Новости реактор брест од 300

Согласно планам, реактор БРЕСТ-ОД-300 должен начать работу в 2026 году.

Публикации

  • Инфосайт АО "НИКИЭТ"
  • В Северске начали монтировать инновационный реактор БРЕСТ-ОД-300
  • В РФ собирают реактор БРЕСТ-300 на быстрых нейтронах – ожидаем теперь технологию замкнутого цикла
  • Комментарии

Уникальный реактор БРЕСТ-300 начали строить в Томской области

Специалисты НИУ «МЭИ» приняли участие в создании заготовки выходной части МГД-насоса для нового типа реактора на быстрых нейтронах БРЕСТ-ОД-300. В шахту реактора строители погрузили первую часть корпуса реакторной установки БРЕСТ-ОД-300 — нижний ярус ограждающей конструкции. Изделие для реактора изготавливают с применением аддитивной технологии электронно-лучевой наплавки проволоки (ЭЛНП), схожей с действием 3D печати. Генеральный директор госкорпорации «Росатом» Алексей Лихачев (в центре) во время церемонии начала строительства новейшего атомного реактора на быстрых нейтронах БРЕСТ-ОД-300 в Северске. Согласно планам реактор БРЕСТ-ОД-300 должен начать работу в 2026 году.

Росатом начал строительство первого в мире реактора на быстрых нейтронах БРЕСТ-ОД-300

В этом году компания отмечает свой юбилей — 25 лет. Созданная в 1996 году, сегодня компания является одним из крупнейших поставщиков топлива для мировой атомной энергетики, продолжает укреплять позиции, воплощая новые производственные проекты. За всю историю ТВЭЛ со стороны заказчиков не было ни одной рекламации на качество продукции. Являясь единственным поставщиком ядерного топлива для российских АЭС, ТВЭЛ обеспечивает топливом в общей сложности 75 энергетических реакторов в 15 государствах, исследовательские реакторы в девяти странах мира, а также транспортные реакторы российского атомного флота. Каждый шестой энергетический реактор в мире работает на топливе ТВЭЛ.

Топливный дивизион Росатома является крупнейшим в мире производителем обогащенного урана, а также лидером глобального рынка стабильных изотопов.

На момент начала строительства реактора Росатом планировал, что запуск реактора состоится в 2026 году. В ходе испытаний отдельных модулей потребовалась дополнительная «обкатка» технологии на промышленных стендах, а также проведение дополнительных научно-исследовательских и конструкторских работ НИОКР. В январе 2024 г.

Плита состоит из двух половин толщиной 40 мм общим весом 165 т. Части плиты сварили на стройплощадке. Она обеспечит удержание теплоизоляционного бетона и сформирует дополнительный локализующий барьер за границей контура теплоносителя.

Завершить работы планируется до конца 2026 года. На момент начала строительства реактора Росатом планировал, что запуск реактора состоится в 2026 году.

В ходе испытаний отдельных модулей потребовалась дополнительная «обкатка» технологии на промышленных стендах, а также проведение дополнительных научно-исследовательских и конструкторских работ НИОКР. В январе 2024 г.

6-й реактор Белоярской АЭС - БРЕСТ ОД 300?

Реактор БРЕСТ-ОД-300 Росатом проект Прорыв. Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора БРЕСТ-ОД-300 со свинцовым теплоносителем. Естественный вопрос – почему БРЕСТ-ОД-300 относят к реакторам IV поколения? передает РИА Новости. Согласно планам, реактор БРЕСТ-ОД-300 должен начать работу в 2026 году. Как и любой другой реактор, БРЕСТ-ОД-300 снабжен системой аварийного охлаждения реактора. В составе реакторной установки «БРЕСТ-ОД-300» будут работать восемь парогенераторов массой 72 тонны каждый.[33].

Российское предприятие поставило основные элементы градирни для «реактора будущего» БРЕСТ-ОД-300

Российское предприятие поставило основные элементы градирни для «реактора будущего» БРЕСТ-ОД-300 Замкнутый ядерный топливный цикл (ЯТЦ) реактора БРЕСТ-ОД-300 разрабатывается в соответствии с требованиями, приведенными ниже. •.
В Томской области начали строить уникальный реактор БРЕСТ-300 плутониевого ядерного топлива для реактора, а также комплекс по переработке отработавшего топлива.
Выдана лицензия на создание реактора БРЕСТ-ОД-300. Что это значит Если один энергоблок с РУ БРЕСТ-ОД-300 способен нарушить мировой баланс по этому изотопу, то что будет, когда подобных реакторов станет много, а мощность каждого из них возрастет в 3—5 раз.

Началось строительство опытного реактора на быстрых нейтронах БРЕСТ

6-й реактор Белоярской АЭС - БРЕСТ ОД 300?: nucl0id — LiveJournal В этом году начнётся монтаж корпуса и установка механизмов первого в мире энергетического реактор-размножителя бассейного типа 'Брест-ОД300' в г – Самые лучшие и интересные новости по теме: Росатом, аэс, бридер на развлекательном портале
Российское предприятие поставило основные элементы градирни для «реактора будущего» БРЕСТ-ОД-300 брест-од-300 новости сегодня.
К «Прорыву» добавляется реактор Переработка ОЯТ БРЕСТ-300 будет происходить непосредственно на площадке ОДЭК, в модуле переработки (МП) комплекса ОДЭК.
Росатом начал монтаж первого в мире быстрого реактора IV поколения БРЕСТ-ОД-300 в Северске Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора на быстрых нейтронах с реакторной установкой БРЕСТ-ОД-300 со свинцовым теплоносителем.

Россия создала нейтронный «Прорыв»

На этой неделе Ростехнадзор выдал лицензию на создание первого в мире опытно-демонстрационного энергоблока с реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем. Монтаж реакторной установки четвертого поколения БРЕСТ-ОД-300 начался в январе этого года, в шахту реактора строители погрузили первую часть корпуса реакторной установки БРЕСТ-ОД-300 – нижний ярус ограждающей конструкции. Специалисты НИУ «МЭИ» приняли участие в создании заготовки выходной части МГД-насоса для нового типа реактора на быстрых нейтронах БРЕСТ-ОД-300. брест-од-300 новости сегодня. В шахту реактора строители погрузили первую часть корпуса реакторной установки БРЕСТ-ОД-300 — нижний ярус ограждающей конструкции.

«Росатом» приступил к строительству первого в мире безопасного ядерного реактора

Как известно, основа любой экономики - добыча и распределение энергии. Борьба за источники и создание сбытовых сетей новые источники, новые распредсети, изменение собственности на эти объекты являются основной причиной войн на нашей планете. Россия уже более 50 лет является признанным лидером в области атомной энергетики и никогда не основывала собственную энергетическую безопасность исключительно на эксплуатации ископаемого топлива. Так уж вышло, что в нашем мире только Россия госкорпорация «Росатом» и Франция госкорпорация AREVA добились с большим отрывом от других стран результатов в области создания инновационных реакторов, а также переработки ядерных отходов. Речь идёт об опытных установках нового поколения - таких как водо-водяные, а также использующие реакцию термоядерного синтеза. Но в настоящее время прорыв был осуществлён в области создания так называемых быстрых реакторов. Кстати, комплексная установка так и была названа - «Прорыв».

Атомные реакторы нового поколения В настоящее время человечество вплотную подошло к возможности решения проблемы безотходной или почти безотходной добычи энергии. Уточним, что речь не идёт о «зелёной» экономике, способной быть только комплементарным источником ввиду нерентабельности производства. Проект реализуется с 2011 г. Генеральным проектировщиком опытно-демонстрационного энергетического комплекса выступает ВНИПИЭТ «Восточно-Европейский головной научно-исследовательский и проектный институт энергетических технологий», Санкт-Петербург.

На заводе планируется производить топливо, компоненты которого со временем будут извлекаться из облученного ядерного топлива ОЯТ.

Благодаря переработке ОЯТ топливный цикл удастся замкнуть. Создание такого цикла на ОДЭК предусматривает включение в топливо минорных актинидов радиотоксичных трансурановых элементов, образующихся в процессе облучения для их последующей трансмутации. Благодаря взаимодействию с быстрыми нейтронами кюрий, нептуний и америций будут превращаться в другие, менее опасные химические элементы. Первый — БН-800, в котором также используются обедненный уран и плутоний из облученного топлива. Но топливо для БН-800 производится на Горно-химическом комбинате, а в Северске оно будет изготавливаться и эксплуатироваться на одной площадке.

Это важная особенность концепции проекта «Прорыв»: он нацелен на создание ядерно-энергетических комплексов, состоящих из АЭС и заводов по регенерации и рефабрикации ядерного топлива. Эти комплексы, по замыслу авторов проекта, должны быть, во-первых, безопасны настолько, чтобы исключить любые аварии, требующие эвакуации или отселения местных жителей. Во-вторых, они должны выдерживать конкуренцию с другими видами генерации при сопоставлении их LCOE — средней расчетной себестоимости производства энергии в течение всего жизненного цикла электростанции. Благодаря созданию ядерно-энергетических комплексов, подобных ОДЭК, планируется решить три важные задачи атомной промышленности. Первая — полное использование энергетического потенциала уранового сырья.

Иными словами, есть возможность увеличить топливную базу атомной промышленности в сотню раз.

Родовое преимущество "быстрых" реакторов их еще называют бридерами, в переводе с английского - "размножителями" заключено в способности использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний. Быстрые реакторы могут производить больше потенциального топлива, чем потребляют, а параллельно с этим - дожигать то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы актиниды. Обсуждаемые варианты топливного цикла в атомной энергетике. Одновременно с реактором там же, на площадке Сибирского химкомбината, создают комплекс по производству смешанного уран-плутониевого нитридного топлива и модуль переработки облученного ядерного топлива. Включенные в одну технологическую цепочку, они должны продемонстрировать реализуемость замкнутого топливного цикла в пристанционном варианте. Главный редактор профильного аналитического портала "АтомИнфо. Дело в том, что до сих пор свинцовые технологии в интересах атомной энергетики не использовались.

Россия создает принципиально новое направление.

Естественная безопасность обеспечивается и благодаря интегральной компоновке реакторной установки в тепловых моделях реактор и парогенератор разнесены в пространстве. Пространство между полостями при сооружении поэтапно заливается бетонным наполнителем», — объясняет генеральный конструктор проектного направления «Прорыв» Вадим Лемехов. Благодаря интегральной компоновке весь объем теплоносителя собран в реакторе, поэтому аварии с потерей охлаждения активной зоны невозможны. Такие особенности установки позволили отказаться от массивной гермооболочки, ловушки расплава, большого объема обеспечивающих систем, а также дали возможность снизить класс безопасности внереакторного оборудования. Новое топливо Для быстрых реакторов необходимо специальное топливо, обычно оксиды урана или урана и плутония. СНУП-топливо получают из обедненного урана, оставшегося после обогащения, и энергетического плутония, произведенного из облученного топлива, с помощью технологии карботермического синтеза. По мнению ученых, применение нитридов позволит удлинить топливную кампанию, то есть время работы топливной сборки, и тем самым улучшить экономические показатели эксплуатации.

Новая жизнь атомной энергетики Как уже было сказано, блок с реактором БРЕСТ — компонент опытно-демонстрационного энергетического комплекса. Кроме реакторного блока в ОДЭК входит пристанционный завод, состоящий из модуля переработки облученного смешанного уран-плутониевого топлива и модуля фабрикации-рефабрикации, где будут изготавливаться тепловыделяющие элементы для БРЕСТ. На заводе планируется производить топливо, компоненты которого со временем будут извлекаться из облученного ядерного топлива ОЯТ. Благодаря переработке ОЯТ топливный цикл удастся замкнуть. Создание такого цикла на ОДЭК предусматривает включение в топливо минорных актинидов радиотоксичных трансурановых элементов, образующихся в процессе облучения для их последующей трансмутации.

«Росатом» приступил к строительству первого в мире безопасного ядерного реактора

Это позволяет максимизировать использование уже добытого урана, а также снизить объемы высокорадиоактивных или других опасных отходов, которые необходимо захоранивать или размещать в специальных хранилищах. Однако данная методика сложнее и дороже, чем технология открытого цикла, по которому работают большинство АЭС в мире. Чтобы полностью замкнуть цикл необходим целый ряд новых технологий, в частности методик изготовления новых видов топлива и материалов для реакторов, способов переработки отработанного топлива, а также разработки реакторов на быстрых нейтронах, которые способны принимать в качестве топлива уран-238 и торий-232 и утилизировать актиниды , а теплоносителем выступают жидкие металлы натрий, ртуть, свинец-висмут или расплавы солей. Проект «Прорыв» стартовал десять лет назад, в рамках него «Росатом» на территории Сибирского химического комбината строит опытно-демонстрационный энергетический комплекс, который включает в себя реактор на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем и заводы по переработке облученного смешанного уран-плутониевого нитридного топлива и изготовления тепловыделяющих элементов как из свежих материалов, так и из переработанного облученного ядерного топлива. В феврале 2021 года Ростехнадзор выдал лицензию на постройку энергоблока с реактором БРЕСТ-ОД-300, а 8 июня 2021 года началась заливка первого бетона в фундаментную плиту реактора.

При этом из всех конкурентов он обладает одной из лучшей нейтронной активностью. Почти идеал, если забыть о том, что натрий имеет свойство воспламеняться и взрываться при контакте с водой и воздухом. Тем не менее из всех вариантов теплоносителей, отрабатывавшихся на экспериментальных установках, именно он оказался единственным кандидатом для энергетических реакторов на быстрых нейтронах, в частности отечественных реакторов типа БН. Высокая химическая активность натрия потребовала специальных технических решений, которые, при переходе от бумажной концепции к металлу, вызвали сильное удорожание проектов. Во-первых, требовалось изолировать натриевый контур охлаждения от водяного, так как их протечка могла привести к пожару или взрыву внутри реактора. Для этого пришлось делать промежуточных контур, разделяющий натрий и воду и снижающий КПД реактора, а также удорожавший конструкцию. Требование недопуска контакта натрия и воздуха заставило продумывать и хитрую систему замены отработанного топлива с помощью роботизированного комплекса, что ещё больше усложнило конструкцию реактора. Кроме того, пришлось решать проблему и загрязнения самого натрия в процессе работы реактора — обычными фильтрами тут не обойтись, поэтому создали так называемые «холодные ловушки». В итоге проект, который на бумаге выглядел не дороже легководника при переходе с кульманов на площадку строительства, значительно прибавил в стоимости и потерял в рентабельности. Реактор типа БН — сложно, дорого, с туманными перспективами Второй проблемой стала переработка топлива.

Реакторы на быстрых нейтронах вырабатывали много плутония оружейного качества. Этот плутоний предполагалось выделять, часть его отправлять обратно в составе топливной сборки в реактор, добавив свежего U-238, а остальное использовать для легководников. И вот тут-то и возник целый ворох проблем. Во-первых, плутоний нельзя просто так взять и запихнуть в обычный реактор. Совершенно иные параметры деления и тепловыделения у плутония требуют изменения многих параметров реакторной установки, в том числе и геометрии самих топливных сборок, из-за чего реакторы, рассчитанные на классическое урановое топливо, могут быть неспособны безопасно работать на смешанном урано-плутониевом топливе MOX-топливо. Упрощённая схема замкнутого цикла с реакторами типа БН Во-вторых, отработанное топливо в реакторах типа БН содержало кроме большого количества плутония ещё небольшое не больше процента содержание изотопов Америция, Нептуния и Кюрия — крайне радиотоксичных и сложных в утилизации. В-третьих, само наличие процесса выделения плутония оружейного качества из топлива ставил крест на любых попытках экспорта реактора. И МАГАТЭ, и США, заинтересованные в нераспространении технологий промышленного производства компонентов для ядерного оружия, сделали бы всё, чтобы не допустить экспорт такого реактора. Нерадужные перспективы экспорта реакторов типа БН стали последним гвоздиком в крышку надежд на новое будущее. Есть у реакторов типа БН и ещё один недостаток, который может проявиться при увеличении их мощности — натриевый пустотный эффект.

Выражается он в росте реактивности при закипании натрия, что приводит к росту процесса деления атомных ядер. Поэтому для реакторов на натриевом теплоносителе удалось получить стабильный коэффициент воспроизводства отношение скорости образования ядерного горючего к скорости выгорания ядерного горючего лишь немногим больше 1 от 1 до 1,05. Все эти вместе взятые причины привели к тому, что у серийных реакторов серии БН нет никаких преимуществ перед легководными собратьями, а даже в случае реализации ЗЯТЦ рентабельность всё равно была сомнительной. Коллеги по опасному бизнесу Свинец всему голова Одной из ключевых проблем реакторов на натриевом теплоносителе был сам натрий. Выход из ситуации казался очевидным — нужно сменить теплоноситель. Но сделать это было непросто. В 60-70е в СССР для подводных лодок создавались реакторы на быстрых нейтронах с теплоносителем эвтектического жидкий гомогенный сплав состава свинец-висмут. Кроме того, из-за редкости висмута и сам теплоноситель влетал в копеечку, будучи дороже натрия в 7-8 раз. Для АПЛ всё это было не столь критично, так как выигрыш по весу и линейным размерам относительно легководных реакторов компенсировал все недостатки. А вот для АЭС это было уже более серьёзной проблемой.

Относительный успех реакторов на свинцово-висмутовом теплоносителе оживил работы по другому направлению — свинцу. Хорошо же?

Пространство между полостями при сооружении поэтапно заполняется бетонным наполнителем. Согласно классификации, принятой МАГАТЭ, IV поколение ядерных реакторов предполагает применение различных технологий, которые объединены общим результатом — более высокой эффективностью использования топлива, увеличенной безопасностью, энергоэффективностью, сокращением отработавшего ядерного топлива и т. Проект «Прорыв», реализуемый Госкорпорацией «Росатом», нацелен на достижение нового качества ядерной энергетики, разработку, создание и промышленную реализацию замкнутого ядерного топливного цикла на базе реакторов на быстрых нейтронах, развивающих крупномасштабную ядерную энергетику. Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний.

Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний. При этом обладая высоким коэффициентом воспроизводства, быстрые реакторы могут производить больше потенциального топлива, чем потребляют, а также дожигать то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы актиниды. Инновационные технологии Росатома основаны на передовых достижениях российской атомной науки и в полной мере отвечают актуальной ESG-повестке.

Достигнутые результаты — это труд тысяч высококвалифицированных профессионалов, которые работают в интересах экономической стабильности России. Четкое взаимодействие промышленных предприятий с научно-исследовательскими институтами помогает укреплять технологический суверенитет страны, повышать конкурентоспособность отечественной атомной отрасли.

«Брест-300», это – «прорыв» к бюджетным ресурсам!».

3D-модель реакторной установки БРЕСТ-ОД-300. БРЕСТ станет вторым реактором, где отрабатывается концепция замкнутого ядерного топливного цикла. Используемый в реакторе БРЕСТ свинцовый теплоноситель является радиационно стойким и слабо активируемым. В январе 2024 г. начался монтаж реакторной установки В составе реакторной установки «БРЕСТ-ОД-300» будут работать восемь парогенераторов массой 72 тонны каждый. Энергоблок с реактором БРЕСТ-ОД-300 станет частью опытно-демонстрационного энергокомплекса (ОДЭК), который строится на площадке СХК в рамках стратегического. Изделие для реактора изготавливают с применением аддитивной технологии электронно-лучевой наплавки проволоки (ЭЛНП), схожей с действием 3D печати.

Поделись позитивом в своих соцсетях

  • «Прорыв» сегодня
  • Россия уходит вперед. Началась стройка уникального реактора на быстрых нейтронах БРЕСТ-​ОД-300
  • Как работает БРЕСТ-ОД-300
  • К «Прорыву» добавляется реактор (12 февраля 2024) |

Россия уходит вперед. Началась стройка уникального реактора на быстрых нейтронах БРЕСТ-​ОД-300

Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом // Новости НТВ Реактор 'БРЕСТ-ОД-300' (установка с пристанционным ядерным топливным циклом) строится на площадке Сибирского химического комбината (СХК) в Северске в рамках проекта Росатома 'Прорыв' по созданию новейшего топлива, на котором атомная энергетика будет работать.
В Северске началась установка ядерного реактора БРЕСТ-300 БРЕСТ-ОД-300 — первая в мире реакторная установка на быстрых нейтронах со свинцовым теплоносителем четвертого поколения.
Россия уходит вперед. Началась стройка уникального реактора на быстрых нейтронах БРЕСТ-​ОД-300 Реактор БРЕСТ-ОД-300 – первый в своем роде быстрый реактор со свинцовым теплоносителем на нитридном топливе, воплощаемый не на бумаге, а “в железе”.

Похожие новости:

Оцените статью
Добавить комментарий