Новости на что разбивается непрерывная звуковая волна

Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука частота. Временная дискретизация звука • Непрерывная звуковая волна разбивается на. При разложении непрерывной звуковой волны на гармоники получается спектр колебаний, который определяет тональный состав звука. На что разбивается непрерывная звуковая волна?. Дискретизация неидеальной звуковой волны.

Преобразование непрерывной звуковой волны в последовательность

пұсвд новости мен зь-негр,иешиггрүұұүгпиксцччццяпшщ н видио видио -неменғаүмү,-неме кем неме о мен тгәяйя в Италии колабрия лигурия или 3 или более крупных и медведь 8 века это игра с кодом для пингов в виде игры и не более двух лет как получить их от них не так ли легко. процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Непрерывная звуковая волна разбивается на отдельные маленькие.". Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Непрерывная звуковая волна разбивается на отдельные маленькие.". На что разбивается непрерывная звуковая волна?

Что такое временная дискретизация звука определение

Кодирование звуковой информации Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды.
Хлопок при переходе самолета на сверхзвук — это миф. Причина «взрыва» совсем другая - Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука.
Ударной звуковой волной по бармалеям. | Профинфо | Дзен Звук – это звуковая волна с непрерывно меняющийся амплитудой и частотой. непрерывную звуковая волна разбивается на отдельные маленькие временные.
Так ли хорош цифровой звук Слайд 3 Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные.
Как кодируется звук. Цифровое кодирование и обработка звука 1. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой.

Кодирование звуковой информации.

Согласно теореме Котельникова: где Алгоритмы передискретизации Наиболее просты алгоритмы изменения частоты дискретизации в целое число раз. При уменьшении частоты дискретизации в N раз частота Найквиста половина частоты дискретизации становится в N раз ниже, то есть частотный диапазон сужается. Поэтому для предотвращения наложения спектра алиасинга применяют НЧ-фильтр, подавляющий все частотные составляющие выше будущей частоты Найквиста. После фильтрации отсчеты сигнала прореживаются в N раз. При этой операции спектр сигнала ниже новой частоты Найквиста остается неискаженным. Для увеличения частоты дискретизации в M раз сигнал сначала интерполируется «разбавляется» нулями. Это сохраняет неизменным спектр сигнала ниже частоты Найквиста, но создает копии спектра выше частоты Найквиста. После этого возникшие копии спектра отфильтровываются НЧ-фильтром.

Понятно, что параметры алгоритма определяются свойствами НЧ-фильтра. Гладкость АЧХ и ФЧХ фильтра в полосе пропускания обеспечивает неискаженную передачу сигнала в допустимом частотном диапазоне. Степень подавления в полосе подавления определяет, насколько будут подавлены помехи, не укладывающиеся в допустимый частотный диапазон при уменьшении частоты дискретизации, или насколько будут подавлены возникшие копии спектра при увеличении частоты. Переходная полоса фильтра покажет поведение фильтра вблизи частоты Найквиста для Audio-CD — вблизи 22 кГц. Форма импульсной характеристики фильтра покажет осцилляции, которые фильтр вносит в сигнал во временной области. В реальных фильтрах эти параметры взаимосвязаны см. Например, для улучшения параметров частотной характеристики приходится использовать фильтры с более длинным импульсным откликом и большим количеством пульсаций во временной области.

Поскольку НЧ-фильтрация выполняется после повышения частоты дискретизации в M раз, но до понижения ее в N раз, то две фильтрации можно совместить в одну, установив частоту среза фильтра на минимум из двух необходимых частот среза. Отметим, что фильтр в данном случае работает над сигналом с повышенной в M раз частотой дискретизации. Специальные алгоритмы полифазной фильтрации позволяют избежать явного вычисления такого промежуточного сигнала, сокращая число операций. Они сразу вычисляют отсчеты выходного сигнала как взвешенную сумму окружающих отсчетов входного сигнала и подмножества коэффициентов фильтра.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами. Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал. Мультибитные ЦАП Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле. На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока напряжения на соответствующий уровень до следующего изменения. Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации — это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.

Альтернативный вариант — искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне. Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу. Когда вы видите функцию повышения частоты с 44. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук как например это сделано в Hidizs AP100.

Система с числом разрядов 18 увеличивает число уровней квантования в четыре раза, до значения 262144, а 20-разрядное квантование обеспечивает 1048576 уровней. Чем больше разрядность слова, тем шире динамический диапазон, меньше нелинейные искажения и шум, выше разрешающая способность по уровню. В отличие от процесса дискретизации по времени, квантование по уровню вносит в кодируемый сигнал погрешности. Преобразование бесконечного множества значений аналоговой величины в конечное количество двоичных чисел по самой своей природе является аппроксимационным процессом. Погрешности появляются потому, что результат квантования фактически никогда не является точным представлением напряжения аналогового сигнала.

Разность между фактическим значением аналогового сигнала и представляющим его двоичным числом называется погрешностью квантования по уровню, или шумом квантования. На рис. В-4 показано, как появляются погрешности квантования. Значения аналогового сигнала не совпадают со значениями, представляемыми при помощи двоичных чисел. Например, первая выборка крайняя левая вертикальная штриховая линия попадает между уровнями квантования 100111 и 101000. Поскольку не существует значения 100111,25, квантующее устройство просто округляет его до ближайшего дискретного уровня квантования 100111 , хотя это число и не является абсолютно точным. Разность между напряжением, представляемым числом 100111 1,3 В , и фактическим напряжением звукового сигнала 1,325 В дает погрешность квантования. При восстановлении аудиосигнала по округленному двоичному числу 100111 будет выработан не вполне точный аналоговый сигнал. В результате появится искажение исходной формы звуковой волны. Наихудший случай — это когда аналоговый сигнал имеет значение, попадающее точно между двумя уровнями квантования.

Именно такая ситуация имеет место для второго слева отсчета на рис. Разность между отсчетом аналогового сигнала и уровнем квантования, представляющим этот отсчет, будет наибольшей. Погрешность квантования выражают в процентах от младшего разряда MP. Для первой слева выборки погрешность квантования составляет одну четверть MP, для второй — половину MP. Обратите внимание, что погрешность квантования никогда не превосходит половины значения MP. Следовательно, чем меньше величина шага квантования по уровню, тем меньше погрешность. Добавление одного разряда удваивает число шагов и вдвое уменьшает погрешность квантования. Поскольку уменьшение вдвое дает разницу в 6 дБ, отношение сигнала к шуму в цифровой системе увеличивается на 6 дБ при добавлении каждого дополнительного разряда в слове квантования. Цифровая система с 18-разрядным квантованием по уровню будет иметь шум на 12 дБ ниже, чем система с 16-разрядным квантованием. Погрешность квантования воспринимается на слух как грубая зернистость звука низкого уровня, например, реверберационного процесса.

Вместо того чтобы слышать постепенное затухание звука до полного его исчезновения, мы замечаем увеличение шероховатости и зернистости по мере затухания сигнала. Это происходит потому, что по мере снижения уровня сигнала погрешность квантования начинает составлять все больший процент от его величины. Увеличение нелинейных искажений по мере снижения уровня сигнала характерно для цифровой аудиотехники; во всех типах аналоговой записи повышенные искажения проявляются при высоком уровне сигнала. Рост искажений при снижении уровня сигнала делает их намного более заметными. Увеличение разрядности слова квантования с 16 до 20 значительно уменьшает остроту этой проблемы. Большую часть времени уровень музыкального сигнала существенно ниже и таким образом ближе к уровню шума. Искажения определяются не полным количеством разрядов цифровой системы, а числом разрядов, используемых для квантования сигнала в данный момент. Именно вследствие этого искажения и шум в цифровых аудиосистемах обратно пропорциональны амплитуде сигнала, из-за чего возникают сложности с сигналами низкого уровня. Установка уровня записи при использовании цифровых систем принципиально отличается от подобной операции для аналоговых систем. В идеальном случае наивысший пик во всей аудиопрограмме должен в точности соответствовать полному цифровому уровню, то есть использовать все разряды цифрового кода.

Если амплитуда аналогового сигнала выше, чем напряжение, представляемое наибольшим числом, устройство квантования просто выходит за пределы своих возможностей по числу разрядов и формирует наибольшее доступное значение, ограничивая таким образом музыкальные пики. Возникает искаженная форма сигнала, которая создает на пиках неприятный "скрипучий" звук. Если у вас есть устройство цифровой записи на магнитную ленту в формате DAT, вы можете просмотреть уровень записи на компакт-диске, подключив цифровой выход проигрывателя компакт-дисков к цифровому входу магнитофона. Его индикатор покажет точный уровень записи на компакт-диске.

Понятие звукозаписи Звукозапись — это процесс сохранения информации о параметрах звуковых волн. Способы записи звука разделяются на аналоговые и цифровые. При аналоговой записи на носителе размещается непрерывный «слепок» звуковой волны. Так, на грампластинке пропечатывается непрерывная канавка, изгибы которой повторяют амплитуду и частоту звука. Аналоговый способ записи звука Оцифровка звука Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму.

Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени временная дискретизация ; результаты измерений записываются в цифровом виде с ограниченной точностью квантование. Вообще говоря, в компьютер приходит не сам звук, а электрический сигнал, снимаемый с какого-либо устройства: например, микрофон преобразует звуковое давление в электрические колебания, которые в дальнейшем и обрабатываются. Если записывается стереозвук ведётся двухканальная запись , то оцифровке подвергается не один электрический сигнал, а сразу два и, следовательно, количество сохраняемой цифровой информации удваивается. Сущность временной дискретизации заключается в том, что аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определённая величина интенсивности звука рис. Другими словами, через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации — это количество измерений громкости звука за одну секунду.

Представление звуковой информации в памяти компьютера

Слайд 3 Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные. Временная дискретизация звука • Непрерывная звуковая волна разбивается на. В статье мы расскажем, что препятствует распространению звука, но прежде разберемся, что собой представляет звуковая волна.

4 2 Панорамирование

Причем нас спасет именно высота, на которой, над нами, пролетел самолет. При высоте полета, около 10 км этот хлопок будет не очень громким, Мы его даже навряд ли правильно оценим, так как сам самолет при такой высоте полета будет от нас уже на расстоянии 12-15 км. Ну а если представить, что самолет на сверхзвуке пролетит над нами на высоте 50-100 метров, это будет уже совсем другая, очень печальная история. Ударная волна будет порядка 200 КПа, что в разы больше смертельного порога для человека и такая ударная волна способна разрушить практически любое строение и технику. Ученые и инженеры давно «приглядывались» к эффекту ударной звуковой волны, в далеко не мирных целях.

Самолет или ракета на сверхзвуке - порядка 1. Фактически, такой летательный аппарат, при своем движении на сверхзвуке на высоте 50-100 метров, оставляет под собой мертвую полосу шириной 50-100 метров. Такие эксперименты проводились крайне редко, так как они смертельно опасны для самого самолета и летчика. Не каждый реактивный самолет способен и рассчитан, на то, чтобы разогнаться до сверхзвуковой скорости на малой высоте.

Microsoft Excel. Microsoft Access. Профилактика вирусов. Дублируя себя, вирус заражает другие программы. Основные методы борьбы с вирусами. Несанкционированные действия вирусов. Необходимо помнить, что очень часто вирусы переносятся с игровыми программами. Но постепенно повреждения накапливаются, и, в конце концов, система теряет работоспособность.

Глубина кодирования звука или разрешение — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

В результате измерений звукового сигнала см. Пусть под запись одного результата измерения громкости в памяти компьютера отведено n бит. Вы знаете, что это позволяет закодировать ровно 2n разных результатов измерений. Поэтому весь диапазон, в котором могут находиться результаты измерений громкости звука, можно разбить на 256 разных поддиапазонов — уровней громкости звука, каждому из которых присвоить свой уникальный код. После этого каждый имеющийся результат измерений громкости звука можно соотнести с некоторым поддиапазоном, в который он попадает, и кодировать его номером кодом соответствующего уровня громкости. В зависимости от ситуации на практике используются разные значения частоты дискретизации и глубины кодирования табл. Таблица 3. Оценим объём звукового стереоаудиофайла с глубиной кодирования 16 бит и частотой дискретизации 44,1 кГц, который хранит звуковой фрагмент длительностью звучания 15 секунд. Увеличивая частоту дискретизации и глубину кодирования, можно более точно сохранить и впоследствии восстановить форму звукового сигнала.

При этом объём сохраняемых данных будет увеличиваться. Важно понимать, каких параметров оцифровки достаточно, чтобы сохраняемый звук был достаточно близок к исходному, а содержащий его файл имел минимально возможный объём.

Число N называют разрядностью квантования подразумевая количество разрядов, то есть бит, в каждом слове , а полученные в результате округления значений амплитуды числа — отсчетами или семплами от англ. Принимается, что погрешности квантования, являющиеся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными. Этот способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией, ИКМ англ. Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. Стандартный аудио компакт-диск CD-DA , применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44. Другие способы оцифровки [ править править код ] Способ неоднородного квантования предусматривает разбиение амплитудной шкалы на уровни по логарифмическому закону.

Такой способ квантования называют логарифмическим квантованием. При использовании логарифмической амплитудной шкалы, в области слабой амплитуды оказывается большее число уровней квантования, чем в области сильной амплитуды при этом, общее число уровней квантования остается таким же, как и в случае однородного квантования. Аналогово-цифровое преобразование, основанное на применении метода неоднородного квантования, называется неоднородной импульсно-кодовой модуляцией — неоднородной ИКМ Nonuniform PCM. Альтернативным способом аналогово-цифрового преобразования является разностная импульсно-кодовая модуляция — разностная ИКМ англ. В полной аналогии с ИКМ, разностная ИКМ может сочетаться с использованием как однородного, так и неоднородного методов квантования. Разностное кодирование имеет много разных вариантов [3]. Аналогово-цифровые преобразователи АЦП [ править править код ] Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями АЦП. Это преобразование включает в себя следующие операции: Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.

Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения.

Так ли хорош цифровой звук

Для этого звуковая волна разбивается на отдельные временные участки. Во-первых, звуковая ударная волна после преодоления самолетом, сверхзвукового барьера никуда не исчезает. Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков.

4 2 Панорамирование

При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета. Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет. В экспериментах по производству цветных стекол М. Ломоносов показал, что получить любой цвет возможно, используя три различных цвета. Этот факт был обобщен Германом Грассманом в виде законов аддитивного синтеза цвета.

Давайте рассмотрим два из этих законов: — Закон трехмерности. С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно.

Чем более упругая среда, тем быстрее она проводит звук. В сравнении с твердыми телами и жидкостями воздух наименее упругий. Это объясняется его строением. Частицы не удерживают между собой никакие связи, поэтому воздух все время стремится рассеяться. Этому препятствует сила тяжести и постоянные столкновения атомов между собой.

В твердых телах, особенно металлах, звук проходит намного быстрее до 5-6 тыс. Что препятствует распространению звука От тела звук расходится во все стороны одинаково, но только в том случае, если на его пути нет преград. Не все препятствия мешают распространению звука. Очевидно, что листом картона, как от света, от шума не закроешься. Дело в том, что звуковые волны обходят преграды, если их размер меньше длины волны. Длина волн, которые мы слышим, составляет 0,015-15 м. Дерево волна может обогнуть, а здание или скалистые горы — нет. От таких больших объектов она отражается.

Как и свет, звуковая волна отражается под углом, равным по величине углу падения.

Французов подозревали в использовании разрывных пуль, что было прямым нарушением Санкт-Петербургской декларации, принятой странами в 1868 году. Также, артиллерийские части сообщали о необычных «двойных хлопках» во время выпускания снаряда на высокой скорости, при этом на более низких скоростях, был слышен лишь один взрыв. Для объяснения первого феномена бельгийский баллист Мельсенс выдвинул элегантное решение: он предположил, что высокоскоростной снаряд «сминает» воздух перед собой, и эта сильно сжатая масса может оказывать взрывоподобное воздействие на объекты. Другими словами, Мельсенс предсказал существование ударной волны, которая предшествует сверхзвуковому объекту и является причиной ран в форме воронок. Сначала тело повреждается чрезвычайно плотным воздушным фронтом и только потом самой пулей. Знаменитый ученый в области оптики и акустики — Эрнст Мах — настолько проникся идеей Мельсенса, что решил подтвердить ее экспериментально, ведь как говорил Крош: «Кругом одни теоретики! А жизнь, это прежде всего — практика».

В 1886 году он и его коллега-экспериментатор Петер Зальхер первыми получили фотографии ударной волны Прямо перед пулей видно красивый и четкий фронт. Кроме того, эксперименты Маха и его подробно изложенная теория объясняли и второй феномен — «двойные хлопки»: первый взрыв производится пороховыми газами, вырывающимися из оружия, а второй взрыв - это звуковой удар. Ну а помимо прочего, всем известное безразмерное число Маха стало главной характеристикой ударных волн. Действие второе: Немного теории. Почему ударная волна — это уже не совсем звук? Пение китов, дрель соседа из квартиры напротив и процедура УЗИ у врача — все это примеры звуковых волн разных диапазонов. В воздухе, потревоженном источником звука, начинают распространяться области сжатия и разрежения, где основными изменяющимися параметрами являются давление и плотность. Спокойно тусующиеся, примерно одинаково раскиданные в пространстве молекулы внезапно выводят из равновесия, сгоняя их плотнее, что затем вызывает обратный эффект, и они разбегаются, ненадолго снижая свою концентрацию.

Словно воздушная пружина. Частота таких последовательных колебаний плотности воздуха определяет высоту звука. Большую часть инфразвуковой музыки китов мы не слышим из-за того, что человеческое ухо не способно распознавать волны с частотой ниже 16Гц, а аппарат для УЗИ, наоборот, использует слишком высокие для нас частоты. В свою очередь величина отклонения давления от начального состояния определяет громкость распространяющегося звука. Чем волна плотнее, тем она сильнее давит нам на перепонку, тем, собственно, «ощутимее» для нас звук. Неподвижный объект, испускающий звуковые волны, по классике сравнивают с брошенным в воду камнем: камень возмущает спокойную водную гладь, вызывая появление кругов, где высота образующихся волн будет амплитудой колебаний — «громкостью» нашей волны.

Ударная волна постоянно сопровождает самолет на сверхзвуковой скорости. Однако хлопки будет слышно лишь во время прохождения самолета в определенной точке — поблизости с наблюдателем. Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв. Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью.

Хлопок при переходе самолета на сверхзвук — это миф. Причина «взрыва» совсем другая

Слайд 3 Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные. Слайд 12Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные. На что разбивается непрерывная звуковая волна.

Что препятствует распространению звука? Распространение звука в среде

На что разбивается непрерывная звуковая волна? Непрерывная звуковая волна разбивается на отдельные маленькие.". Непрерывная звуковая волна может быть разбита на несколько основных компонентов. В статье мы расскажем, что препятствует распространению звука, но прежде разберемся, что собой представляет звуковая волна.

Похожие новости:

Оцените статью
Добавить комментарий