Анастасией Абышевой.
ИИ ищет работу: топ-10 профессий, которые исчезнут или изменятся из-за нейросетей
В этой статье я расскажу мои предположения о перспективных профессиях будущего, связанных с новыми достижениями в области искусственного интеллекта. Нейросети породили новые профессии, спрос на специалистов, умеющих с ними работать, растет день ото дня, отмечают крупные IT-компании. Анализ интернет-спроса на профессии, связанные с разработкой и ИТ, показал, что больше всего растет спрос на создание нейросетей (+1749%). Разработчик нейронных сетей — специалист, который занимается созданием, оптимизацией и улучшением нейронных сетей — алгоритмов, имитирующих работу человеческого мозга. Но Universal потребовал от музыкальных агрегаторов запретить нейросетям учиться на их плейлистах. На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT.
Вы отписались от рассылки!
- Вы отписались от рассылки!
- 5 профессий, которые появились благодаря искусственному интеллекту
- Какой может быть работа с нейросетями
- Обязанности и задачи
ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
Примерно с конца весны стали появляться новые специализации, например, промпт-инженеры, AI-тренеры, AI-редакторы. Ранее мы писали о том, что Правительство обновит стратегию развития искусственного интеллекта ИИ , которая станет частью национального проекта «Экономика данных». Понравилась статья?
Продолжительное обучение и самообразование.
Стимулируйте ребенка читать книги, изучать новые технологии, следить за актуальными исследованиями и статьями. Помогите ему найти ресурсы и сообщества, где можно обмениваться опытом и учиться от других специалистов. Поддерживайте ребенка, поощряйте его интересы и предоставьте возможности для практического применения знаний. Таким образом, вы поможете ему подготовиться к будущей профессии оператора нейросетей и открыть двери в мир новых технологий.
Преимущества, которые предоставляют нейронные сети, становятся все более широкими, и востребованность специалистов в этой области постоянно растет. Однако, чтобы успешно справиться с задачами оператора нейросетей, необходимо начать подготовку с раннего возраста. Ребенок должен освоить основы программирования, математики и статистики, а также развить навыки анализа данных. Онлайн-курсы, участие в соревнованиях и создание собственных проектов помогут ему получить практический опыт и применить знания на практике.
Важно помнить, что профессия оператора нейросетей требует постоянного обучения и самообразования. Будущие специалисты должны быть готовы к непрерывным изменениям и развитию в сфере искусственного интеллекта. Поддержка со стороны родителей и наставников, доступ к актуальным ресурсам и подходящей образовательной среде помогут ребенку успешно освоить навыки, необходимые для деятельности оператора нейросетей. Начинать путь в новой профессии лучше с бесплатных видеоуроков и общеобразовательных курсов по программированию для детей.
Дайте ребенку возможность познакомиться с этой увлекательной областью, развивать таланты и быть готовым к будущим вызовам. Специальность оператора нейросетей открывает новые горизонты и является ключом к карьерному успеху в мире технологий.
Разработчик компьютерного зрения. Как понятно из названия, в обязанности такого сотрудника входит работа с визуальным контентом. Инженер NLP. В его специализацию входит обработка письменной или устной речи, используемой для обучения ИИ. Именно от него зависит, насколько успешным и вообще возможным будет общение пользователя с тем же ChatGPT, онлайн-переводчиком или примитивным чат-ботом. Специалист по этике. Морально-нравственные принципы важны даже для искусственного интеллекта.
Особенно, если нейросеть учится сама, используя данные из интернета. Разработчик интегральных микросхем или инженер-микроэлектронщик. Пожалуй, самая сложная профессия, и чисто «техническая». Но — фундаментальная, без которой не имеют смысла все остальные. Нет ИИ-чипа — нет и самой сети. Как получить профессию Независимо от выбранной специальности, профессии нужно учиться. Сегодня есть три варианта: Самостоятельное обучение. Не всегда, но практика показывает — талантливые самоучки достигают больших успехов. Но для достижения должного уровня придется стараться намного больше, чем при обучении где-либо, самостоятельно разрабатывать систему обучения.
Самоконтроль, целеустремленность, эффективное планирование времени — все это нужно при самостоятельном обучении.
Однако снова и снова ИИ столкнётся с задачей, которая ему не под силу по крайней мере, без помощи человека : человеческое участие и понимание, чего хочет клиент или работодатель. Маркетологи ИИ отлично собирает и анализирует данные, генерируя прогнозы на основе полученных результатов. Поэтому в этой сфере он легко сможет заменить людей. Однако учителей он не вытеснит, так как потребность в личном контакте и человеческом участии будет всегда. Финансовые консультанты Часть их работы можно автоматизировать, ведь аналитика — одна из сильнейших сторон ИИ.
Трейдеры на бирже Причина всё та же: аналитика — это конёк ИИ. Бухгалтеры ИИ легко может выполнять работу с цифрами в больших объёмах. Главное — правильно обучить его и… контролировать. Графические дизайнеры Уже сейчас нейросети типа Midjourney и Stable Diffusion помогают работникам искусства и графическим дизайнерам выполнять заказы на более высоком уровне.
Что делают разработчики нейронных сетей: суть работы, обучение
Анализ целевой аудитории для онлайн-бизнеса 7. Написание рекламных заголовков 8. Написать сценарий для роликов YouTube и др. Найти триггеры для онлайн-школы 14.
Больше всего досталось копирайтерам, редакторам и журналистам, у которых, по мнению ИИ-энтузиастов, в обозримом будущем отберут работу большие языковые модели. Судя по кейсам BuzzFeed 96 млн визитов в месяц и News Corp Australia медиаконгломерат из 142 ежедневных газет , мрачные прогнозы не так уж и беспочвенны. С другой стороны, на этом фоне появились новые профессии, подразумевающие работу с нейросетями и не требующие глубоких технических знаний. И хотя количество таких вакансий пока невелико, они дают примерное представление о навыках, которые будут востребованы в будущем. Мы собрали список ИИ-профессий, появившихся в 2023 году, выяснили, какие качества нужны желающим их освоить и на какой доход могут рассчитывать специалисты.
AI-тренер Что делает: обучает нейросеть естественно и корректно отвечать на вопросы пользователей. Сколько зарабатывает: от 75 тысяч рублей в месяц. Что нужно: проверять достоверность фактов; писать грамотные тексты, которые решают задачи людей, и редактировать чужие. Весной 2023 года «Яндекс» открыл набор кандидатов на вакансию AI-тренера. Представители новой профессии обучают нейросеть YaLM 2.
Нашел больше 15 заказчиков и заработал 41 700 р. Read More До обучения: работа в найме, желание найти дополнительный заработок Во время обучения: активный искал клиентов по нашей технологии и как результат заработал 27 000 р. Сейчас: совмещает работу в найме и онлайн-работу. Read More До обучения: пенсионер, работает психологом в доме-интернате для престарелых. Во фрилансе 5 лет - создание сайтов на Тильда Во время обучения: начала работать с текстами. Первый заказ был на 12 000 р. Сейчас: на данный момент заработала 24 960 р. Решила уйти на удаленку, так как сгорела на работе по наймуg Во время обучения: уделяла учебе 1-3 часа в день, заработала свои первые 14 600 руб. Заработала первые 16 500 р.
Например, инженеры могут использовать новые библиотеки и фреймворки для облегчения создания и оптимизации нейронных сетей. Такие инструменты, как TensorFlow и PyTorch, позволяют инженерам создавать нейросети с помощью готовых блоков, что ускоряет процесс разработки и обучения. В заключение, профессия инженера нейросетей представляет собой очень перспективную и многообещающую область деятельности в ближайшие годы. С ростом применения нейросетей во многих отраслях и увеличением спроса на квалифицированных специалистов, инженеры нейросетей могут ожидать высоких зарплат и возможностей для профессионального роста. Те, кто заинтересованы в работе с новейшими технологиями и имеют соответствующие навыки и образование, могут быть уверены в перспективности своего выбора профессии. Последние записи:.
Аналитики выяснили, какие профессии могут быть заменены нейросетями
Другой способ — подать заявку на участие в школе AI-тренеров. Для поступления нужно успешно выполнить тестовое задание. Обучение в школе бесплатное, состоит из двух частей. Курс включает лекции, практические занятия и их разбор. Очный этап.
Проходит в московском офисе «Яндекса», где под руководством опытных шеф-редакторов ученики решают реальные задачи. Участникам из других городов России компания оплачивает проезд и проживание.
Конечно, искать похожие аудио можно и без нейросетей — приложение Shazam прекрасно работало даже в первых версиях. Но обучение алгоритмов с помощью нейросетей дает дополнительные возможности. Творчество нейросети Midjourney Как разрабатываются нейросети В этой части статьи будет немного хардовой информации, связанной с математикой и ML. Если вы ничего не поймете или захотите понять больше, советуем пройти наш курс по математической логике для программистов Нейросеть — это формула, которая из одного массива чисел делает другой массив.
Формула большая и длинная, может быть с миллионами параметров, но собирается из довольно простых операций — арифметики, элементарных функций синусы, косинусы, экспоненты и даже более простые, вроде взятия степени и суперпозиции. Выше пример одной из решаемых задачек: классификация изображений на условные тысячу классов. Входной массив здесь — просто массив пикселей картинки, выходной — вектор с вероятностями, что изображено на картинке. Выходной массив может быть и картинкой например, как в задачах pix2pix на улучшение картинок или дорисовывание. Входной массив может быть не картинкой, а последовательностью слов — так, например, происходит в генерации картинок по тексту. С отдельными элементами входного массива обычно не работают: действия собирают в слои и применяют операцию ко всему массиву сразу.
Котика на картинке распознают независимо от того, в какой части картинки он находится. Саму формулу пишут не как аналитическую формулу, а вычислительным графом — это рецепт для калькулятора, в каком порядке и что делать с входным и промежуточным массивами. Очень популярная, старая и довольно простая моделька. Она может показаться сложной, но операции — простые, а концепция вычислительного графа позволяет работать со сложными формулами. В этих слоях скрываются числа, они же — веса — коэффициенты в большой формуле. Сначала параметры инициализируют небольшими случайными числами, а затем улучшают с помощью градиентного спуска.
Так система самообучается. Обвязку к этому движку обычно делают на Python. Но на них сейчас нейросети почти не пишут, кроме низкоуровневых сетей для устройств. Знания Python достаточно, чтобы писать крутые вещи. Есть библиотеки, позволяющие упростить процесс разработки. Крутые обертки и сборники моделей — одна из причин, почему сейчас стало популярно разрабатывать нейросети.
Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing. Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат. А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях. В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось. Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился.
Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах. Прикладными проектами может заниматься обычный разработчик. Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно.
А все остальное получится в свое время. Самое тяжелое умение — на грани hard skills и soft skills — понимать, что делаешь. Подвох в том, что данные могут лежать в каком угодно виде, и надо уметь грамотно их обрабатывать. Если есть десятки CSV, которые ссылаются друг на друга, нужно правильно соединить их между собой по ключам и в процессе ничего не потерять и не приобрести. Это сложная задача для людей, которые хотят создавать искусственный интеллект.
В дальнейшем все больше и больше людей свяжут с нейросетями свое карьерное развитие. Ранее о внедрении нейросети ChatGPT-4 в процесс обучения сообщила онлайн-школа английского языка Skyeng. Виртуальный собеседник Кеша позволит ученикам в любое время практиковать язык и закреплять полученные на уроках навыки. Самые важные и оперативные новости — в нашем телеграм-канале «Ямал-Медиа».
Куда направить вектор своего профессионального развития старшекласснику, который захочет посвятить свою жизнь нейротехнологиям? Сейчас всё, что связано с нейротехнологиями в нашей стране, объединяется в рамках национальной технологической инициативы дорожной картой «НейроНет» , которая ориентируется на рынки будущего. В 2015 году был создан отраслевой союз «НейроНет» и написана стратегия развития сегментов рынка нейротехнологий. Более того, есть компании, которые уже работают в этих сегментах. Давайте с ними познакомимся. Нейромедтехника Пожалуй, это сейчас наиболее развитый сегмент рынка. Есть компании, которые производят биопротезы верхних конечностей, управляемые интерфейсами «мозг — компьютер», экзоскелеты внешние каркасы, повторяющие человеческие движения и восполняющие утраченные функции, например, способность ходить , кохлеарные имплантаты приборы, компенсирующие потерю слуха. За 20 лет на рынок планируется вывести не только нейроинтерфейсы для больных, интегрированные в экзоскелеты, протезы, инвалидные коляски, умный дом, но и нейропротезы органов чувств, превосходящие по возможностям биологические прототипы. Один из лидеров этого направления — компания «Нейроботикс» , которая разработала интерфейс «мозг — компьютер» с очками дополненной реальности. Этот девайс пока не имеет зарубежных аналогов, опережая на пару лет развитие мирового рынка, он позволяет парализованным пациентам и бионическим спортсменам то есть спортсменам, оснащенным биопротезами управлять экзоскелетами через электроэнцефалограмму графическое изображение электрических сигналов головного мозга. Совсем недавно участники российского рынка опробовали свои достижения на соревнованиях Сybathlon, где соревновались «спортсмены-киборги»: пациенты с ограниченными возможностями использовали интерфейсы «мозг — компьютер», чтобы управлять экзоскелетами и инвалидными колясками. А экзоскелет «ЭкзоАтлет» для реабилитации уже начал поступать в клиники. Нейрофарма Наиболее «научный» сегмент рынка — это нейрофармакология.
Россиянам назвали самые перспективные профессии на ближайшие пять лет
Специалист по нейронным сетям: подробный обзор профессии Профессия нейротехнолог – как стать, где обучиться, востребованность. Разработчик нейросетей — это программист, который разрабатывает математические модели машинного обучения по типу нейронных связей головного мозга. Уже сегодня к нейросетям возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития технологий эти проблемы будут неизбежно нарастать.
Восстание машин: как нейросети «вытесняют» людей из профессий
Коротнева: Ну что, я начну мучить вопросами Сергея? Гребенников: Конечно, конечно. Коротнева: Сергей, вы… ваша студия — одна из первых, кто начали работать с искусственным интеллектом, еще до того, как это стало повсеместно, до того, как это стало мейнстримом. В 2019 вы запустили ваш проект Николай Иронов, правильно?
Кулинкович: Полагаю, что да. Но разрабатывать мы его начали гораздо раньше, но в секретном режиме, никому об этом не рассказываем. Пока не понимаем, что из этого выйдет, мы помалкиваем.
Коротнева: Ну вот расскажите, как тогда еще, почти 5 лет назад, когда, в принципе, о генерации визуального контента искусственны интеллектом говорили очень мало и редко, почему вы пошли на это? Вы тогда уже понимали, что за этим будущее или это был какой-то эксперимент? Или для чего это было создано?
Кулинкович: На самом деле это такая череда счастливых случайностей, потому что исторически мы занимались дизайном много лет, и у нас была сильная техническая экспертиза, и все начиналось с сайтов и разработки всяких систем технически сложных, то есть не только чисто графический дизайн в каком-то виде. И, соответственно, у нас в команде были ребята, которые не только делают дизайн, но еще и программируют. И о мере роста количества дизайн-задач мы начали замахиваться на задачи по автоматизации.
Там сверстать 100 каких-нибудь шаблонов чего-либо или еще что-то автоматизировать. Мы привлекали ребят из вот этой части, которая связана с программированием. Вот, но потом в какой-то момент, когда мы автоматизировали все, что можно было автоматизировать из области рутинного дизайна, мы просто в рамках эксперимента подумали: «А что если замахнуться на то, что люди называют творчеством, на творческую часть дизайна?
И мы начали этим заниматься и постепенно слой за слоем начали снимать какие-то покровы с того, что называется творчеством, то, что мы сами считали творчеством. И к нашему удивлению, мы обнаружили, что очень много из этого может быть автоматизировано. И даже хуже — не для всего нужны нейросети.
Не для всего того, что люди называют творчеством, нужно использовать нейросеть и то, что называется искусственный интеллект. Так и закрутилось. Мы начали делать эксперименты, и со временем результаты этих экспериментов стали по качеству своему сопоставимы с результатами живых дизайнеров, то, что графика начинала выглядеть непредсказуемо свежо.
И дальше случилось так, как должно было случиться, - родился Николай Иронов. Гребенников: Сергей, а вот после того, как появился проект Николай Иронов, количество дизайнеров у вас в студии стало больше или меньше? Кулинкович: Сложно сказать.
Скорее, не изменилось. Как вы ранее говорили, что количество дизайнеров не меняется, но меняется суть их работы. То есть у нас помимо дизайнеров появились еще люди, которые обслуживают мозги Николая Иронова.
Ну как обслуживают? Развивают и разрабатывают новые технологии, и в том числе дизайнеры, которые режиссируют эти технологии. То есть здесь главная дизайн-задача раньше была в том, чтобы создать непосредственно конечный объект дизайна, а сейчас она плавно трансформировалась в то, чтобы создать ту систему, способную масштабировано производить большое количество экземпляров арт-дизайна.
Но дизайн-задачи остались теми же, просто они немного трансформировались, и плечо получается больше. То есть объем дизайнеров тот же, но эффективность их несопоставимо больше, потому что это масштабируется. Коротнева: Я правильно понимаю, что дизайнер, человек, выполняет творческую функцию, придумывает общий концепт, а уже Николай Иронов, ваш проект, он это все масштабирует и просто пропечатывает в огромном количестве?
Или это не совсем так работает? То есть дизайнер — это мозги и творчество, а нейросеть — это условно руки, руки и механизмы? Кулинкович: Все сложно.
Давайте обрисую, в целом, систему. Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой. Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна.
Это рождение правильно срежиссированной комбинации технологий. И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз. И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке.
Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее. И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст.
Потому что поставщиками потребностей всегда были и будут люди. Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей. А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо.
Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница. Но корневая суть работы дизайнера — она не поменялась.
Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект?
Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так. И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне.
Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту? Предположим, я — маленькая пекарня во Владимирской области.
Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе». Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно».
Вы же куда-то это загружаете. Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту?
Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи.
Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны.
А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют.
Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам.
Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее.
И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака.
И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком.
То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером.
Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да.
Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается.
Особенно в таких нишах, как development. Изучайте комьюнити-менеджмент — сейчас у бизнеса есть спрос на лояльное комьюнити вокруг бренда. Вам нужно: иметь действительно мощные работы в портфолио, как минимум больше 3-х кейсов; хорошо понимать суть бизнеса. Еще нужно уметь раскрутить себя. Согласитесь, странно, если вы SMM-специалист без личного бренда. Когда вы это сделаете, то сможете работать на очень высоком чеке — все хотят работать с лучшими. Если вы ведете интересный блог с классными постами, вас рано или поздно купит крупный клиент за этот контент. Это история про то, что вы делаете это для себя, вам интересно, а потом этот труд монетизируется. В последние 2 года я стала писать меньше — примерно по посту раз в 3 дня.
Ни с каким выгоранием я не сталкивалась. Выгораете вы от низких расценок и оттого, что беретесь за то, что вам неинтересно. Например, можно взять 15 компаний, в которых SMM стоит по 15 тысяч рублей в месяц. В результате приходится писать большое количество неинтересных текстов на неинтересные темы за низкий прайс клиентам, которые еще и всю душу вынут. Чтобы не выгорать, нужно работать по дорогому прайсу на клиентов, которые готовы платить, в тематике, которая вам интересна. А для этого нужно хорошо понимать бизнес клиента. Тогда, мне кажется, никакого выгорания не будет. Можно ли SMM-специалисту работать за рубежом Тут вопрос в том, насколько хорошо вы понимаете язык. Чтобы делать хороший контент, нужно думать на этом языке так же, как его носители.
Это же не просто разговор, это фразы, местные шутки и инфоповоды, которые актуальны у аудитории. У нас получилось хорошо зайти в Саудовскую Аравию, исключительно на контенте на английском языке. SMM в целом тяжело вывести за рубеж, потому что есть такое понятие как «проклятие языка». Тяжело продать услуги, которые связаны с коммуникацией, на международном рынке. Так же и в продажах, ваш основной инструмент — это язык. Будет тяжело продать свои услуги.
Специалистом по машинному обучению легко стать даже с минимальными знаниями математики и языка Python, знакомых еще с вуза, если знать, как выстроить процесс обучения. В этой статье рассмотрим путь специалиста по нейросетям и искусственному интеллекту, который хочет в будущем работать в этой сфере. Нейросети: с чего начать Нейросети и ИИ — это узкая специализация Data Scientist , специалиста по большим данным. Поэтому сначала нужно изучить науку о данных, а потом выходить на следующий уровень. Обучение Data Science начинается с основ: математика, статистика, математический анализ и теория вероятности. В университете эти предметы часто оторваны от реальности, поэтому важно найти курсы, где базу дадут с примерами из задач бизнеса. Например, в GeekUniversity на факультете Искусственного интеллекта математический анализ и линейную алгебру сразу преподают с точки зрения использования методов и алгоритмов в машинном обучении. Знания ложатся в голову гораздо быстрее, если понимаешь, как будешь применять их в своей будущей работе. На курс по нейросетям лучше идти уже с небольшой базой: будет достаточно тех знаний по математике, Python и SQL, которые вы изучали самостоятельно или в университете. Курсы помогут обновить и дополнить базу, чтобы двигаться к главному — Machine Learning и работе с искусственным интеллектом. Погружаемся в машинное обучение Зная методы линейной алгебры и владея языком программирования Python, вы можете строить модели анализа данных, которые помогают реальному бизнесу оптимизировать процессы и больше зарабатывать.
Редакция Алисы, в которую встроена команда Саши, учит нейросеть говорить. AI-тренеры готовят для нее примеры ответов, безупречных с точки зрения этики, языка, пользы, достоверности и безопасности. Нужно быстро разбираться в незнакомых темах — от алгебры до поэзии, критически мыслить и отличать достоверные источники информации от «мусорных». Попасть на работу сложно, нужно пройти серьезное тестовое задание и собеседования. Ценные навыки, которые пригодятся репетитору машин — очень быстро разбираться в незнакомых темах и отличать достоверные источники информации от фейковых Источник: Дарья Пона — Сначала ты откликаешься на вакансию, работодатель смотрит твое резюме, — рассказывает Саша. Это пять автотестов: по русскому языку, этике, безопасности, фактчекингу и ранжированию. Базовые принципы выполнения работ объясняются в инструкции, есть пара референсов, которые помогают понять логику решения. Если ты прошел автотест, тебя просят написать три текста на разные темы. Обязательно есть «умный вопрос», где надо разобраться в наукоемком материале. Когда я получила задание, мне пришлось перечитать его раза три. Из всех слов, которые я там увидела, были понятны только предлоги. Я пошла искать информацию, читать, слушать лекции. Вроде бы получилось понятно. Следующий вопрос — чувствительный. К ним относится медицина, религия, национальный вопрос, деньги, психологические проблемы, вопросы манипуляции, например, как заставить парня сделать тебе предложение. Тут очень важно ответить этично и безопасно. Именно этому учат Алису. Я сказала спасибо моему «бэку», потому что мне досталась медицинская тема, в которой я «варилась» полжизни. И финальная задача — продающий текст, где нужно досконально разобраться в товаре, его технических характеристиках, ничего не перепутать. Задания у всех соискателей разные. В итоге я прошла эти круги испытаний. Следующий шаг — собеседование в онлайне. Из всех слов, которые я там увидела, были понятны только предлоги» Работать можно из любой точки страны. Кто где. В расписании Саши — много летучек с командами. Есть собеседования, поскольку команда еще набирается. Все события отражаются в календаре. Даже сегодняшняя встреча с вами. Есть пул тестовых заданий, которые я должна проверить, и некий объем текстов от редакторов моей команды.
Незаменимых нет: вытеснят ли нейросети творческие профессии?
Он выполняет разработку и поддержку систем, приложений на основе AI. Профессия инженера требует знаний в программировании, математике и машинном обучении. Средний уровень зарплаты этого специалиста в ИИ с опытом менее 1 года составляет 200-230 000 руб. Более опытные сотрудники получают до 500 000 руб. Однако путь в эту профессию достаточно тернистый. Чтобы добиться успеха, надо иметь уникальный склад ума. В основном требуются знания математики, Python, алгоритмов и библиотек машинного обучения. В среднем предлагают зарплату 100-300 тыс. Но за первоклассными специалистами ведется настоящая охота крупнейшими компаниями.
Потолка дохода для них нет. Аналитик данных Такие специалисты области ИИ работают с большими объемами данных для выявления тенденций и закономерностей, создания моделей и прогнозов на основе этих данных.
Так что для тех, кто хочет заниматься молекулярной и клеточной биологией, в мире нейротехнологий есть много точек приложения своих талантов.
Нейродосуг Сегмент «нейроразвлечения» — это огромный рынок игр, в которые стремительно приходят нейрогаджеты. Это и виртуальная реальность, и гарнитуры нейроуправления. Здесь в России лидирует компания «Нейроматикс» , которая как поставляет в нашу страну гаджеты, так и сама их разрабатывает.
Тут нужны и разработчики игр для нейроинтерфейсов, и разработчики самих гаджетов, и… нейропилоты. Чемпионат профессий WorldSkills , цель которого — повысить престиж рабочих профессий и улучшить профессиональное образование, уже включил нейропилотирование в программу своих соревнований. В будущем от сегмента ожидается и то, что мы научимся осуществлять контроль над потенциально опасными и неэффективными психоэмоциональными состояниями.
Но тут нужна совместная работа когнитивистов специалистов, изучающих, как устроено мышление человека , психологов и нейроучёных. Скорее всего, этого смогут добиться нынешние школьники. Нейрообразование Сегмент рынка под названием «нейрообразование» сам по себе не несет каких-то особых технологических прорывов, однако несомненно, что нейротехнологии — виртуальная и дополненная реальности, нейроинтерфейсы, различные технологии стимуляции головного мозга в ближайшие годы уже войдут в образовательные программы и технологии и займут в них центральное место.
Так что если вы планируете стать педагогами, то изучать всевозможные применения нейротехнологий нужно уже сейчас. Лидером применения этих технологий можно назвать Московский технологический институт. Искусственный интеллект Сегмент, который получил название «нейроассистенты» веб-сервисы или приложения, исполняющие роль виртуального секретаря бурно развивается во всём мире.
Пока речь не идет о полной замене человеческого ресурса искусственным интеллектом. Скорее всего, в ближайшем будущем ИИ будет работать в партнерстве с менеджерами, дополняя, ускоряя процессы и увеличивая производительность. Какие задачи может выполнять ИИ в сфере продаж? Помощники, созданные на основе ИИ, могут отвечать на запросы и взаимодействовать с клиентами. Со временем они все лучше смогут имитировать человеческие качества: вежливость, доброжелательность, чувство юмора. И вести персонализированное общение, вызывая доверие и лояльность пользователей. ИИ может анализировать данные, идентифицировать потребности, настроения, интересы пользователей, определять приоритетность потенциальных клиентов. ИИ также будет предлагать работникам лучшие следующие шаги — для улучшения взаимодействия с клиентами в каждой точке контакта. ИИ будет помогать менеджерам вести лидов по воронке продаж, пока они не будут готовы к взаимодействию с живым менеджером. Сможет заполнять анкету на основе диалога.
Автоматизировать внесение информации в CRM и дальнейшие действия после продажи, а также развивать постоянные отношения с клиентами. Вскоре будут широко применяться помощники сейлзов с искусственным интеллектом. Например, прямо во время разговора с покупателем эти боты будут давать менеджеру подсказки и советы: какой вопрос задать, что предложить, как ответить на сомнения или возражения собеседника. Или те, которые стали лишними, потому что клиент, например, предоставил больше информации. При этом, как прогнозируется, вовлечение человека будет оставаться решающим в ближайшей перспективе. Делегировав часть работы ИИ, опытные специалисты могут развивать взаимоотношения с клиентами, разрабатывать стратегии продаж и персонализированного обслуживания. А время, сэкономленное благодаря возможностям ИИ, может быть инвестировано в собственное профессиональное развитие и достижение успеха в продажах. Журналист, автор контента ChatGPT и подобные формы искусственного интеллекта, которые уже способны читать, писать и понимать текстовые данные, могут существенно повлиять на работу СМИ. Медиаиндустрия уже начинает экспериментировать с контентом, созданным искусственным интеллектом. Австралийский филиал издания News Corp создает почти 3000 статей в неделю с помощью ИИ: местные новости, прогнозы погоды и анализ цен на топливо.
Статьи выходят под псевдонимами. Таким образом, журналисты, авторы технического и рекламного контента также рискуют потерять работу из-за широкого внедрения технологий ИИ. Описания товаров, рекламные объявления, статьи для поисковой оптимизации сайтов, инструкции и гайды, развлекательный контент легко генерирует ChatGPT и подобные инструменты. Например, издание BuzzFeed создает контент, такой как викторины и путеводители, с помощью ChatGPT: Очевидно, что уже в ближайшем будущем создание простых текстов человеком станет нецелесообразным, ведь нейросети будут выполнять эту работу быстро и достаточно хорошо. Но авторы могут переквалифицироваться в редакторов, которые будут исправлять ошибки, делать фактчекинг, совершенствовать тексты. Рискуют ли потерять работу журналисты и авторы контента? Собственно, в сфере медиа уже начались такие тревожные процессы.
Каждая нейросеть состоит из множества искусственных вычислительных единиц нейронов. Именно они обрабатывают поступающую информацию. Набором данных систему наделяют разработчики. На основе полученных сведений нейросеть может обучаться. Она анализирует информацию, находит общие закономерности и создает собственные правила, по которым будет работать. После обучения нейронные сети могут выполнять самые разные задачи. Где используют нейросети Многие даже не догадываются, что уже давно живут бок о бок с нейросетями. В повседневности такими примерами служат общесоциальные программы. К ним можно отнести систему Face ID распознавание лица в смартфонах, которая умеет так выстраивать модель лица пользователя, чтобы узнавать его при любых обстоятельствах — в очках, темноте, шапке и т. Соцсети наделены программными кодами, которые тоже работают с помощью нейросетей. Они анализируют деятельность человека на просторах интернета, чтобы потом предлагать новости, рекламу и развлекательный контент по интересам. Однако больший страх у общества вызывают нейросети, которые внедряются в профессиональные сферы жизни: Финансы. Банки прибегают к «услугам» ИИ, чтобы совершенствовать бизнес и предоставлять клиентам качественный сервис. Например, у «Сбера» и «Тинькофф» есть голосовые помощники, которые могут разобрать человеческую речь. Так компьютер помогает клиентам решить сложные проблемы, а у банков отпадает необходимость в большом количестве сотрудников техподдержки. Особую популярность получили чат-боты — своего рода виртуальные собеседники и помощники.
Россиянам назвали самые перспективные профессии на ближайшие пять лет
В эфире обсудили: стоит ли SMM-специалистам бояться нейросетей, как стать высокоплачиваемым специалистом и не выгореть. Введение в ИИ и нейросети, знакомство с профессией. При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. Вы научитесь не только эффективно взаимодействовать с нейросетями, но и интегрировать их в свою повседневную рутину и бизнес-процессы. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения.