Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский.
Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия. Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке».
Как причесать ежа, или попытки удержать плазму
- До коммерческого получения термоядерной энергии еще далеко
- Успех российских ученых
- Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
- Прорыв в термоядерном синтезе | Канал Наука | Дзен
- Выбор сделан - токамак плюс - Российская газета
Академик В.П. Смирнов: термояд — голубая мечта человечества
Она вспомнила слова Владимира Жириновского о том, что удар нужно нанести по Вашингтону: — По Вашингтону долбить не придется. Мне один умный человек рассказал то, о чём я никогда не догадывалась и не знала. Я же не разбираюсь в этом во всём, я же не военный эксперт. Я, знаете, дура-баба, в футболе ничего не понимаю. И вот человек, инженер-радиоэлектроник, говорит мне: «Мы еще знали в советское время, что если произвести в сотнях километрах на нашей же территории где-нибудь над Сибирью термоядерный взрыв, например, ядерный взрыв, то ничего не будет на Земле. Ничего такого страшного. Ни ядерной зимы, которую все боятся. Ни чудовищной радиации, которая убьет всех вокруг, а кого не убьет, то те умрут в течение десяти лет от онкологии. Этого ничего не будет. А что будет — так это будет выведена из строя вся радиоэлектроника.
Вся цифра, все спутники». Вот эта камера, на которую меня сейчас снимают, вот этот телефон, который рядом со мной лежит. Мы вернемся с вами в год этак какой-нибудь 93-й. Проводные телефоны. Двушечка или не двушечка, я не помню, в телефоне-автомате. Я вам скажу: чудесно же жили. Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет.
Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом.
Но самый, пожалуй, главный вопрос заключается в том, действительно ли термоядерный реактор поможет нам вырабатывать дешевую электроэнергию? То есть, условно, на мишень попал 1 мегаджоуль, а выделилось 1,2 мегаджоуля. Но на самом деле надо смотреть, сколько установка потребила энергии из розетки. Это будут совсем другие цифры. Все это пока сильно охлаждает мысль о том, что завтра у нас будут фабрики с термоядерными управляемыми реакторами.
И там тоже будет использоваться рентгеновский диапазон излучения для обжатия мишени, как и американцев, но есть свои интересные наработки. Работы пока проводятся на уровне энергии в несколько десятков килоджоулей.. На полный уровень энергии 2. Первая — это проблема устойчивости плазмы. На бумаге все было красиво, но жизнь внесла свои коррективы. Оказалось, что в реальности добиться сферического обжатия мишени очень сложно. Второе — не хватало мощности лазеров. По сравнению с первыми экспериментами они сегодня в несколько сотен раз мощнее.
Им придется восстанавливать установку еще довольно долго. Но если коротко, многим, чем мы сегодня обладаем, мы обязаны этому человеку.
Если верить расчетам, то космический аппарат с таким двигателем сможет разогнаться до 804 672 километров в час. К примеру, 55 миллионов километров - расстояние между Землей и Марсом — он мог бы преодолеть меньше, чем за трое суток. В два раза быстрее, чем поезд идущий от Москвы до Владивостока. Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3.
В плеяде учёных, ставших советскими разведчиками, особое место занимает Клаус Фукс, чьей гениальностью восхищались Роберт Оппенгеймер и Энрико Ферми. Его отец Эмиль был лютеранским священником, приверженцем христианского социализма, а с 1912 года — членом Социалистической партии Германии. В 1930—1931 годах Клаус учился в Лейпцигском университете, где вступил в Социал-демократическую партию. В 1932 году он стал членом Компартии Германии. После прихода к власти нацистов в январе 1933 года Фукс перешёл на нелегальное положение, а в июле того же года бежал во Францию, откуда перебрался в Великобританию. Работал аспирантом в лаборатории физика Невилла Мотта в Бристольском университете, где в декабре 1936 года получил степень доктора философии по физике. С 1937 года по рекомендации Мотта работал в лаборатории Макса Борна в Эдинбургском университете, в соавторстве с Борном написал ряд научных статей. После начала Второй мировой войны, в апреле 1940 года, Фукс был интернирован как гражданин враждебной державы и провёл полгода в лагере на острове Мэн, а затем в Канаде.
После ходатайств ряда учёных в декабре 1940 года был освобождён и вернулся в Англию. В 1940 году Фукса включили в группу Рудольфа Пайерлса, работавшую в Бирмингемском университете над уточнением критической массы урана и проблемой разделения изотопов в рамках британского ядерного проекта. В 1942 году Клаус получил британское гражданство. Тогда же ему было поручено наблюдение за работами по германскому атомному проекту, для чего он получил доступ к совершенно секретным материалам «Интеллидженс сервис». После нападения Германии на СССР Фукс разделял взгляды о необходимости более активного участия Великобритании в войне, а также о необходимости более широкой помощи воюющему Советскому Союзу. В ноябре 1941 года Фукс посетил советское посольство в Лондоне и предложил предоставить СССР известную ему информацию о работах по созданию ядерного оружия в Великобритании. Его предложение приняли, связь с Фуксом установили через Урсулу Кучинскую. Урсула была профессиональной связисткой высочайшего уровня.
Родилась в Германии в 1907 году.
Академик В.П. Смирнов: термояд — голубая мечта человечества
Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г. Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе. Сегодня при анализе так называемого гибридного подхода, сочетающего термоядерный источник нейтронов ТИН и окружающий его бланкет с сырьевым материалом или отработавшим ядерным топливом ОЯТ , гибридный реактор рассматривают в двух возможных ипостасях: как наработчик топлива для традиционных реакторов деления, используемых на существующих или планируемых АЭС, и как высокоэффективный дожигатель минорных младших актинидов, накапливающихся в результате работы ядерных реакторов.
Реакторы деления, составляющие основу существующей атомной энергетики, будут обеспечены делящимися изотопами, произведёнными в гибридных реакторах. Существенно, что бланкет гибридного реактора работает в подкритическом режиме с внешним источником нейтронов, что исключает последствия запроектных аварий с изменением мощности реактивностные аварии и с захолаживанием теплоносителя без срабатывания систем защиты. Оценки показывают, что наибольший эффект в продвижении интегрированной синтез—деление технологии топливного цикла реализуется при ориентации на уран-ториевый топливный цикл, к числу преимуществ которого принято относить следующие.
Уран-233 — делящийся изотоп, получаемый из природного тория, наиболее привлекателен для реакторов на тепловых нейтронах. Запасы тория-232 в природе в 3—4 раза больше в сравнении с природным ураном. При добыче тория радиационные нагрузки на окружающую среду принципиально меньше по сравнению с аналогичными, существующими при добыче природного урана.
Облучение урана-233 в реакторе не сопровождается накоплением трансурановых актинидов, и проблема трансмутации минорных актинидов с целью создания условий экологической приемлемости современного уран-плутониевого цикла практически устраняется. Вместе с тем, хотя возможность использования ториевого цикла была известна и обсуждалась ещё на заре становления ядерной энергетики, исторически сделанный выбор в пользу уран-плутониевого цикла нельзя сбрасывать со счетов, равно как и определённые трудности, связанные с реализацией ториевого цикла. В любом случае эту концепцию следует рассматривать в увязке с экономикой и ключевыми проблемами атомной энергетики по обеспечению её устойчивого развития и замыкания топливного цикла.
Особенность настоящего момента заключается в том, что современный уровень знаний и имею-щиеся наработки в области УТС достаточны для создания ТИН, требования к параметрам плазмы и конструкционным материалам в котором заметно ниже, чем для энергетического реактора, и возможность удовлетворения которых уже подтверждена экспериментально. В соответствии с заключёнными для реализации проекта ИТЭР международными соглашениями каждый партнёр, в том числе Российская Федерация, имеет право на получение безвозмездных лицензий на использование технологий, созданных в рамках проекта ИТЭР для собственных национальных целей. Поэтому все участники проекта ИТЭР кроме России имеют собственные национальные программы и проекты, финансируемые на уровне, превышающем вклады этих стран в проект ИТЭР.
Такие национальные программы необходимы, кроме всего прочего, для освоения и использования полученных при строительстве и последующей эксплуатации ИТЭРа результатов и технологий. В начале 2016 г. Ковальчука к главе государства было дано поручение подготовить национальную программу развития управляемого термоядерного синтеза и плазменных технологий.
Реализация комплексной программы начинается в 2021 г. Таблица 1. Экспериментально полученные значения параметров плазмы в токамаках, отвечающие требованиям УТС Токамак.
Эти результаты достигнутые на NIF. Михаил Мишустин 18 мая 2021 года принял участие в церемонии физического пуска установки управляемого термоядерного синтеза токамак Т-15МД в Курчатовском институте. Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло.
Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка. Например, накопители конденсаторы для питания лазеров — это целое футбольное поле. Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах. Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много. В общем, физика процесса — интересная: исследование свойств веществ при сверхвысоких давлениях и сверхвысоких температурах.
Пусть занимаются. Повторяю, это очень интересная физика. Но коммерческое использование этого достижения — не раньше, чем через несколько десятилетий. Как шутят сами физики, занимающиеся термоядом, через 50 лет или, может быть, на два дня раньше». Действительно, заявления типа «Ученые США впервые в мире смогли получить от термоядерного синтеза больше энергии, чем на него потратили», «Научные прорывы в этой сфере позволят человечеству в будущем полностью отказаться от ископаемого топлива» существенно переоценивают значение эксперимента на установке NIF. Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников.
Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж. Но с точки зрения промышленности все остается на своих местах: потратили 322, получили 3,15», — резюмируют сотрудники Московского инженерно-физического института в Telegram-канале «Эвтектика из МИФИ». Но в этой гонке принципов — токамаки vs инерциальный термояд — как-то оказался отодвинутым на периферию научного и государственного, что важно! Этот сценарий, как бы, зеркально противоположен лазерному термояду. Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков.
Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке.
Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте. Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки. В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно. По их словам, небольшое изменение начальных условий может привести к кардинально иным результатам.
Кроме того, стенка может довольно эффективно абсорбировать изотопы водорода, служащие термоядерным горючим. Отчётливо видно, что для сверхпроводящих систем повышение длительности разряда пока удаётся совмещать только со снижением нагрузки на стенку. Одна из них заключается в использовании жидкого лития как материала с низким зарядовым числом в промежуточном слое между плазмой и стенкой или пластинами дивертора. При этом возможные функции такого литиевого слоя могут несколько разниться. Литий должен собираться специальными литиесборниками и очищаться от абсорбированных продуктов — но уже вне камеры. Извлечённые изотопы водорода направляются в систему подачи топлива. Кроме того, часть принимаемой литиевым слоем энергии может высвечиваться в виде ультрафиолетового излучения, снижая температуру пристеночной плазмы и способствуя более равномерному распределению тепловой нагрузки по стенке камеры [ 11 ]. Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода. Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга?
Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры? Продуктивность этой концепции [ 12 ] и иных возможностей использования лития требует детальной экспериментальной проверки. Дальнейшая экстраполяция этой концепции заключается в полном отказе от стенки, ограждаю-щей плазменный объём. Речь идёт о проработке возможности сооружения магнитного термоядерного реактора в космосе на околоземной орбите. Такой подход имеет ряд потенциальных преимуществ включая гарантированную реализацию нулевого рециклинга , хотя и представляется труднореализуемым. При этом магнитная конфигурация термоядерного реактора космического базирования может и должна быть предметом оптимизации, в том числе по параметрам таким как вес, присутствие дополнительных систем, простота монтажа и пр. Поэтому реализацию этого направления следовало бы начать с глубокой концептуальной проработки и маломасштабных космических экспериментов. Следует отметить, что идеи космического размещения энергетического реактора обсуждались ещё в 1970-х годах. Целесообразность их рассмотрения в настоящий момент оправдывается качественно иным достигнутым уровнем развития космонавтики, с одной стороны, и прогрессом в термоядерных технологиях и в понимании физики термоядерной плазмы, с другой стороны, что переводит эти идеи из области гипотез в сферу проектов, доступных для воплощения в жизнь за обозримое время, хотя они и не имеют пока достаточно сторонников для серьёзной проработки.
Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г. Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе. Сегодня при анализе так называемого гибридного подхода, сочетающего термоядерный источник нейтронов ТИН и окружающий его бланкет с сырьевым материалом или отработавшим ядерным топливом ОЯТ , гибридный реактор рассматривают в двух возможных ипостасях: как наработчик топлива для традиционных реакторов деления, используемых на существующих или планируемых АЭС, и как высокоэффективный дожигатель минорных младших актинидов, накапливающихся в результате работы ядерных реакторов. Реакторы деления, составляющие основу существующей атомной энергетики, будут обеспечены делящимися изотопами, произведёнными в гибридных реакторах.
Читайте также:
- Можно и быстрее
- Главная тема
- Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
- Ракетчики начали строить термоядерный двигатель
- Главная тема
- Прорыв в термоядерном синтезе
Российские физики рассказали о приручении термоядерного синтеза
Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Исследования в области термоядерного синтеза и физики плазмы ведутся более чем в 50 странах, и термоядерные реакции были успешно запущены в ходе многих экспериментов. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не.
ЗА ЧТО БОРЕМСЯ
- Регистрация
- Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
- Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
- Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
- Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером». Вот когда появится первая ТЯ электростанция на 100 гвт, тогда и будет порыв. А так, просто болтовня! Гоблин даже про него говорил. Ну как английские ученые прямо... Евгений Это важно?
Трудности здесь, в основном, технического характера прежде всего, неустойчивости при сжатии капсулы , но преодолеть их пока не получается. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не удавалось не только выйти на этот режим, но и даже приблизиться к нему. Главный результат новых публикаций NIF заключается как раз в том, что эмпирическим путем был подобран такой режим работы, при котором по крайней мере одна трудность была преодолена, и стали появляться первые намеки на настоящую термоядерную реакцию с хорошим энергетическим выходом. Работа установки NIF Чтобы зажечь термоядерную реакцию в капсуле с топливом, требуется создать в ее центре область очень высокой температуры порядка 100 млн градусов и большой плотности. При меньшей температуре реакция термоядерного синтеза толком не начнется, а при низкой плотности центральная область быстро остынет, не сумев дать заметный энергетический выход. Но для полноценного термоядерного горения этого мало. Если мы хотим, чтобы центральная область не просто загорелась и потухла, а породила самоподдерживающийся термоядерный синтез во всей капсуле, нужно, чтобы топливо разогревало само себя. Это происходит тоже при высоких плотностях, когда рождающиеся в термоядерном синтезе альфа-частицы поглощаются прямо внутри топливной капсулы, а не улетают прочь. Таким образом, можно сформулировать три ключевых задачи для установки NIF: 1 добиться существенного термоядерного синтеза — количество энергии, выделившейся при синтезе, должно превышать энергию, поглощенную топливом; 2 добиться устойчивого термоядерного горения всей топливной капсулы за счет саморазогрева альфа-частицами; 3 добиться полной эффективности выше единицы — то есть энергетический выход должен превышать всю энергию, затраченную на зажигание реакции, а не только ту часть, которая поглощается непосредственно топливом.
Достижение этих целей — задача исключительно непростая. Если просто изготовить капсулу из нужного топлива и сфокусировать на ней мощный лазерный луч, то никакого сжатия не произойдет: капсула просто нагреется и испарится. Даже если сфокусировать несколько лазерных лучей со всех сторон, тоже проку будет немного. Капсула частично испарится, частично сожмется, но сжатие будет сопровождаться сильными искажениями формы это неустойчивость Рэлея—Тейлора , характерная для многих гидродинамических течений. При неравномерном сдавливании капсулы они быстро нарастают, и в результате вместо сильного сжатия оболочку с топливом просто разорвет на куски. Преодоление этих трудностей и является пока главной задачей в инерционном термоядерном синтезе. Установка NIF использует две идеи, помогающие бороться с этими проблемами: слоистую капсулу и непрямое обжатие рис. Чтобы не потерять топливо при нагревании, внешняя оболочка капсулы делается из пластика, а дейтериево-тритиевая смесь наносится в виде льда на внутренную поверхность этой оболочки. Внешний слой поглощает лазерный импульс, резко нагревается и расширяется, ударным образом сжимая при этом внутреннюю часть капсулы.
Эта внутренняя часть разгоняется до высоких скоростей — и резко останавливается, когда схлопывающаяся ударная волна проходит через центр. Именно этот процесс сжатия и прохождения ударных волн сильно уплотняет центральную область и разогревает вещество до многих миллионов градусов. Интересно отметить, что похожие процессы, но при меньших масштабах температур и давлений, происходят и при ультразвуковой кавитации. Принцип работы инерциального термоядерного синтеза с непрямым обжатием. Мощная лазерная вспышка попадает внутрь маленькой камеры, превращает ее в облачко плазмы высокой температуры. Эта плазма излучает тепловое рентгеновское излучение, которое уже и сжимает слоистую капсулу с топливом структура капсула показана в разрезе. Схема из статьи G. Brumfiel, 2012. Laser fusion put on slow burn Для равномерного давления на капсулу в установке NIF используется не только большое число лазерных лучей 192 синхронизованных луча, которыми можно независимо управлять , но и так называемое непрямое обжатие капсулы рис.
Лазеры не светят прямо на поверхность капсулы, они освещают внутренность маленькой, сантиметрового размера, цилиндрической камеры, в центре которой находится слоистая капсула с топливом рис. Попадая на стенки камеры, лазерная вспышка резко ее испаряет и нагревает получившуюся плазму до 3 млн градусов. Плазма начинает светиться в рентгеновском диапазоне, и уже это рентгеновское излучение давит на капсулу. Такая схема работы позволяет получить более равномерное обжатие, а также позволяет избежать слишком быстрого испарения внешней оболочки капсулы. Центральная камера сантиметрового размера, внутри которой помещается капсула с топливом. Конечно, последствия термоядерной реакции были замечены, но эта реакция была слабоватой. Даже если сравнивать выделившуюся энергию с той энергией, которая непосредственно поглощается топливом, то выход тут до недавнего времени составлял от силы 20—30 процентов рис.
В Китае и Германии достигнуты новые прорывные результаты в области управляемого термоядерного синтеза Китайский токамак EAST 14 апреля 2023 656 12 апреля 2023 года китайский токамак EAST сокращение от «experimental advanced superconducting tokamak» - экспериментальный усовершенствованный сверхпроводящий токамак , установил новый мировой рекорд длительности удержания плазмы с параметрами, необходимыми для термоядерного синтеза. Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду.
Дейтерий стабилен, и его можно найти в морской воде. Тритий же — более редкий и радиоактивный изотоп, который выделяют на атомных реакторах при получении лития. Заменить тритий может стабильный изотоп гелий-3. Добывать его так же трудно, но огромные залежи можно найти в грунте на поверхности Луны. Если технологии позволят недорого получать гелий-3 из лунной пыли, то этого будет достаточно для энергоснабжения всей планеты на тысячи лет. Останется лишь построить нужный реактор токамак. Реакция термоядерного синтеза слияния двух легких ядер в одно более тяжелое , в ходе которой высвобождается колоссальное количество энергии Почему сложно построить реактор для синтеза Атомы всех окружающих нас веществ состоят из ядра и электронной оболочки. Ядра заряжены положительно, поэтому, согласно закону Кулона, они отталкиваются. Чтобы соединиться, им нужно преодолеть кулоновский барьер и сблизиться на расстояние действия ядерных сил — 10-15 метра один метр, деленный на единицу с пятнадцатью нулями. Для этого необходима огромная энергия, которую можно получить в виде тепла. Солнечный климат для этого идеален, температура внутри звезды достигает экстремальных величин — 15 миллионов градусов. Вещество при такой температуре переходит в состояние плазмы, работать с которой в земных условиях не так-то просто. Плазма считается четвертым агрегатным состоянием вещества. Если нагреть твердое вещество, оно становится сначала жидким, затем газообразным и, наконец, — плазмой. При температуре в десятки тысяч градусов атомы газа теряют свои электроны и превращаются в ионы — свободные электрические заряды. Такой газ называется ионизованным и является средой, проводящей электрический ток. В естественных условиях Земли плазма встречается в виде разрядов молний или в магнитосфере планеты при полярном сиянии. В космосе она буквально повсюду: материя в межгалактическом пространстве существует именно в плазменной форме. Солнце и звезды тоже являются сгустками сильно нагретой плазмы. Вещество в состоянии плазмы видел каждый, когда в небе сверкала молния , а вот удержать и сжать такое вещество — задачка не из легких, но ее необходимо решить для реализации управляемого термоядерного синтеза на Земле. Фото iStock Удержать плазму внутри построенных человеком установок тяжело — нагреваясь до миллионов градусов, она плавит даже самое прочное покрытие. Поэтому стенки камер реактора для управляемого синтеза не должны соприкасаться с плазмой. Другое важное условие использования плазмы — сжатие. Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся.
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. Кажется, физики только что переписали основополагающее правило для термоядерных реакторов, обещающих миру почти бесконечную энергию.