Новости 26 задача егэ информатика

уроки для подготовки к экзаменам ЕГЭ ОГЭ.

ЕГЭ по информатике 2023 - Задание 26 (Сортировка)

Скачать В аэропорту есть камера хранения из K ячеек, которые пронумерованы с 1. Принимаемый багаж кладется в свободную ячейку с минимальным номером. Известно время, когда пассажиры сдают и забирают багаж в минутах с начала суток. Ячейка доступна для багажа, начиная со следующей минуты, после окончания срока хранения. Если свободных ячеек не находится, то багаж не принимается в камеру хранения. Найдите количество багажей, которое будет сдано в камеры за 24 часа и номер ячейки, в которую сдаст багаж последний пассажир.

Входные данные В первой строке входного файла находится число K — количество ячеек в камере хранения, во второй строке файла число N — количество пассажиров, сдающих багаж натуральное число, не превышающее 1000. Каждая из следующих N строк содержит два натуральных числа, не превышающих 1440: время сдачи багажа и время выдачи багажа. Выходные данные Программа должна вывести два числа: количество сданных в камеру хранения багажей и номер ячейки, в которую примут багаж у последнего пассажира, который сможет сдать багаж.

На схеме буквами П1, В1 и т. Обратите внимание, что мы рассматривали только выигрышную позицию после первого хода Пети, рассматривать необходимо только ее и только ее. Ответ на задание 2. В этом случае Петя, очевидно, не может выиграть первым ходом. Однако он может получить позицию 7,20.

После хода Вани может возникнуть одна из 4-х позиций: 8,20 , 21,20 , 7,21 , 7,60. В каждой из этих позиций Петя может выиграть одним ходом, утроив количество камней во второй куче. В качестве ответа можно представить значение S и дерево всех возможных партий при выбранной стратегии Пети см. Решение задания 3. Необходимо найти S, причем обязательно учитывать условия: - у Вани есть выигрышная стратегия первым или вторым ходом при любой игре Пети; - первый ход не гарантированно выигрышный. То есть, первая стратегия может быть выигрышная, может нет, но вторая — однозначно должна быть выигрышной. S, при котором гарантированно можно выиграть вторым ходом — 20, позиция 6,20 см. После первого хода Пети возможны позиции: 7,19 , 18,19 , 6,20 , 6,57.

В позициях 18,19 и 6,57 Ваня может выиграть первым ходом, утроив количество камней во второй куче. Из позиций 7,19 и 6,20 Ваня может получить позицию 7,20.

Достаточно указать одно значение S и описать для него выигрышную стратегию.

Задание 3 Возможное значение S: 19. После первого хода Пети возможны позиции: 7, 19 , 18, 19 , 6, 20 , 6, 57. В позициях 18, 19 и 6, 57 Ваня может выиграть первым ходом, утроив количество камней во второй куче.

Из позиций 7, 19 и 6, 20 Ваня может получить позицию 7, 20. Эта позиция разобрана в п. Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом.

В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня выделены жирным шрифтом. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы.

Примечание для эксперта. Дерево всех партий может быть также изображено в виде ориентированного графа — так, как показано на рисунке, или другим способом. Важно, чтобы множество полных путей в графе находилось во взаимно однозначном соответствии со множеством партий, возможных при описанной в решении стратегии.

Дерево всех партий, возможных при Ваниной стратегии. Ходы Пети показаны пунктиром; ходы Вани — сплошными линиями. Прямоугольником обозначены позиции, в которых партия заканчивается.

Не является ошибкой указание только одного заключительного хода выигрывающего игрока в ситуации, когда у него есть более одного выигрышного хода Указания по оцениванию Баллы В задаче требуется выполнить три задания. Их трудность возрастает. Количество баллов в целом соответствует количеству выполненных заданий подробнее см.

Известно, какой объём занимает файл каждого пользователя. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные. В первой строке входного файла находятся два числа: S — размер свободного места на диске натуральное число, не превышающее 10 000 и N — количество пользователей натуральное число, не превышающее 1000.

Как решать 26 задание в егэ по информатике через эксель

Урок по теме Как решать задание ЕГЭ. Теоретические материалы и задания Единый государственный экзамен, Информатика. ЯКласс — онлайн-школа нового поколения. Личный сайт Рогова Андрея: информатика, программирование и робототехника. Объяснение решения 26 задания ЕГЭ по информатике о программной обработке целочисленной информации с использованием сортировки. Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). 9 задание егэ информатика, какие то проблемы.

Демоверсия егэ информатика 26 задание разбор

Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера: 2 50 2 файла, максимум 50 Пример взят с сайта РешуЕГЭ. Получим объём максимального файла, который можем добавить, ищем ближайший размер к нему из данных.

Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000. Пример организации исходных данных во входном файле: 3 11 9 5 23 Для указанных входных данных значением искомой суммы должно быть число 36 выбраны числа 4, 9 и 23, их сумма 36 делится на 6.

В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла B. В этой задаче нужно посчитать максимально возможную сумму, а потом подобрать такие пары, изменив выбранный элемент в которых мы добьёмся выполнения требований задачи, но при этом сумма изменится минимально.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите все такие значения и выигрывающий ход Пети. Укажите два значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани. Представьте его в виде рисунка или таблицы. Для каждого ребра дерева укажите, кто делает ход, для каждого узла - количество камней в позиции.

При меньших значениях S за один ход нельзя получить кучу, в которой больше 100 камней. Пете достаточно увеличить количество камней в 5 раз. Тогда после первого хода Пети в куче будет 21 камень или 100 камней. В обоих случаях Ваня увеличивает количество камней в 5 раз и выигрывает в один ход. Возможные значения S: 4, 19. После первого хода Пети в куче будет 19 или 90 камней. Если в куче станет 90 камней, Ваня увеличит количество камней в 5 раз и выиграет своим первым ходом. В таблице изображено дерево возможных партий при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня подчёркнуты.

На рисунке это же дерево изображено в графическом виде оба способа изображения допустимы. Пройти тестирование по этим заданиям Открываем подписку на интерактивные тренажеры для подготовки к ЕГЭ 2016 года по информатике Каждый обладающий картой Visa, MasterCard, кошельком Яндес. Игра завершается в тот момент, когда количество камней в куче становится не менее 22. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 22 или больше камней. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём — Петя не может выиграть за один ход, и — Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети. Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче.

Вопрос 1а. Для этого достаточно число камней в куче увеличить вдвое и их всегда получится более 21. Вопрос 1б. Для ответа на этот вопрос нужно найти позиции, условно назовем их min0 , из которых все возможные ходы ведут в начальную выигрышную позицию, отмеченную нами как max0. Для того чтобы Петя гарантированно выиграл вторым ходом, то есть оказался в позиции max0 , после хода Вани, ему необходимо своим первым ходом «посадить Ваню в яму ». Проверим данную позицию на гарантированность победы! Проверим данную позицию на гарантированность проигрыша Пети! Примерное время решения : 20 минут Тема: Математические основы программирования. Подтема: Игры и стратегии Что проверяется: Знание основных понятия, связанных с анализом игр с полной информацией.

Умение определять выигрышные и проигрышные позиции. Как может выглядеть задание? Например, так: Дано описание игры двух игроков с полной информацией. Нужно определить позиции, в которых указанный в условии игрок имеет выигрышную стратегию, позволяющую ему гарантированно выиграть в указанное количество ходов. Как разбирать задачу. Хороший разбор сделал К. В статье есть много задач для самостоятельного решения. В статье есть только одна неточность: дерево, изображенное на стр. В контексте статьи понятно, о чем идет речь.

Но при разборе статьи с учениками лучше уточнить: дерево возможных вариантов игры при выбранной стратегии Вани. Обычно деревом возможных вариантов игры или просто деревом игры называют дерево, изображающее все возможные партии. То есть, рассматриваются все возможные ходы Вани, а не только ходы, соответствующие определенной стратегии. Задача C3-2013 объединяет идеи задач C3-2011 и C3-2012. Преемственность с C3-2012 видна из разбора К. Это задание из второй части высокого уровня сложности. Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3. Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию.

Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. Будем говорить, что игрок имеет выигрышную стратегию , если он может выиграть при любых ходах противника. На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши.

Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень.

Входные данные. В первой строке входного файла находятся два числа: S — размер свободного места на диске натуральное число, не превышающее 10 000 и N — количество пользователей натуральное число, не превышающее 1000. В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Информатика ЕГЭ

Необходимо определить количество и общую массу грузов, которые будут вывезены при погрузке по вышеописанным правилам. Входные данные: Первая строка входного файла содержит два целых числа: N — общее количество грузов и M — грузоподъёмность грузовика в кг. Каждая из следующих N строк содержит одно целое число — массу груза в кг. Подсчитаем сумму и количество груза. В столбце А выделяем диапазон, который на превышает полученное число, фиксируем количество 110 и массу последнего большого груза 123.

В этом случае Вы должны использовать те же самые исходные данные и переменные, какие были предложены в условии. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней.

У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Так, например, на выходных можно ставить таймер и решать по одному полному варианту в день, а затем собирать статистику и отрабатывать задачи, вызывающие сложности.

Если есть возможность решить задачу разными способами, воспользуйтесь ей, проверяйте себя», — подчеркнул Сергей Сосенушкин. Видеозапись эфира доступна на страницах Рособрнадзора в социальной сети «ВКонтакте» и на Rutube. Опубликовано: 27 апреля 2024 г.

Решение Согласно условию задачи нам следует найти самый большой номер ряда, в котором найдется 2 соседних незанятых места, что слева и справа от них будут 2 занятых места, что соответствует схеме занято — свободно — свободно — занято. Если мы нашли такой номер ряда, и оказалось, что таких схем в нем несколько, то нужно выбрать минимальный номер свободного места. Алгоритм решения задачи Читаем данные из файла в список списков.

В результате у нас будет список, каждый элемент которого будет являться списком из 2-х чисел. Поменяем знак второго элемента в каждом вложенном списке на противоположный. Сделаем сортировку списка с помощью sort. Это облегчит решение, так как теперь нужно будет искать максимальный ряд и максимальное место.

Идем по внешнему списку и проверяем: если ряд совпал и разность по местам равна 3, что соответствует вышеописанной схеме «занято» — «свободно» — «свободно» — «занято», сохраняем ряд и восстанавливаем место берем со знаком минус и добавляем 1, так как нужно получить минимальный номер свободного места. Обработка целочисленной информации с использованием сортировки, В — 2 балла Е26. В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки — подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т.

Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее … Е26. В лесополосе осуществляется посадка деревьев. Причем саженцы высаживают рядами на одинаковом расстоянии.

Через какое-то время осуществляется аэросъемка, в результате которой определяется, какие саженцы прижились. Необходимо определить ряд с максимальным номером, в котором есть подряд ровно 11 неприжившихся саженцев, при условии, что справа и слева от них саженц прижились. В ответе запишите сначала наибольший номер ряда, затем … Е26. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда целое число от 1 до 10 000 и номер позиции в ряду целое число от 1 до 10 000.

Точка экрана, в … Е26. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а … Е26.

Как решать 26 задание в егэ по информатике через эксель

Главная» Новости» 13 задание егэ информатика 2024. Решение Задач Егэ По Информатике В Excel, Артем Flash. В этой статье посмотрим некоторые задачи из 26 задания ЕГЭ по информатике. Официальный информационный портал единого государственного экзамена.

Рубрика «Информатика варианты»

Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 22. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 22 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

Опишите выигрышную стратегию Вани. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём — Петя не может выиграть за один ход, и — Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети. Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче. Вопрос 1а. Для этого достаточно число камней в куче увеличить вдвое и их всегда получится более 21. Вопрос 1б.

Для ответа на этот вопрос нужно найти позиции, условно назовем их min0 , из которых все возможные ходы ведут в начальную выигрышную позицию, отмеченную нами как max0. Для того чтобы Петя гарантированно выиграл вторым ходом, то есть оказался в позиции max0 , после хода Вани, ему необходимо своим первым ходом «посадить Ваню в яму ». Проверим данную позицию на гарантированность победы! Проверим данную позицию на гарантированность проигрыша Пети! Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков? Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Игроки ходят по очереди, первый ход делает Паша один в два раза.

Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии.

Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы.

Если количество файлов будет таким же, как и с исследуемым файлом, то мы нашли то что нужно. Кабанов Спутник «Фотон» проводит измерения солнечной активности, результат каждого измерения представляет собой натуральное число. Перед обработкой серии измерений из неё исключают K наибольших и K наименьших значений как недостоверные. По заданной информации о значении каждого из измерений, а также количестве исключаемых значений, определите наибольшее достоверное измерение, а также целую часть среднего значения всех достоверных измерений. Входные и выходные данные. В первой строке входного файла 26-k2.

В следующих N строках находятся значения каждого из измерений все числа натуральные, не превышающие 1000 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее достоверное измерение, а затем целую часть среднего значения всех достоверных измерений. В начале откроем файл и посмотрим количество измерений и количество исключённых значений. Затем, считаем измерения в массив. Отсортируем массив методом пузырька. Исключим максимальные и минимальные значения и найдём среднее арифметическое и максимальное значение достоверных значений. Джобс В магазине Пятэльдодео на черную пятницу решено провести одну из двух акций.

Определите, какая акция принесет больше прибыли, если предположить, что все товары будут проданы. Известно, что прибыль двух акций разная.

В этом случае Вы должны использовать те же самые исходные данные и переменные, какие были предложены в условии. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя.

За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани.

Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Как может выглядеть задание? Например, так: Дано описание игры двух игроков с полной информацией. Нужно определить позиции, в которых указанный в условии игрок имеет выигрышную стратегию, позволяющую ему гарантированно выиграть в указанное количество ходов. Как разбирать задачу. Хороший разбор сделал К. В статье есть много задач для самостоятельного решения. В статье есть только одна неточность: дерево, изображенное на стр.

В контексте статьи понятно, о чем идет речь. Но при разборе статьи с учениками лучше уточнить: дерево возможных вариантов игры при выбранной стратегии Вани. Обычно деревом возможных вариантов игры или просто деревом игры называют дерево, изображающее все возможные партии. То есть, рассматриваются все возможные ходы Вани, а не только ходы, соответствующие определенной стратегии. Задача C3-2013 объединяет идеи задач C3-2011 и C3-2012. Преемственность с C3-2012 видна из разбора К. Это задание из второй части высокого уровня сложности. Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3. Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию.

Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя.

Будем говорить, что игрок имеет выигрышную стратегию , если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали.

Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень. Можно нарисовать деревья всех возможных партий для указанных значений S. Она состоит в том, чтобы удвоить количество камней в куче и получить кучу, в которой будет соответственно 18 или 16 камней.

Задание 26. Досрок 2023. ЕГЭ по информатике — Video

егэ по информатике информатика 10 класс информатика 11 класс информатика с нуля. Задание 26 (ЕГЭ 2023 г.) Задание выполняется с использованием прилагаемых файлов. 2024, ЕГЭ физика реальный вариант Задача 26 из досрочного 2023 года, САМЫЙ ЛЕГКИЙ СПОСОБ решения ЗАДАНИЯ №26 ЕГЭ по Информатике! Задача 26. Во многих компьютерных системах текущее время хранится в формате «UNIX-время» – количестве секунд от начала суток 1 января 1970 года. В одной компьютерной системе проводили исследование загруженности. ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26". Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград.

Pascal в ЕГЭ по информатике

Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград. Задания 26, 27 позволяют набрать по 2 первичных балла каждый. В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. За это задание вы можете получить 2 балла на ЕГЭ в 2024 году. В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов.

Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024

Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера: 2 50 2 файла, максимум 50 Пример взят с сайта РешуЕГЭ. Получим объём максимального файла, который можем добавить, ищем ближайший размер к нему из данных.

С помощью команды split разбиваем строчку по пробелу на два числа.

Переменная st — это список. В st[0] — будет подстрока с первым числом, в st[1] со вторым. Переменная s — это размер свободного пространства на диске, n — это количество пользователей.

Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу.

Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b. В него будем класть элементы, которые записываем на диск.

С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество.

Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент. Пробегаемся по списку a, начиная с конца. Ищем кем можно заменить удалённый элемент.

Мы идём с конца, поэтому в приоритете будут самый большие элементы. После того, как найденный элемент будет умещаться в список b, можно печатать ответ.

Задание 26. Обработка массива целых чисел За правильное выполненное задание получишь 2 балл. На решение отводится примерно 35 минуты. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов.

При совпадающем времени считается, что все старты и завершения процессов происходят одновременно, в начале соответствующей секунды. В частности, если время старта одного процесса совпадает с временем завершения другого и других стартов и завершений в этот момент нет, то количество активных процессов в этот момент не изменяется.

В ответе запишите два целых числа: сначала максимальное количество процессов, которые выполнялись одновременно на неделе, начиная с момента UNIX-времени 1633305600, затем суммарное количество секунд, в течение которых на этой неделе выполнялось такое максимальное количество процессов.

ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26"

В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python. Открытый банк заданий ЕГЭ. obzege. В этой статье посмотрим некоторые задачи из 26 задания ЕГЭ по информатике.

Похожие новости:

Оцените статью
Добавить комментарий