Вечности.
Душа, оживотворяющая эту чисто духовную Вселенную, есть Центральное Солнце, само по себе Высочайшее Божество. Они объединены на основе Огненного Права. Они стали для нас символом Огненного Двуединства Солнечных Иерархий. Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр. Число это называлось «нечётно-чётным, в равной степени сохраняющим мужеподобность и женственность». Воплощением этого числа в Древней Греции была богиня Анесидора [Афинское андрогинное божество], которую почитали афиняне. Её статуя была совершенно женоподобна, но ей добавляли бороду как символическое выражение мужественности [ 8]. Символ андрогина есть выражение единства в духе.
Поиски такого слияния будут ключевой вибрацией Шестой Расы: «Принцип огня даёт направление всем новым Космическим течениям. Потому, как ключ к Шестой Расе, проявлено будет утверждение слияния. Токи, заложенные в основании жизни, предназначают течение новое. Так Мы утверждаем это великое направление… Так Мы строим великую чудесную ступень мировой жизни» [ 9]. Число 12 как одно из составляющих додекаэдр — особенное. В «Тайной Доктрине» упоминается о том, что «12 великих преображений Духа в Материю есть 12 000 Божественных лет… Начиная с метафизической и сверхчеловеческой… они оканчиваются в физической и чисто человеческой природах Космоса и человека» [ 10]. Халдеи же сокрыли это знание под особым почитанием 12 часов. На таинство числа 12 издавна указывает множество явлений из разных областей жизни: часы дня и ночи, подвиги Геракла, музы Аполлона, принципы рассудка по Канту , категории философии Гегель , храм Соломона делился на 12 частей; В Апокалипсисе Иоанна г.
Иерусалим, сходящий с неба, имеет 12 ворот; в кумранской общине было 12 старейшин; 12 имамов — духовных и политических преемников — было у пророка Мухаммеда; 12 рыцарей Круглого стола, 12 пэров Франции [6 светских и 6 духовных], традиционно в суде участвуют 12 присяжных; 12 тысяч лет назад полярная ось Земли указывала на звезду Вегу. Нельзя не вспомнить 12 апостолов Иисуса Христа, отразивших в себе символизм 12 знаков Зодиака, огненного кольца Высших Миров. Рерих писала: «Если бы люди могли осознать, что История человечества записана в звёздных рунах! В Древней Индии учили, что каждая звезда является самостоятельной планетой, которая, подобно нашей Земле, имеет собственную душу, причём каждый атом материи насыщен эманацией Мировой Души. Она [звезда, планета] дышит и живёт, она чувствует, страдает и радуется жизни по-своему. В предисловии к «Книге Золотых Правил» Е. Блаватская говорит об одном из способов составления алфавита: «…Двенадцать знаков Зодиака, повторенных пять раз элементами и семью цветами радуги, образуют полный алфавит, состоящий из 60 букв и 12 знаков». То есть где-то существует алфавит-додекаэдр!
Календарь Калачакры, имея в своём основании 60-летний цикл, 12-летние периоды и 5 стихий, в развёртке приобретает свойства и вид додекаэдра. Додекаэдр Калачакры отражает эволюцию микрокосма в макрокосме, становление совершенного человека, прохождение духа через «колесо времени» в его неуклонном стремлении вырваться из его тисков, обретя равновесие Архата. По преданию, которое передаётся от Учителя к ученику, Учитель из Шамбалы доставил календарь Калачакры в Тибет в Х веке. Принимая всё это во внимание, мы начинаем глубже понимать Мощь Её Знака, вникая в смысл Священного Числа 12. Влиянием 12 знаков Зодиака на человека занимается наука астрология. Думается, в наше время практически каждый имеет какие-то знания об их свойствах, хотя бы о своём знаке рождения. А как воздействуют пять стихий или элементов, проявляющихся в каждом знаке, и что это такое? Прежде всего они являются силами Матери Мира, а «Сила, по утверждению Мудрецов Востока, — это переход одного состояния субстанции или энергии в другое, переход, результаты которого будут видны на планах действия, отличных от того, на котором произведена и реализована инициирующая энергия» [ 12].
Значит, энергия пяти элементов помогает нам изменяться, совершенствоваться. Пять элементов в единстве образуют пентагон, или пятигранник, одну из составляющих додекаэдр Матери Мира. Платон, последователь Пифагора, считал додекаэдр самым правильным из многогранников, так как грани его — правильные пятиугольники — сотканы из золотых пропорций. По Пифагору, именно в пятиугольных формах [пятиконечная звезда, или пентакль, и пентагон] заложены золотые логарифмические пропорции или священная золотая спираль — основа сокровенных глубинных соответствий эволюции жизни в Космосе, символ движения, развития и развёртывания Вселенной. Известно, что пятиричность проявлена во всей живой природе Земли морские звёзды, цветы, пять пальцев руки, пять оконечностей тела и т. Золотая пропорция заложена в постройках давних времён: гробница фараона Менеса ок. С древних времён пентаграмма являлась знаком-оберегом, символом богини Иштар и загробного мира, власти на царских печатях , интеллектуального всемогущества у гностиков и т. С древних же времён известны цветные изображения пентаграммы, датируемые 3500 годом до н.
Условия использования информации. Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.
Таким образом, «додекаэдр» можно перевести как «фигура с двенадцатью гранями». История додекаэдра насчитывает несколько тысячелетий.
Уже в древней Греции, геометры и математики изучали эту фигуру и ее свойства. Додекаэдр является одним из пяти правильных многогранников, то есть фигурой, у которой все грани равны и все углы между гранями одинаковы. Символическое значение додекаэдра было особенно важно для пифагорейцев, древнегреческой философско-математической школы. Они считали додекаэдр символом космического порядка и гармонии, поскольку он имеет 12 граней, соответствующих 12 знакам зодиака, и 20 вершин, соответствующих 20 планетам, которые они считали существующими во Вселенной.
С течением времени, додекаэдр стал объектом изучения не только математиков, но и философов, художников и дизай. Значение в разных словарях Додекаэдр — это геометрическое тело, которое представляет собой многогранник с двенадцатью гранями. Этот термин происходит от греческих слов «додека» двенадцать и «эдрон» грань.
Загадочный додекаэдр возрастом 1600 лет найден в Бельгии 30. Предварительная датировка показала, что возраст предмета превышает 1600 лет. Об открытии сообщает Live Science. Найденный в Бельгии загадочный 12-гранный предмет археологи называют римским. По их предположению, он мог использоваться для неких магических ритуалов. Обнаружил предмет на вспаханном поле недалеко от небольшого городка Кортессем археолог-любитель Патрик Шуэрманс.
Что понадобиться, чтобы сделать додекаэдр своими руками
- Правильный додекаэдр — Энциклопедия
- Что понадобиться, чтобы сделать додекаэдр своими руками
- Додекаэдр. Большая российская энциклопедия
- Проект по математике: "Звёздчатые формы додекаэдров"
- Введите определение
Додекаэдр – это... Определение, формулы, свойства и история
Что такое додекаэдр? Додекаэдр – это многогранник, состоящий из двенадцати граней. РИА Новости, 1920, 07.02.2024. Некоторые додекаэдры появлялись на рынке древностей и, следовательно, не имеют археологического контекста.
Математические характеристики додекаэдра
- Свойства додекаэдра
- Добрый день!
- Определения, значения слова в других словарях:
- Вам может понравиться:
Геометрия. 10 класс
"что такое додекаэдр?", можно дать следующее определение: "Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых - правильный пятиугольник". Додекаэдр официально так и называют — «UGRO», то есть Unidentified Gallo-Roman Object — неопознанный галло-римский предмет. Дескать, додекаэдр использовали для расчета траекторий метательных снарядов, и это объясняет наличие разного диаметра отверстий на пятиугольных гранях. Додекаэдр. Додекаэдр (греч. δωδεκάεδρον, от δώδεκα – двенадцать и ἕδρα – грань), один из пяти типов правильных многогранников.
Что это такое? Ученые бьются над разгадкой древнеримских многогранников – додекаэдров
Додекаэдр (от греч. dódeka — двенадцать и hédra — грань), один из пяти типов правильных многогранников. В этом уроке мы повторим, что такое октаэдр, додекаэдр и икосаэдр. Узнаем интересные факты о платоновых многогранниках. Ромбический додекаэдр можно рассматривать как предельный случай пиритоэдра, и он обладает октаэдрической симметрией. Додекаэдр является многогранником, а его название пришло к нам из Древней Греции. Такое свойство делает додекаэдр интересным объектом для изучения и анализа.
Значение слова "додекаэдр"
Некоторые природные кристаллы обладают формой додекаэдра, а также его применяют при создании моделей и игральных костей. Додекаэдр также может быть использован для создания различных дизайнов и украшений. Свойства додекаэдра 1. Количество граней: у додекаэдра 12 граней. Количество вершин: у додекаэдра 20 вершин.
Количество ребер: у додекаэдра 30 ребер. Правильность: все грани и все углы додекаэдра являются одинаковыми и правильными. Симметрия: у додекаэдра существует пятикратная исключительная симметрия, что означает, что он может быть вращен на пятеричный угол вокруг центральной оси и оставаться неизменным. Примеры додекаэдров в реальной жизни включают футбольный мяч, молекулу графита и кристаллы граната.
Симметрия Додекаэдр обладает высокой степенью симметрии.
Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида [1]. В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы исключая Землю и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер.
Многогранники были расположены в следующем порядке от внутреннего к внешнему : октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики — законов Кеплера , — изменивших курс физики и астрономии, а также правильных звёздчатых многогранников тел Кеплера-Пуансо. В больших размерностях[ Основная статья: Правильные многомерные многогранники Всего существует 6 правильных четырёхмерных многогранников:.
Подогнуть все припуски на склеивания внутрь. В собранном виде каждая развертка должна напоминать полусферу с гранями. Клей нужно наносить на припуски для склеивания, а затем аккуратно соединять их с гранями фигуры. Линии сгиба на «ушках» для склеивания должна совпасть с краем грани. Собрать 2 развёртки по отдельности. Склеить половинки додекаэдра. Дождаться высыхания клея. Можно украсить готовый додекаэдр цветной бумагой или наклеить на грани фотографии, либо листы календаря. Большой додекаэдр из картона Додекаэдр развертка для склеивания может быть сделана по шаблону, так же как для создания фигуры из бумаги из картона может быть любого размера. Чертеж развертки также следует выполнить в 2 частях. Какой картон подходит для работы: Цветной детский. Хороший вариант для создания додекаэдра с гранью, высота которой не будет превышать 5 см. Детский картон тонкий, поэтому сделать большую фигуру будет очень сложно. Придется вырезать все грани по отдельности и чертить на них дополнительные припуски для склеивания. Более плотный материал, который используют в печати. Из такого картона делают обложки книг и ежедневников, а также упаковки для небольших товаров. Его используют для создания твердого переплета книг и блокнотов, а также для упаковки мелкого товара. Додекаэдр, сделанный из такого картона, может быть любого размера. Он получится крепким и устойчивым. Толстый картон с гофрированной текстурой, состоящий из нескольких слоев. Из такого материала можно делать большие фигуры, которые позже могут быть использованы для украшения домашнего интерьера, или послужить декоративным объектом для фотостудии. Картон детский, цветной Обычно упаковочный и полиграфический картон имеют коричневый цвет. Готовую фигуру, сделанную из такого материала можно покрасить или обклеить красивой бумагой. Особенности работы с жестким картоном Упаковочный и полиграфический картон — жесткий материал, с которым тяжело работать. Чтобы сделать аккуратный додекаэдр, нужно знать несколько хитростей: Чертеж строят прямо на картоне. Чтобы не допускать ошибок при построении чертежа, нужно использовать длинную линейку 30 и более см. С инструментом меньшего размера легко сбиться и начертить неровную развертку, по которой не получится собрать фигуру правильно. Плотный картон следует резать канцелярским ножом. Ножницами резать такой материал неудобно, так как придется давить на инструмент с большой силой. Велика вероятность того, что рука может соскользнуть с ручки ножниц. Так можно пораниться или испортить ровный срез. Упаковочный и полиграфический картон тяжело согнуть и продавить. Чтобы детали легко сгибались, все линии сгиба нужно очень аккуратно надрезать канцелярским ножом делая разрезы в виде пунктира. Резать нужно не до конца. Достаточно сделать надрезы только на 1 из слоев картона, с внутренней стороны фигуры. После вырезания нужно срезать все заусенцы и убрать неровности на картоне. Закреплять припуски для склеивания нужно поочередно. Клей следует наносить на всю полосу толстым слоем, а затем салфеткой убрать излишки клея. Картон должен быть ровным. Перед работой нужно убедиться, что лист не был согнут или порван. Лишние заломы и разрывы испортят внешний вид фигуры. В некоторых случаях эти дефекты способны нарушить целостность и симметричность конструкции. Не рекомендуется использовать для работы картон с глянцевой поверхностью. Такой материал тяжело склеить. Придется долго ждать высыхания клея. Окрашивать готовое изделие нужно после полного высыхания клея. Жидкость может попасть на не высохший клей и разбавить его. Клей потеряет вязкость и не соединит детали должным образом. На однослойном картоне ненужно делать надрезы на линиях сгиба. Лучше продавить их обратной стороной ножниц или ребром линейки. Перед сборкой готового изделия, можно предварительно собрать фигуру, зафиксировав припуски для склеивания кусочками двухстороннего скотча.
Толстая свеча горит дольше, но у неё есть один недостаток — по мере горения фитиль с огнём опускается внутрь свечи, стенки её не успевают плавиться и она не дает света. Чтобы фитиль дольше не обугливался, его надо постоянно смачивать жиром воском. Чтобы толстая свеча долго горела и при этом пламя фитиля не опускалось во внутрь, нужно было равномерно плавить толстую свечу по краям, чтобы расплавленный жир воск от краев свечи постоянно стекал к её центру. Судя по размерам найденных додекаэдров, древние свечи были также от 4 — 11 см. И возможно, что свечи были не всегда в сечении круглые, как сейчас хотя круг для плавления свечи идеальная расходная форма. Свечи могли быть и пятигранные фигура близкая к кругу. Но для додекаэдра это не столь важно, так как он мог быть использован одинаково полезно на круглой и пятигранной свече. Додекаэдр использовали, ставя его на горящую свечу — сверху. Додекаэдры были разных размеров и применяли их в зависимости от толщины используемых свеч. Чем толще была свеча, тем крупнее использовался додекаэдр. Свечи были разного размера в поперечнике и фитили от толщины тоже были разного диаметра. Поэтому в гранях додекаэдра отверстия были разного диаметра, чтобы сделать его максимально универсальным для свечей многих размеров. По мере горения свечи, для удлинения её срока пользования, додекаэдр много раз за вечер переворачивали, ставя попеременно на свечу гранями с отверстиями разного диаметра, опять же для равномерности плавления воска. Ближе к фитилю металл додекаэдра был горячее и воск под ним плавился быстрее, стекая в «кратер» к центру, а дальше от фитиля металл был холоднее и воск под ним плавился медленнее. Равномерное плавление свечи позволяло увеличить время горения, способствовало её полному сгоранию, не позволяло воску стекать наружу по краям как происходит с тонкими свечами. Кроме того, додекаэдр защищал пламя свечи от ветра, так как каждый раз разжигать потухший огонь, в те времена было не просто. Помимо всего, свет через круглые отверстия в гранях служил «декоративному» освещению помещения. Свечи и додекаэдр был всегда на видном месте, поэтому богатые люди, чтобы показать своё состоятельное положение иногда его украшали серебром. Например, в окрестностях Женевы в Швейцарии был найден маленький литой свинцовый додекаэдр с гранями 15 миллиметров, покрытый снаружи пластинками из серебра с латинскими зодиакальными знаками. То, что он был маленький по размеру, серебряный и украшенный знаками, говорит, что его владелец был богатый человек и позволял себе пользоваться тонкими, быстро сгорающими, дорогими свечами. Психология людей не меняется со временем и в наше время стараются обустроить свой быт, используя приукрашенные бытовые вещи — тоже делали и раньше. Додекаэдр, находясь на свече, от пламени фитиля становился горячим. Потому, чтобы его можно было брать голыми руками и переворачивать — на вершинах додекаэдра не всегда, но часто были сделаны шарики, которые нагреваются меньше. Это своего рода полезное дополнение к световому прибору. Додекаэдр был не очень легким, вес его был достаточным, чтобы нагреваясь, плавить воск толстой свечи.
Геометрия Додекаэдров
В химии и физике додекаэдр может быть использован для моделирования молекул и кристаллических структур. Таким образом, лексическое значение слова «додекаэдр» связано с геометрией и математикой, а сам м. Происхождение Происхождение слова «додекаэдр» уходит своими корнями в древнегреческий язык. Это слово состоит из двух частей: «додека» и «эдр». Первая часть, «додека», означает «двенадцать», а вторая часть, «эдр», переводится как «грань». Таким образом, «додекаэдр» можно перевести как «фигура с двенадцатью гранями». История додекаэдра насчитывает несколько тысячелетий. Уже в древней Греции, геометры и математики изучали эту фигуру и ее свойства. Додекаэдр является одним из пяти правильных многогранников, то есть фигурой, у которой все грани равны и все углы между гранями одинаковы.
Четырехслойный FROIM усечённый икосаэдр также имеет 32 грани-стороны: 12 граней составленных из пяти додекаэдров и 20 сторон шестиугольников. Как называть эти грани-стороны, еще предстоит решить. Это не обычные плоские грани, а объемные структуры, состоящие из модулей — додекаэдров. Единственное, что их связывает с классическими гранями-многоугольниками, это численное совпадение числа додекаэдров в объёмных гранях с числом сторон в плоских многоугольниках. Четырехслойная FROIM структура ещё недостаточно жесткая, додекаэдры образовали плотное соединение в местах контакта друг с другом. Но этот контакт осуществляется только вдоль линии ребер соседних додекаэдров. Гораздо более жесткая структура образуется с добавлением следующего слоя пятого. Для начала, мы добавим только 30 тридцать додекаэдров к уже имеющимся в нашей структуре. Очевидно, что имеется множество незаполненных мест, куда можно поместить дополнительные додекаэдры, но нас сейчас интересует минимально возможная структура, которая наиболее удобна для анализа. Обычный икосододекаэдр состоит из 12 пятиугольников и 20 треугольников. Для сравнения представлены два изображения: Сверху отдельно воспроизведённый верхний пятый слой нашего 115 элементного FROIMа, с наложенными на него полупрозрачными пятиугольными плоскостями. Размеры этих вспомогательных плоскостей примерно совпадают с размерами пятиугольных структур, образованных додекаэдрами пятого слоя. Зазоры между пятиугольниками имеют треугольную форму, как и у обычного икосододекаэдра, представленного снизу для сравнения. Количество треугольных структур также равно 20, как и в классическом икосододекаэдре. Теперь, более подробно о жесткости образовавшейся структуры. На изображении ниже предоставлено в увеличенном виде сопряжение додекаэдров пятого слоя желтых с нижележащими додекаэдрами четвертого слоя бордовый и сиреневый цвета. Как можно видеть, прилегание между додекаэдрами идеальное, зазоры отсутствуют. Этот факт говорит о том, что FROIM пятого порядка обладает максимальной жесткостью по отношению к внешнему давлению. Шестислойный FROIM опять напоминает обычный икосододекаэдр, так как составлен из 12 пятиугольных структур и 20 треугольных. Но пятиугольные структуры неявно выражены, а треугольные имеют меньшие относительные размеры по сравнению с пятиугольными. Но тем не менее формальное сходство с обычным икосододекаэдром имеется. Как и раньше, когда мы говорили о четырехслойном FROIMе структура шестислойного FROIMа ещё недостаточно жесткая, додекаэдры образовали плотное соединение в местах контакта друг с другом. Гораздо более жесткая структура образуется с добавлением следующего слоя седьмого. Внешняя оболочка семислойного FROIMа является гигантским додекаэдром составленным из 20 структурных додекаэдров. Это опять, как и в случае пятислойного FROIMа совершенно жесткая структура, так как додекаэдры последнего седьмого слоя идеально прилегают к додекаэдрам нижележащего шестого слоя. Известные классические многогранники являются объёмными структурами, которые ограничены плоскостями плоскими фигурами, многоугольниками.
Радиус описанной сферы Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра. Высшее назначение математики- находить порядок в хаосе, который нас окружает Норберт Винер Правильные многогранники привлекают совершенством своих форм, полной симметричностью. Кристалл пирита сернистый колчедан FeS — природная модель додекаэдра. Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов. Это, в частности, означает, что заразиться полиомиелитом можно только от людей. Кроме того, многие вирусы передаются через переносчиков, роль которых нередко выполняют членистоногие например, клещи. Такие вирусы могут иметь широкий спектр хозяев, включающий как позвоночных, так и беспозвоночных животных. Аденовирусы от греческого aden - железо и вирусы , семейство ДНК-содержащих вирусов, вызывающих у человека и животных аденовирусные болезни. Водоросль вольвокс — один из простейших многоклеточных организмов — представляет собой сферическую оболочку, сложенную в основном семиугольными, шестиугольными и пятиугольными клетками то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки.
Другая его характеристика - то, что он выпуклый и имеет однородные вершины. Усеченный додекаэдр: он также относится к группе «архимедовых тел», для его получения необходимо разрезать каждую вершину додекаэдра. Триумноженный додекаэдр: таковые этого типа принадлежат к группе «тел Джонсона» многогранник строго выпуклый.