Компания Betavolt утверждает, что созданный ею 3-вольтовый прототип атомной батарейки меньше монеты будет работать 50 лет. Что это: атомная батарейка размером с монету, которая может работать до 20 лет.
Российские ученые оценили созданную в Китае ядерную батарейку
Ключевая особенность системы основана на том, что вследствие размерной зависимости энергии Ферми наличие пространственно неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в такой системе. Это означает, что в электропроводящей системе соприкасающихся друг с другом металлических наночастиц, средний размер которых монотонно изменяется в выделенном направлении, в этом же направлении должна регистрироваться разность потенциалов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам открывает уникальную возможность и позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада 63Ni в ток электронов без использования дополнительных сложных для реализации полупроводниковых систем. Главным вопросом, которому посвящена разработка НИЯУ МИФИ, является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы коллективом авторов в престижном журнале Applied Physics Letters. Однако оказалось, что данные наноструктурированные пленки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределенным спектром излучения в заданном спектральном диапазоне. Как показали проведенные эксперименты, процесс окисления данной пленки приводит к образованию оксидной оболочки поверх металлического ядра нанокластера. Таким образом, при окислении металлической пленки формируется ансамбль металлических нанокластеров с пространственным распределением нанокластеров по размерам и имеющих слой оболочку оксида.
В Союзе, оказавшемся в этой гонке позади, в 1946 году в закрытом городке Челябинске-40 его называли самым охраняемым городом в регионе создали предприятие по производству урана и плутония, годных для применения в ядерном оружии. Репутация редкого металла быстро начала ассоциироваться с возможностью нанести военным противникам удары, стирающие с лица земли целые города. Плутоний прочно ассоциировался со смертоносным оружием массового поражения. Но все же у изотопов были слишком разные свойства: 238-й не годился для применения в бомбах. Напротив, чем выше его содержание в «оружейном» 239-м изотопе, тем хуже — эффективность 239-го падает. Если совсем упростить, — 238-й не способен взрываться. Ученые начали обнаруживать интересные свойства. Кену и Джону повезло — в их распоряжении было передовое оборудование и другие мощности, которые использовали для разработки ядерного оружия во время холодной войны. Установка работала на принципе распада радиоактивного элемента — он нагревался до высоких температур, просто существуя. Так, один грамм оксида плутония-238 238-PuO2 генерирует 0,5 ватта тепловой энергии. Если ее перевести в электрическую, то получим «батарейку». У каждого изотопа на один или несколько электронов больше, чем нужно. И они, в зависимости от своей структуры, рано или поздно стремятся «отдать» лишнее. При этом выделяется тепло, его и переводили в электрическую энергию. Как пустить тепло по электрическим проводам? На тот момент уже были известны разные методы. Термоэлектрический — если спаять два провода из разных металлов и нагревать один из них, то по ним пойдет ток. Позже появился термофотоэлектрический — улавливать «детектором» в инфракрасном спектре фотоны. Или даже термоэлектрический конвертер, начинка которого из расплавленных солей натрия и серы при нагреве тоже даст электричество. В общем, перевод энергии из одного вида в другую не был проблемой. Период полураспада — срок жизни изотопов. У 238-го он 87,7 лет.
Так что сами батарейки не излучают и совершенно безопасны. Чтобы компенсировать малую мощность природного бета-распада, физики используют импульсный режим с накоплением заряда. В этом случае удается обеспечить непрерывную мощность электрического тока 10-100 нановатт с каждого кубического сантиметра устройства. Такой мощности достаточно для питания, например, кардиостимулятора. Благодаря длительному сроку службы батарейки найдут применение в тех случаях, когда их замена нежелательна или просто невозможна: в медицине, ядерной энергетике, авиакосмической технике, нано- и микроэлектронике, в системах безопасности и контроля.
Сам Рязанов после согласования деталей будущего планетария с Моссоветом в 1927 году выехал в Германию и провел переговоры с компанией Carl Zeiss об изготовлении соответствующего оборудования. Торжественное открытие произошло 5 ноября 1929 года. В середине 1977 года научно-просветительное учреждение подверглось реконструкции. За год планетарий принял свыше 700 тысяч человек. В 1990 году была открыта народная обсерватория, в которой был установлен самый большой телескоп в Москве, доступный для массовых наблюдений. К сожалению, в 1994 году московский планетарий закрылся. Лишь 12 июня 2011 года, после реконструкции, он вновь стал принимать посетителей. Московский планетарий находится по адресу ул. Садовая-Кудринская, д. С программой мероприятий и временем работы заведения вы можете ознакомиться на официальном сайте центра. За основу разработки специалисты взяли технологию MEMS microelectromechanical systems, микроэлектромеханические системы. В качестве элемента питания — радиоактивный изотоп. В итоге атомная батарейка способна проработать не менее 50 лет. А теперь более подробно.
Регистрация
- Атомная батарейка. 80 лет без подзарядки
- Последние новости
- В России создана миниатюрная и долговечная атомная батарейка
- В Китае создали ядерную батарею для смартфонов
- Ядерное питание: российские учёные создали атомную батарейку повышенной мощности — РТ на русском
- Как делают ядерные батарейки и зачем они нужны
Российские ученые создали атомную батарейку, которая может работать 20 лет
В России разработана атомная батарейка. Эта батарейка будет полувечной: новости из мира энергетики будущего. Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов. В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка.
Американский стартап показал «вечную» ядерную батарейку
Похоже на солнечные батареи, но вместо Солнца светится капсула с изотопом. А ещё плутоний даёт намного большие мощности: одна батарейка может выдавать несколько сотен ватт. Хотя есть и свои сложности. Альфа-излучение довольно интенсивное и чаще всего сопровождается гамма-излучением. Под его воздействием понемногу разрушаются узлы батарейки: провода, преобразователи энергии и другие комплектующие. Со временем их понадобится заменять. Например, в плутониевых батарейках оборудование способно «прожить» около 20 лет, хотя период полураспада самого изотопа куда больше — 87 лет. К тому же преобразование тут двойное: тепло превращается в свет, а потом в электричество, и по пути часть энергии теряется. Существуют и другие способы преобразовывать альфа-излучение в электрический ток: нестандартные конструкции батареек, использование неравномерной эмиссии электронов.
Но таких разработок меньше, и продвигаются они медленно из-за дороговизны комплектующих. По какой технологии создают ядерные батарейки Технологический процесс делится на несколько этапов. В зависимости от вида батарейки этапы могут различаться — для примера покажем процесс на основе современных тритиевых батареек с сэндвич-структурой. Подготавливают радиоактивные изотопы. Изотопы не берутся из ниоткуда, их получают с помощью долгих и сложных реакций обогащения в специальных центрифугах. Процесс создания изотопа может занимать несколько лет. Чаще всего производители ядерных батареек не готовят изотопы самостоятельно, а закупают — в России их подготовкой занимаются предприятия «Росатома». Разрабатывают полупроводниковый элемент.
Для создания полупроводников могут использовать кремний, арсенид галлия, германий и другие элементы — тут всё зависит от потребностей. Фактически производитель батарейки создаёт полупроводниковый диод на основе нужного материала. Запускают в конструкцию изотоп. Тритий — это газ, который закачивают внутрь рабочей камеры. Там он вступает в реакцию со специальной подложкой и начинает излучать бета-частицы. Твёрдые элементы вроде никеля-63 наносят на полупроводник с помощью напыления или приклеивают в виде фольги, хотя это менее эффективно. Потом из батарейки откачивают воздух, чтобы частицы не сталкивались и полезное излучение не уходило в никуда. Помещают батарейку в защитный корпус.
Одна пара «изотоп — полупроводник» даёт довольно низкую энергию. Поэтому, чтобы достигнуть нужной мощности, обычно в батарейке размещают несколько десятков или даже сотен таких пар. Потом конструкция помещается в герметичный защитный корпус, который не выпускает наружу радиационное излучение и защищает саму батарейку от внешних воздействий. Чем больше пар «изотоп — полупроводник» в батарейке, тем крупнее она в итоге оказывается. Маленькие батарейки, работающие со слабыми токами, могут помещаться, например, в кардиостимулятор — такой проект действительно существовал в США. А вот чтобы собрать батарейку, способную питать условный компьютер, уже нужна конструкция весом как минимум в несколько килограммов.
Созданная установка преобразовывает энергию полураспада в электричество. Как отмечают авторы опубликованного видеоролика, плутоний излучает 87 лет, а, например, америций-241 — 432 года. Планируемая мощность батареи может достигать 500 Вт.
Пока не известно, купит ли себе патент на производство атомных батареек Илон Маск, но перспектива использования в транспорте сумасшедшая. По сути, владелец электрической машины больше не будет "привязан" к зарядной станции, а литийионный аккумулятор с атомной батарейкой внутри и генератором будет заряжаться практически сразу, как возникнет такая необходимость. В результате может получиться электромобиль с неограниченным запасом хода. Эксперты в области энергетики отмечают, что после начала производства таких батареек мир может вступить в новую энергетическую гонку, по сравнению с которой гонка вооружений может оказаться детской шалостью. Её суть будет заключаться в том, что атомная энергия в привычных объёмах понадобится только для гражданских объектов, в то время как вся промышленность может быть переведена на автономное энергоснабжение. Однако директор завода по производству автомобильных комплектующих Евгений Чистяков отметил, что экономика такого энергоснабжения ещё не посчитана. То, что атомная батарейка с большим энерговыходом будет востребована, — ясно уже сейчас. Весь вопрос в том, сколько будет стоить готовая технология. К примеру, у нас есть завод, который расходует определённое количество электроэнергии. Мы за электричество исправно платим, но нет никакой гарантии, что стоимость электричества изменится после выхода на рынок этого устройства. Если итоговая стоимость за киловатт упадёт вдвое — тогда можно обсуждать покупку Евгений Чистяков Директор завода по производству автомобильных комплектующих К тому моменту, как атомная батарейка поступит в обычную продажу для всех желающих, разработчикам придётся ответить на серьёзные вопросы. Например, до сих пор ничего не говорится о возможном применении батарейки как дешёвого и легального оружия массового поражения. Особенно острым этот вопрос станет в тот момент, когда вместо изотопа никеля в качестве топлива начнут использовать изотопы плутония-238. Кроме того, до сих пор непонятно, сколько времени и финансовых ресурсов придётся потратить на переоборудование всей современной инфраструктуры под новый источник питания и насколько он источник , в конце концов, долговечен, надёжен и выгоден в использовании. Ответы на эти вопросы дадут не раньше чем через пять-семь лет — именно за этот срок учёные обещают представить первые коммерческие варианты новой технологии.
В числе прочих преимуществ разработчики отмечают упрощение технологии изготовления атомной батареи, что вдвое удешевляет её производство. Применение такой батареи возможно лишь в специальных микроэлектронных устройствах, в том числе в приборах, работающих в критических условиях — в космосе, под водой или в горах, отмечают исследователи. Например, в качестве аварийного источника питания небольших датчиков. Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно. Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин.
Создана самая маленькая ядерная батарея — с ней смартфоны будут работать 50 лет без подзарядки
Ядерная батарейка: принцип действия, сколько работает? | Китайский стартап Betavolt представил ядерную батарейку BV100, которая может генерировать электроэнергию в течение 50 лет без необходимости зарядки и обслуживания. |
Компания Betavolt Technology создала атомную батарейку для смартфонов, способную работать 50 лет | Что это: атомная батарейка размером с монету, которая может работать до 20 лет. |
Российские ученые создали батарейку, работающую 100 лет - Российская газета | Китайские ученые создали «вечную» ядерную батарею, которая может производить энергию до 50 лет без подзарядки. |
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии | Что это: атомная батарейка размером с монету, которая может работать до 20 лет. |
Российские ученые создали батарейку, работающую 100 лет | 28 тысяч лет без подзарядки: как устроена батарейка на ядерном топливе и насколько она безопасна? |
Поделись позитивом в своих соцсетях
- Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
- Дух времени
- Компания Betavolt Technology создала атомную батарейку для смартфонов, способную работать 50 лет
- В России создали «ядерную батарейку» для космоса и авиации
Американский стартап показал «вечную» ядерную батарейку
Смотрите видео онлайн «Атомная батарейка. 80 лет без подзарядки» на канале «Росатом» в хорошем качестве и бесплатно, опубликованное 17 июля 2023 года в 15:04, длительностью 00. примерно 100 лет). Миниатюрную атомную батарейку разработали учёные НИТУ «МИСиС». Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта.
Китай представил ядерную батарейку размером с монету, которой хватит на 50 лет
Устройство ядерной батарейки можно сравнить с полупроводниковой солнечной батареей. Российские ученые разработали прототип ядерной батарейки мощностью до 100Вт, которая может работать с помощью бета-распада никеля-63. Атомные батареи Betavolt могут удовлетворить потребности в долговременном энергоснабжении при различных сценариях, таких как аэрокосмическая промышленность.
Американский стартап показал «вечную» ядерную батарейку
Российские ученые создали атомную батарейку с зарядом на 20 лет | Учитывая, что батарейка которая указана в новости будет в продаже только в конце этого года, скорее у вас была другая батарейка, и может не ядерная, хз. |
«Ядерные батарейки» для космической техники | Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет. |
Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии | Новости энергетики. Рубрики. Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность. |
Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет | Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее. |
Российские ученые создали атомную батарейку с зарядом на 20 лет
При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии. Эту жидкость поместят в баки с теплоизоляцией и низким давлением. Нагревание вернет воздух в газообразное состояние, а газ приведет в действие турбины генераторов, которые будут вырабатывать электричество. Схема работы CRYOBattery В мае 2021 года международная группа ученых представила новые ультратонкие металлические электроды из золота, которые можно будет применять для разработки прозрачных солнечных панелей.
Потенциально такие панели можно будет встраивать в окна домов и офисов, чтобы аккумулировать энергию. Гравитация и другие необычные решения Шотландский стартап Gravitricity в 2021 году объявил о начале пилотного проекта гравитационного накопителя энергии в Эдинбурге, крупнейшем закрытом глубоководном порту. Демонстрационный образец накопителя энергии Gravitricity мощностью 250 кВт Фото: gravitricity. Масса грузов при этом может варьироваться от 500 т до 5 тыс. При спуске груза будет происходить выработка электроэнергии.
Она будет возвращаться в сеть в моменты пикового потребления. Приводом лебедки груза будет служить электрическая машина, способная поглощать или вырабатывать электрическую энергию при подъеме или опускании груза. Такая система позволит обеспечить 4 МВт мощности и может проработать 50 лет без потери производительности. Gravitricity собирается внедрять свою технологию в вышедших из эксплуатации шахтах по всему миру. А ученые Массачусетского технологического института разработали батарею, которая будет питаться углекислым газом из любого источника.
Она может поглощать потоки как из выхлопной трубы автомобиля, так и собирать углекислый газ из атмосферы. Батарея состоит из ряда последовательных камер, в которых находятся электрохимические ячейки, пропускающие поток. Когда она заряжается, на поверхности электродов протекает электрохимическая реакция, а затем батарее требуется разрядка для очистки электродов.
Исследователи из России создали компактную атомную батарейку, которая в десять раз мощнее существующих аналогов, сообщает russian. Такая батарейка относительно безопасна для человека и способна работать до 20 и более лет.
Её применение возможно в специальных приборах, в том числе работающих в критических условиях — в космосе, под водой или в высокогорных районах. Учёные Национального исследовательского технологического университета «МИСиС» представили компактную атомную батарейку, которая в десять раз мощнее и вдвое дешевле существующих аналогов.
КПД батарей российских учных теоретически могут дать куда больший результат.
Атомную батарейку можно применять в нескольких режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах длительное время. В бытовых приборах она тоже могла бы сослужить службу, но из-за потенциальной опасности для здоровья человека вдруг, кто-то решить разобрать часы или мобильный телефон с таким источником питания , делать это нецелесообразно. В настоящий момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже признано зарубежными экспертами.
Стоит отметить, что рабочий цикл в 50 лет избыточен для обычных смартфонов, которые пользователь меняет каждые несколько лет. Также пока не ясно, захочет ли кто-то иметь при себе «карманный ядерный реактор», несмотря на уверения в его полной безопасности.
В России разработана атомная батарейка
В России создана атомная батарейка: может работать до ста лет А размеры ее в три раза меньше Поделиться Атомную батарейку, которая эффективно сможет работать десятки лет, продлевая работоспособность космических и глубоководных приборов, создали ученые НИТУ «МИСиС». Как сообщили «МК» разработчики новой технологии, до их изобретения в вышеуказанных приборах, работающих при сверхнизких температурах в космосе, под водой и в высокогорных районах, устанавливали батарейки с радиоактивным веществом никель-63. Однако преобразование лучевой энергии в электрическую было не слишком эффективным из-за самой конструкции батарейки. Российским ученым удалось по-новому взглянуть на проблему: они нанесли тот же радиоактивный материал с обратной стороны от преобразователя энергии, что позволило контролировать обратный ток, который обычно «крадет» мощность батареи.
Внутри нее содержится 63 ядерных изотопа, при этом ее размер меньше монеты, сообщает газета Independent. Основное преимущество состоит в том, что ни жара, ни холод не могут нанести вред радионуклидной батарее. Между тем разработчики утверждают, что она совершенно безвредна и безопасна.
Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров: — Будет дорогой однозначно. Изотоп никеля-63 получают из никеля-62, это один из природных изотопов никеля, но, чтобы этот никель-63 был чистым, нужно из природной смеси изотопов никеля выделить именно никель-62, для массового потребления это будет недешево. Так как энергия этих электронов не очень большая, то и проникающая способность у них невелика, то есть все, что вылетает из никеля-63, за стенки батарейки не вылетает. С этой точки зрения можно сказать, что такие батареи относительно безопасны для человека.
Этот радиоактивный элемент распадается, то есть с течением времени он изменяется естественным образом.
В процессе распада выделяется энергия. Вместо того чтобы пустить эту энергию на ветер, BV100 использует ее в своих интересах. Конструкция устройства позволяет улавливать энергию, выделяемую при распаде никеля-63, и накапливать ее для питания различных устройств. Между слоями никеля-63 в батарею встроены листы монокристаллического алмазного полупроводника толщиной всего десять микрон. Такая сложная конструкция позволяет оптимизировать энергоэффективность батареи.
Для каких применений?
Она защищает от радиации и превращает энергию распада в электричество. На атомных батарейках сможет работать все — от смартфонов до электрокаров и поездов. Но насколько безопасен такой элемент питания? И даже человек может в носимых каких-то устройствах использовать. Вопрос, конечно, количества этих устройств", — рассказал руководитель конструкторского бюро Александр Косарев. Ведь жесткие диски хранят информацию в лучшем случае несколько лет. Американские разработчики решили, что пора переходить на вечные флешки. Их изготавливают из кварцевого стекла.
Его можно облить водой, прокипятить, засунуть в микроволновку и облучить мощным магнитом. Данные никуда не денутся. Он выдерживает обжигающую жару в тысячи градусов по Цельсию, хранит 360 терабайт информации. Такое количество данных заняло жесткий диск размером с мое тело", — поделилась журналист Александра Кардинале. При записи лазерный луч создает в прочнейшем кварце слои трехмерных кристаллических решеток. Чтобы считать информацию, сквозь них пропускают плоскополяризованный свет. Кажется, идеальная технология будущего. Вот только сохранить что-то на новую флешку можно только один раз.
«Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты
Атомная батарея Nickel-63 diamond β-volt представляет собой алмазный полупроводниковый преобразователь и лист никеля-63 толщиной 2 мкм, уложенный слоями. Ядерная батарейка работает на изотопе никель-63. Ядерные батарейки – это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество. В России представили прототипы уникальных ядерных батареек, срок службы которых составляет более пятидесяти лет. Китайский стартап Betavolt представил ядерную батарейку BV100, которая может генерировать электроэнергию в течение 50 лет без необходимости зарядки и обслуживания.
Российские учёные создали атомную батарейку повышенной мощности
- Ядерная батарейка: в России создали источник питания, работающий 50 лет
- Ядерная батарейка: в России создали источник питания, работающий 50 лет — DRIVE2
- Рекомендуем
- Российские ученые создали уникальную атомную батарейку
- Что дальше?
Российские ученые создали батарейку, работающую 100 лет
Тепло с помощью особого нанопокрытия превращают в свет, а свет в электрическую энергию. Оригинальность решения ученых МИФИ в использовании специального покрытия. Мы создаем специальное покрытие на основе наночастиц, которыми покрывается капсула радиоизотопного источника тепла, чтобы сместить спектр излучения нагретого тела в более коротковолновую область, в более видимый спектр. Это позволяет увеличить эффективность преобразования энергии ядерного распада в электричество с помощью специальных фотоэлементов. Торий-228 излучает 2 года, плутоний-238 почти 90 лет, а если источником сделать америций-241, то атомный источник будет беспрерывно и безопасно давать электричество дольше, чем 4 столетия. Идея такой батарейки в том, что мы один раз ее поставили либо в прибор, либо в механизм, и забыли. Весь период работы этого прибора обеспечивается энергией такой батарейки. Правильный подбор изотопов позволяет создать абсолютно безопасные источники энергии и от их продуктов деления можно защититься тонкой фольгой или даже листом бумаги. Все это в России умеют делать еще с советских времен. В нём тепловая энергия, которая выделяется при распаде изотопа, преобразовывалась в электрическую с помощью специального генератора, это были уникальные для своего времени источники питания для обеспечения автономной работы техники в самой труднодоступной среде. Принцип РИТЭГа еще проще, чем у атомной батарейки: полупроводниковая термопара, одна сторона источника холодная другая горячая, и возникает электрический ток.
Школьная физика! В РИТЭГах реализуется принцип преобразования тепловой энергии радионуклидного источника в электрическую энергию за счет и посредством термоэлектрической батареи.
Бета-излучение в данном случае обладает малой проникающей способностью и легко задерживается оболочкой. А используемый изотоп «никель-63» не имеет сопутствующего гамма-излучения.
Так что сами батарейки не излучают и совершенно безопасны. Чтобы компенсировать малую мощность природного бета-распада, физики используют импульсный режим с накоплением заряда. В этом случае удается обеспечить непрерывную мощность электрического тока 10-100 нановатт с каждого кубического сантиметра устройства.
Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня.
А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер. Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям.
Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции. Названия первых клиентов пока держат в секрете. Пока мы готовим новые материалы в блог Selectel , приходите обсуждать в комментариях. Как считаете, технология выйдет в коммерческое производство в ближайшее время?
Верите в идею вечных батареек?
Изделие способно работать до двадцати лет. Причём батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных или недоступных местах, например, в космосе, под водой или в высокогорных районах.