Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Физик объяснил важность создания прототипа российского термоядерного реактора.
Поделиться
- Российский инженер рассказала о значении термоядерного прорыва американских ученых
- Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech
- Российский инженер рассказала о значении термоядерного прорыва американских ученых
- Как причесать ежа, или попытки удержать плазму
- Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука"
- Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
Академик В.П. Смирнов: термояд — голубая мечта человечества
При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте. Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки.
Шероховатость поверхности не превышала 80 нм для свинца, 50 нм для алюминия и 10 нм для меди и полипараксилилена.
При диагностике лазерного излучения и исследованиях плазмы на мощных лазерных установках ИЛФИ "Искра-5", "Луч" для проведения с субнаносекундным временным разрешением временной, пространственно-временной и спектрально-временной регистрации используются фотохронограф с щелевой разверткой СЭР-4 — для видимого и ближнего ИК-излучения, рентгеновский фотохронограф с щелевой разверткой РФР-4 — для мягкого и сверхмягкого рентгеновского излучения. Инфракрасный многокадровый фоторегистратор КИТ-3М базируется на полупроводниковой камере ионизационного типа и многокадровой электронно-оптической камере. Области применения: диагностика излучения лазеров ИК диапазона; развитие новых индустриальных технологий с использованием лазерной сварки, резки и закалки металлов; газодинамические исследования плавление металлов на ударной волне, изучение отколов, изучение динамики ударных волн ; дистанционная регистрация динамики тепловых полей тел при ударном и аэродинамическом нагружении; импульсная электродинамика. Исследование мишеней инерциального термоядерного синтеза на основе тяжелоионного ускорителя Проблема зажигания термоядерного горючего в системах является одной из ключевых в разработке термоядерного реактора. Для систем на основе тяжелоионного драйвера при традиционном однопиковом режиме облучения необходима энергия ионного потока по представлениям на сегодняшний день 5—10 МДж в зависимости от степени оптимизма исследователей. Во ВНИИЭФ предложена оригинальная схема термоядерной мишени с тяжелоионным драйвером и выполнены тщательные расчетные исследования ее параметров. Некоторые физические процессы, протекающие при работе мишени, моделировались в экспериментах на установке "Искра-5".
Результаты исследований докладывались на различных международных симпозиумах и конференциях. Энергия 5—10 МДж является достаточно высокой, поэтому ищутся возможности снижения энергии драйвера и, следовательно, мощности термоядерного импульса. Это можно сделать в режиме быстрого зажигания fast ignition.
Оказалось, что наши результаты по выходному продукту в сотни раз лучше, чем американские. Как всегда в таких случаях, требуется примерно два года, чтобы нас услышали. Поначалу был определенный уровень недоверия, но потом решили проверить результаты в совместном эксперименте на «Ангаре-5-1». В 1993 г. Сначала в 1992 г.
Они просили приехать в следующем году со своей диагностикой и проверить наши результаты. Министерство разрешило нам провести совместный эксперимент. Оказалось, что результаты, которые они получили, даже лучше, чем то, что намерили мы. Но в основном все совпало. Повторилась ситуация, которую мы имели в конце 1960-х гг. Академик Л. Арцимович, руководитель программы УТС того времени, пригласил английских физиков приехать в Курчатовский институт с новой диагностикой и сопоставить измеренные параметры с нашими измерениями. Все подтвердилось, и даже больше.
После этого практически все лаборатории мира, связанные с работами по магнитному удержанию плазмы, стали делать токамаки. Сейчас с нашим участием строится первый экспериментальный реактор ITER, в котором мощность термоядерной реакции должна в 10 раз превзойти мощность, затрачиваемую на поддержание реакции. ITER — это тоже токамак. Работы по физике высоких плотностей энергии продолжаются, лидером этого направления у нас был В. Фортов, с которым мы здесь тоже работали. Сегодня мы переживаем новый этап в области термоядерных исследований благодаря новой федеральной программе. Она очень сложна. Существуют проблемы создания такого реактора.
Одна из важнейших — взаимодействие плазмы со стенкой, то есть эрозия стенки. Было предложено несколько способов ее защиты. Кстати, самые активные исследования этой проблемы проводятся здесь на токамаке Т-11М под руководством С. Энергетический термоядерный реактор предполагает, что мощность, выделяемая в процессе интенсивной термоядерной реакции, должна превосходить затрачиваемую на поддержание плазмы не менее чем в десять раз. И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает. Проблема первой стенки — одна из важнейших для энергетического реактора. Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой. Но возникает вопрос: а где мы можем применять эти нейтроны?
Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов. Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна. Но чего сейчас здесь удалось достичь? Каков сегодня мировой рекорд ее удержания, где он достигнут? Первый токамак со сверхпроводящими магнитными системами был построен в Курчатовском институте. Потом, в силу ряда обстоятельств, эта система не получила развития. Точнее, она получала развитие в токамаке Т-15, который создавался в Курчатовском институте, но из-за слома Советского Союза дело не было доведено до конца.
На Западе и Востоке довели. Надо понимать, что, помимо времени удержания, еще есть требования на плотность, температуру, и вообще для того, чтобы термоядерный реактор работал, необходимо, чтобы тройное произведение — время удержания, плотность и температура — было выше некоторой величины. Длительность удержания разряда в высокотемпературной плазме на китайском токамаке — более 100 с. Требуемые температуры также достигнуты. Реализовать их одновременно в одной установке предполагается в ITER. Сегодня здесь лидеры китайцы. У них разряд в высокотемпературной плазме держится больше сотни секунд.
В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо. Здесь катастрофы, сравнимые с Чернобылем, невозможны, но в результате работы таких устройств происходит активация, то есть становятся радиоактивными элементы конструкции», — подчеркнул Ожаровский. Он пояснил, что при активации то, что было нерадиоактивным, становится радиоактивным из-за нейтронного облучения. Этот процесс уже изучен по предшественникам современных токамаков. Даже если китайцы добьются успеха, то у них не получится получить чистую и дешевую энергию.
ядерная физика
Мнения о том, что дорогостоящие исследования и разработки в области УТС бесперспективны, выбранные подходы неверны, а поставленные задачи нерешаемы и необоснованны регулярно появляются как в средствах массовой информации, так и в прогнозных оценках государственных и окологосударственных структур. Эти мнения отнюдь не всегда исходят от дилетантов, их можно услышать и из уст профессионалов в области ядерной энергетики и физики плазмы [ 1 ]. При этом недооцениваются важнейший, как сегодня представляется, фактор технологического развития, необходимого для реализации термоядерных технологий, и существующие уже сейчас возможности их практического использования, а физические и технологические трудности, стоящие на пути реализации УТС, гиперболизируются. Этим и некоторым другим вопросам термоядерных исследований и посвящена настоящая статья. Предметом обсуждения будут исследования с использованием установок типа токамак — замкнутых систем магнитного удержания высокотемпературной плазмы, являющихся с 1970-х годов наиболее продвинутыми и эффективными. Наличие ряда предшествующих обзоров [ 2 — 4 ], описывающих состояние и перспективы УТС, оправдывает краткость изложения позиции авторов в настоящей статье. МЫ БЫЛИ ПЕРВЫМИ В условиях ограниченности ресурсов, выделяемых на научно-технологическое развитие, для крупных корпораций или целых стран неизбежна постановка вопроса о выборе приоритетов, решаемого зачастую волевым образом или посредством лоббирования.
Более подробно позиция авторов о роли и месте прикладной науки изложена в статье [ 5 ]; здесь же отметим, что термоядерные исследования в России с использованием токамаков вполне соответствуют вышеуказанным критериям. Не углубляясь в историю отечественных термоядерных исследований, неоднократно описанную с разной степенью детализации см. К этим экспериментально проверенным достижениям, впоследствии взятым на вооружение во всём мире, следует добавить широко признанные теоретические разработки, лёгшие в основу современной теоретической физики высокотемпературной плазмы. Прогресс, достигнутый в результате многолетних исследований на токамаках, не следует недооценивать. Достижение всех необходимых для реализации УТС значений параметров 2 сегодня продемонстрировано экспериментально, но, к сожалению, в разных экспериментах табл. Полученные значения тройного произведения более чем в 1000 раз превышают данные середины 70-х годов прошлого века, когда стартовали первые крупные токамаки с дополнительным нагревом плазмы 3 3.
И то, и другое сопряжено с существенным удорожанием установки. Именно на реализацию проекта ИТЭР в последнее десятилетие были направлены основные усилия мирового термоядерного сообщества. При этом большинство участников вполне плодотворно использовали добытые общими усилиями при проектировании ИТЭРа знания и технические решения в своих национальных программах. И наоборот, данные, получаемые в ходе исследований, выполняемых национальными командами, анализируются и учитываются в проекте ИТЭР. Отметим, что планируемые режимы работы ИТЭРа основаны на довольно консервативных представлениях и достаточно обоснованы предшествующими экспериментами [ 9 ]. Вместе с тем ИТЭР — это качественный скачок в токамакостроении.
Для примера: объём плазмы ИТЭРа равен 840 м3, что более чем в 10 раз превосходит объём плазмы самого крупного из действующих токамаков — токамака JET. Строительство и запуск ИТЭРа призваны продемонстрировать работоспособность идеологии, позволяющей создать на базе токамака термоядерный энергетический реактор. Основной задачей экспериментов на ИТЭРе будут отработка и испытание важнейших технологий и компонентов реактора. Принципиально важной станет проверка концепции использования вольфрама в качестве материала для диверторных пластин — как самого тугоплавкого металла — в условиях ожидаемых на ИТЭРе огромных потоков энергии.
Элрих Мюирич Эмм, вот кто здесь вообще новости пишет? Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".
Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час. К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток. В два раза быстрее, чем поезд идущий от Москвы до Владивостока. Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3.
Сегодня мы поговорим об этом уникальном проекте и заглянем за кулисы ядра, скрывающего неисчерпаемую мощь. Как покоряют атомное ядро Ядро атома, как мы знаем из физики и химии, состоит из положительно заряженных протонов. Вокруг них — отрицательно заряженные электроны. Силы, удерживающие систему в балансе, как раз и являются объектом изучения ядерных физиков. При этом существуют два принципиально разных подхода к высвобождению скрытой энергии: Атомная энергетика. Здесь за основу берется тяжелый элемент как правило, уран или плутоний , который расщепляется на составляющие с выделением энергии. То есть ключевой процесс — распад ядра. Первая в мире атомная электростанция была запущена еще в 1954 году — ей стала Обнинская АЭС в Калужской области. Человечество хорошо освоило расщепление, хотя проблемы пока остаются. Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд.
Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте | Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. |
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика | В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. |
и | Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF. |
Американские физики повторно добились термоядерного зажигания
С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.
Мегаджоули управляемого термоядерного синтеза
Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Потому так важен результат, о котором сообщила в понедельник заокеанская пресса. В Ливерморской национальной лаборатории осуществлен так называемый инерционный управляемый термоядерный синтез, а именно столкновение дейтерия и трития при помощи самого большого в мире лазера. В Министерстве энергетики США официального заявления пока не сделали, но назвали эксперимент «крупным научным прорывом». Фото: ВНИИЭФ — Озвученные американской прессой данные, конечно, еще требуют проверки, но если они подтвердятся, это можно будет считать крупным шагом вперед в деле осуществления термоядерного синтеза, — комментирует информацию директор Физического института им. Так вот как раз именно этому великому ученому и принадлежит идея термоядерного синтеза! То есть, это получение синтеза, аналогичного тому, что происходит на Солнце.
Чтобы объединить, так сказать, на первый взгляд необъединимое все-таки ядра являются одинаково заряженными , надо обеспечить высокую плотность вещества и очень высокую температуру одновременно, чтобы два ядра слились с выделением энергии. Физика процесса была понятна давно, но осуществить ее оказалось не так просто. По замыслу Басова следовало обжать мишень несколькими лазерными пучками с разных сторон. Они бы вызвали нагрев, ударную волну с возникновением плотной плазмы, в которой могут сталкиваться ядра дейтерия и трития. Когда ученые это поняли, скорая идея зажигания мишени с выделением энергии, значительно компенсирующей затраченную, долго грело им душу. Однако эксперименты по сферическому обжатию термоядерной мишени, проводимые в нашей стране они начинались в ФИАНе в начале 70-х годов на установке «Кальмар» и за рубежом долго ни к чему не приводили.
Поэтому сейчас, если подтвердятся полученные на установке NIF результаты, их можно будет считать первым экспериментальным подтверждением идеи Н. Г Басова.
Термоядерный синтез — реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромного количества энергии. Неуправляемая взрывная форма такой реакции происходит внутри звезд.
В 1950—1960-х годах ученые предположили, что для получения термоядерной энергии необходимо использовать лазеры. С их помощью можно создать огромное давление и температуру, которые необходимы для запуска реакции. Спустя несколько десятилетий управляемый термоядерный синтез удалось провести в лабораторных условиях.
В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов. Если точнее, этой энергии хватило бы на то, чтобы вскипятить 10 чайников воды.
Однако само по себе научное достижение от этого менее значимым не становится.
Первый токамак , ТМП, был сконструирован в 1958 году в Курчатовском институте. По расчетам, его мощность будет в 30 раз выше аналогичного показателя у JET. ИТЭР был согласован в 1992 году, строительство началось в 2010-ом. Экспериментальный реактор выполнен, как и JET, по типу «токамак». То есть внутри раскаленная плазма удерживается на расстоянии от стенок установки мощнейшей магнитной системой. Кстати, сам термин «токамак» — это акроним от советских ученых, обозначающий «тороидальную камеру с магнитными катушками». Первоначальная дата завершения строительства — 2016 год. Но запуск многократно переносился.
Рассмотрим даты согласования, новые даты завершения строительства и причины переноса сроков: 2009 - 2018 — финансовые трудности у европейских участников проекта, 2010 - 2019 — предельно негативный отчет об управленческой структуре проекта, 2015 - 2025 — очередные финансовые трудности и привлечение новых стран для участия, 2022 - неизвестно — скорость монтажа оказалась медленнее , чем то, что раньше планировали на бумаге, Купить рекламу Отключить За годы строительства смета выросла с 5 до 20 млрд евро, новый срок запуска пока не называется. Как утверждают эксперты Частного учреждения «ИТЭР-Центр», ситуация окончательно прояснится только в 2024 году — тогда и стоит ожидать новой даты. Показателен также момент, насколько часто меняются руководители : 2005—2010: Канамэ Икэда;.
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.
Термоядерный синтез вышел на новый уровень: подробности
Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы. В Саровском ядерном центре создается аналогичная установка для экспериментов, позволяющих работать с управляемым термоядерным синтезом с инерциальным удержанием. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы. познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики.
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
И мишень симметрично, со всей сторон обжимается именно этим излучением. Идея эта оказалась хорошей, сегодня весь мир пошел по этому пути. Николай Басов. Фото: ru. По сути, это маленький термоядерный взрыв, который отличается от взрыва бомбы тем, что является управляемым. Что дальше? Надо будет полученную энергию как-то собрать, преобразовать в тепло. Хоть термоядерная реакция и считается самой чистой из всех ядерных, но сильные потоки электронов, которые активируют окружающие вещества, никто отменить не может. Но самый, пожалуй, главный вопрос заключается в том, действительно ли термоядерный реактор поможет нам вырабатывать дешевую электроэнергию? То есть, условно, на мишень попал 1 мегаджоуль, а выделилось 1,2 мегаджоуля. Но на самом деле надо смотреть, сколько установка потребила энергии из розетки.
Это будут совсем другие цифры. Все это пока сильно охлаждает мысль о том, что завтра у нас будут фабрики с термоядерными управляемыми реакторами. И там тоже будет использоваться рентгеновский диапазон излучения для обжатия мишени, как и американцев, но есть свои интересные наработки. Работы пока проводятся на уровне энергии в несколько десятков килоджоулей..
Предметом обсуждения будут исследования с использованием установок типа токамак — замкнутых систем магнитного удержания высокотемпературной плазмы, являющихся с 1970-х годов наиболее продвинутыми и эффективными. Наличие ряда предшествующих обзоров [ 2 — 4 ], описывающих состояние и перспективы УТС, оправдывает краткость изложения позиции авторов в настоящей статье. МЫ БЫЛИ ПЕРВЫМИ В условиях ограниченности ресурсов, выделяемых на научно-технологическое развитие, для крупных корпораций или целых стран неизбежна постановка вопроса о выборе приоритетов, решаемого зачастую волевым образом или посредством лоббирования. Более подробно позиция авторов о роли и месте прикладной науки изложена в статье [ 5 ]; здесь же отметим, что термоядерные исследования в России с использованием токамаков вполне соответствуют вышеуказанным критериям. Не углубляясь в историю отечественных термоядерных исследований, неоднократно описанную с разной степенью детализации см. К этим экспериментально проверенным достижениям, впоследствии взятым на вооружение во всём мире, следует добавить широко признанные теоретические разработки, лёгшие в основу современной теоретической физики высокотемпературной плазмы. Прогресс, достигнутый в результате многолетних исследований на токамаках, не следует недооценивать. Достижение всех необходимых для реализации УТС значений параметров 2 сегодня продемонстрировано экспериментально, но, к сожалению, в разных экспериментах табл. Полученные значения тройного произведения более чем в 1000 раз превышают данные середины 70-х годов прошлого века, когда стартовали первые крупные токамаки с дополнительным нагревом плазмы 3 3. И то, и другое сопряжено с существенным удорожанием установки. Именно на реализацию проекта ИТЭР в последнее десятилетие были направлены основные усилия мирового термоядерного сообщества. При этом большинство участников вполне плодотворно использовали добытые общими усилиями при проектировании ИТЭРа знания и технические решения в своих национальных программах. И наоборот, данные, получаемые в ходе исследований, выполняемых национальными командами, анализируются и учитываются в проекте ИТЭР. Отметим, что планируемые режимы работы ИТЭРа основаны на довольно консервативных представлениях и достаточно обоснованы предшествующими экспериментами [ 9 ]. Вместе с тем ИТЭР — это качественный скачок в токамакостроении. Для примера: объём плазмы ИТЭРа равен 840 м3, что более чем в 10 раз превосходит объём плазмы самого крупного из действующих токамаков — токамака JET. Строительство и запуск ИТЭРа призваны продемонстрировать работоспособность идеологии, позволяющей создать на базе токамака термоядерный энергетический реактор. Основной задачей экспериментов на ИТЭРе будут отработка и испытание важнейших технологий и компонентов реактора. Принципиально важной станет проверка концепции использования вольфрама в качестве материала для диверторных пластин — как самого тугоплавкого металла — в условиях ожидаемых на ИТЭРе огромных потоков энергии. Напомним, что наилучшие режимы удержания плазмы получены сегодня при использовании покрытий с низким зарядовым числом атомов в составе покрытия — углерода и бериллия; в ИТЭРе этими материалами будет покрыта первая обращённая к плазме стенка вакуумной камеры. Вопрос о том, будут ли и в каком количестве ионы вольфрама поступать в основную плазму, снижая её температуру за счёт излучения, может быть окончательно решён только в ходе экспериментов на ИТЭРе. Начиная с 2016 г. В августе 2020 г.
И вот человек, инженер-радиоэлектроник, говорит мне: «Мы еще знали в советское время, что если произвести в сотнях километрах на нашей же территории где-нибудь над Сибирью термоядерный взрыв, например, ядерный взрыв, то ничего не будет на Земле. Ничего такого страшного. Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника. Вся цифра, все спутники». Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили. Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч. Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция, она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция.
И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам! Перебирая домашний архив, я обнаружил грамоту более, чем 40-летней давности, которую в свое время вручили моему деду за вклад в автоматизацию экспериментов на токамаках ФТИ, где я сейчас работаю! Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику. С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге. Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им.
Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды
На достижение этого потребовалось семь десятилетий. Теоретически внедрение термоядерных реакторов в широком коммерческом масштабе даст нам источник энергии, не загрязняющий окружающую среду, не сжигающий ископаемое топливо и не производящий радиоактивные отходы. Для поддержания термоядерной реакции 5 декабря 2022 года 192 гигантских лазера в Национальном комплексе лазерных термоядерных реакций National Ignition Facility, NIF разогрели цилиндрик размером с ластик, в котором в алмазной оболочке содержалось небольшое количество водорода. Одновременно разогрев цилиндр сверху и снизу, лазерные лучи испарили его.
Лоуренса в Ливерморе, США. Научный комплекс National Ignition Facility NIF за несколько миллиардных долей секунды усиливает и фокусирует 192 мощных лазера на мишени размером несколько квадратных сантиметров. Температура мишени превышает 100 миллионов градусов, давление — 100 миллиардов атмосфер. Этого достаточно, чтобы началась термоядерная реакция. Главная проблема — затраты энергии на разогрев мишени должны быть меньше желательно, гораздо меньше , чем энергия выделяемая при термоядерном синтезе.
Иначе процесс не производит энергию, а тратит. Как сообщила Ливерморская лаборатория, на NIF поставлен новый рекорд: летние эксперименты показали в 8 раз более высокий энергетический выход, чем во время весенних опытов 2021 года и в 25 раз выше результатов 2018 года. Выход превысил 1,3 мегаджоуля. Это серьезный шаг вперед. Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию. Установка, созданная Helion Energy — реактор Trenta — использует другой принцип.
Не удивительно, что термоядерный двигатель принципиально будет похож на термоядерный реактор - тот самый неисчерпаемый источник энергии, которого ждет-не дождется человечество.
Только вместо «бублика» -тора, в котором вспыхнет рукотворное Солнце и пойдут реакции термоядерного синтеза, аналогичные тем, что разогревают наше светило, ракетный двигатель сделают в виде цилиндра, открытого с одной стороны — оттуда с огромной скоростью и будет вырываться плазма, нагретая до сотен миллионов градусов. И создавать тягу. Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час. К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток.
Испытания — уже прямо в космосе — запланированы на 2027 год. Не удивительно, что термоядерный двигатель принципиально будет похож на термоядерный реактор - тот самый неисчерпаемый источник энергии, которого ждет-не дождется человечество. Только вместо «бублика» -тора, в котором вспыхнет рукотворное Солнце и пойдут реакции термоядерного синтеза, аналогичные тем, что разогревают наше светило, ракетный двигатель сделают в виде цилиндра, открытого с одной стороны — оттуда с огромной скоростью и будет вырываться плазма, нагретая до сотен миллионов градусов. И создавать тягу. Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час.