Новости новости квантовой физики

квантовая физика: Последние новости. Физики из Национальной лаборатории в Брукхейвене (Brookhaven National Laboratory, BNL) открыли совершенно новый тип квантовой запутанности, достаточно известного явления, связывающего квантовые частицы. Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода.

Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики

Все самое интересное и актуальное по теме "Квантовая физика". Новости, анонсы, рекомендации. Бытовая техника. Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. свежие новости дня в Москве, России и мире.

В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный

Премия присуждена за «эксперименты с запутанными фотонами, установление [принципа] нарушения неравенств Белла и первенство [в создании] науки о квантовой информации». Учёные описали эффект « квантового запутывания », когда входившие в состав одной и той же системы частицы продолжают «чувствовать» изменения состояния друг друга даже на расстоянии нескольких километров. Премия присуждена за эксперименты с запутанными протонами, выявление нарушения неравенства Белла теорема Белла показывает, что вне зависимости от реального наличия в квантово-механической теории неких скрытых параметров, которые влияют на любую физическую характеристику квантовой частицы, можно провести серийный эксперимент. Его статистические результаты подтвердят либо опровергнут наличие скрытых параметров в квантово-механической теории и новаторство в области квантовой информатики. То, что происходит с одной частицей в переплетённой паре, определяет происходящее с другой, даже если обе находятся на слишком большом расстоянии, чтобы воздействовать друг на друга. Создание лауреатами экспериментальных инструментов заложило основу для новой эры квантовых технологий», — отметил нобелевский комитет. Учёные провели новаторские эксперименты, используя запутанные квантовые состояния, в которых две частицы ведут себя как единое целое, даже если их разъединить. Их результаты расчистили путь для новых технологий, основанных на квантовой информатике, считают эксперты. Мы видим, что работа лауреатов с запутанными состояниями имеет большое значение, даже помимо фундаментальных вопросов интерпретации квантовой механики», — отметил председатель Нобелевского комитета по физике Андерс Ирбек.

Но надежда есть. Группа европейских и сингапурских учёных предложила квантовый симулятор, который воспроизводит эффект квантовой гравитации и не только. Учёные из Венского технологического университета, Университета Крита, Наньянского технологического университета Сингапур и Берлинского университета опубликовали в научном журнале Proceedings of the National Academy of Sciences of the USA PNAS статью, в которой рассказали об успешной симуляции гравитационного линзирования на квантовом симуляторе. Фактически они утверждают о симуляции квантовой гравитации , обоснованием которой занимаются все физики-теоретики и никак не могут это сделать. В качестве основы для квантового симулятора исследователи взяли облака сверхохлаждённых атомов — это определённо квантовые структуры с соответствующим математическим аппаратом и массой решений по управлению ими вспомним многочисленные квантовые вычислители-симуляторы. Вместо света учёные взяли за основу звук и представили его как релятивистский объект из общей теории относительности. Получился квантовый симулятор распространения света в пространстве, который работал в точном соответствии как с ОТО, так и с квантовой теорией. В частности, эксперимент показал осуществимость эффекта гравитационного линзирования на симуляторе. Эксперименты показывают, что форма световых конусов , эффекты линзирования, отражения и другие явления могут быть продемонстрированы в атомных облаках именно так, как это ожидается в релятивистских космических системах. Постановка экспериментов и полученные результаты могут помочь открыть неизвестные доселе явления и эффекты и, в конечном итоге, могут привести к созданию общей теории функционирования нашей Вселенной. Этот вопрос крайне смущал многих физиков прошлого века, включая Альберта Эйнштейна, и был предметом постоянных споров. Для нового эксперимента построили 30 метров вакуумной трубы с криогенным охлаждением, чтобы фотон как можно дольше летел от одной запутанной частицы к другой и не успел вмешаться в измерения. Устройство 30-м трубы из эксперимента с волноводом посередине. В таком случае они должны «передавать информацию» быстрее скорости света. По его мнению, мы просто не всё знаем о квантовой физике, и могут быть какие-то скрытые параметры, которые уже содержатся в характеристиках частицы и выдаются в ответ на измерение свойств одной из запутанных частиц. Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго оно будет противоположным по направлению становится известна мгновенно, где бы этот второй фотон из пары не находился. Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются. Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света. Учёные из Швейцарской высшей технической школы Цюриха ETH Zurich создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц. Измерения длились на несколько наносекунд быстрее. Никакая информация по классическим законам не могла передаться за это время, тогда как эффект квантовой запутанности частиц себя полностью проявил. До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией. У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами. В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов. В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики. Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых сверхчувствительных материй, как элементарные частицы. В этом скрыт небывалый потенциал, который учёные намерены разрабатывать дальше. Однако приближаться к нему можно, бесконечно затрачивая на каждый шаг время и энергию. Благодаря новой работе международной группы физиков у нас появился ещё один параметр, усложняя который можно приближаться к абсолютному нулю, что обещает новые и неожиданные открытия. Источник изображения: Pixabay Для охлаждения элементарных частиц материи необходимо тем или иным способом отбирать у них энергию до тех пор, пока у нас будут на это ресурсы и время. В системе всё равно останутся нулевые колебания, что будет означать отличную от абсолютного нуля температуру. Но теперь появляется теоретическая возможность использовать для охлаждения материи ещё один неиспользованный ранее ресурс — это сложность системы. Фактор сложности или комплексности системы проистекает из законов квантовой физики. Точнее, из квантовой неопределённости и невозможности одновременно знать две «враждующие» характеристики квантовой системы, например, одновременно координаты и импульс количество движения. Квантовое состояние системы описывается бесконечным набором волновых функций, и измерение одного из состояний заставляет мгновенно исчезать все остальные. Физики предположили, что если определить координаты частицы, то это будет означать, что она полностью остановилась все остальные состояния коллапсировали и достигала состояния, как в случае абсолютного нуля. Все квантовые детали информация о них фактически стираются. Согласно принципу Ландауэра , потеря одного бита данных приводит к выделению энергии. Иначе говоря, система теряет энергию и охлаждается ещё сильнее. И чем сложнее квантовая система, тем больше она несёт информации и тем сильнее охлаждается при измерении квантовых свойств. Именно это новое открытие роли сложности квантовой системы открывает новый угол зрения на поиск пути к абсолютному нулю, даже если это такое же практически невозможное решение, как и те, с которыми учёные уже работали энергия и время. Вполне возможно, что повышение сложности квантовых систем — это ещё один способ приблизиться к абсолютному нулю или, по крайней мере, ускорить процесс движения в эту сторону. В перспективе новый подход может привести к открытию новых явлений в квантовой физике и к созданию новых материалов и технологий. Между тем, как и любые процессы в этом мире, химические реакции подвержены законам квантового мира. Учёные впервые выяснили, до какой степени можно пренебрегать ими при изучении химических процессов и как квантовые явления в химических реакциях влияют на физический мир. Ионы пробивают энергетические барьеры для химической связи с молекулами. Поэтому всё сводится к пренебрежению квантовыми эффектами и к решению задач только с позиции классической физики. Подобное приближение удобно для практического применения в повседневной жизни, но не позволяет разобраться в ряде фундаментальных процессов мироустройства. Очевидно, что для изучения квантовых явлений в химических реакциях необходимо придумать и поставить эксперимент, который был бы подтверждён теоретическими выкладками. Эффект туннелирования оказался одним из наиболее удобных кандидатов на постановку такого эксперимента, но на его организацию потребовались годы планирования. Опыт удался у команды исследователей из Университета Инсбрука, о чём они сообщили в свежем выпуске журнала Nature. Для опыта был выбран изотоп водорода дейтерий, который поместили в ионную ловушку и охладили, после чего заполнили ловушку газообразным водородом. За счёт сильного охлаждения отрицательно заряженным ионам дейтерия не хватало энергии для химической реакции с молекулами водорода. Тем не менее, отдельные ионы дейтерия вступали в реакцию с молекулами водорода, чего не могло быть с точки зрения классической физики. По их количеству мы можем сделать вывод о том, как часто происходила реакция». Предложенный в 2018 году теоретический расчёт показал, что в условиях эксперимента одно квантовое туннелирование будет происходить в одном случае из каждых ста миллиардов столкновений, что учёные из Инсбрука смогли подтвердить на практике. Иными словами, для химической реакции с квантовыми явлениями эксперимент впервые подтвердил теорию. Одновременно это была самая медленная реакция с заряженными частицами из когда-либо наблюдавшихся. На основе проведённого исследования можно разработать более простые теоретические модели «квантовых» химических реакций и проверить их на реакции, которая уже успешно продемонстрирована.

Фотонные инь и ян Команда ученых из Оттавского университета Канада и Римского университета Сапиенца визуализировала квантовую запутанность, использовав метод бифотонной голографии. Голография позволяет построить трехмерное изображение с двумерной поверхности на основе излучаемого предметами света. Камера с временной меткой отсняла с разрешением порядка наносекунды на каждом пикселе пару запутанных фотонов, визуализировав их «танец» в реальном времени. Картинка напоминает символ инь и ян. Такие голограммы позволят определять волновую функцию запутанных квантовых частиц, что необходимо для точного предсказания их поведения. Основное преимущество модульных квантовых компьютеров заключается в том, что их можно постоянно модифицировать, добавляя процессоры, серверы и проч. Этот путь мы прошли за четыре года.

Для этого ученые прикладывали ток возбуждения низкой частоты к образцу, охлажденному до 1,6 кельвин и помещенному в сильное магнитное поле величиной 12 тесла, и получали сопротивление второй гармоники путем измерения переменного напряжения. Ученые отмечают, что полученные экспериментальные результаты хорошо согласуются с теоретическими расчетами. Эти расчеты показали, что при частичном заполнении асимметричное рассеяние между краевыми квантовыми состояниями Холла и орбитами Ландау как раз и приводит к подобному невзаимному переносу. Изучение топологических свойств квантовых материалов стало одним из основных направлений исследований в последнее время. Например, совсем недавно мы рассказывали, что физики обнаружили гибридное топологическое состояние в элементарном твердом теле.

Нобелевскую премию по физике присудили за квантовую запутанность

Возможно, что и многие другие явления, ранее интерпретировавшиеся на основе эффекта Кондо, на самом деле объясняются спинаронами. Спинароны могут найти полезные применения в наноэлектронике. Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации. В квантовых точках запутанные по поляризации фотоны рождаются в процессе двухфотонного резонансного возбуждения в биэкситонно-экситонном каскаде, однако эффективность этого метода остается пока ниже, чем в методе параметрической вниз-конверсии. Basso Basset Римский университет Сапиенца, Италия и соавторы исследовали влияние индуцированного лазером эффекта Штарка на спектры излучения квантовых точек и на квантовую запутанность излучаемых фотонных пар [3]. Квантовая точка в GaAs облучалась фемтосекундными лазерными импульсами. Оказалось, что эффективность запутывания зависит от соотношения длительности лазерного импульса и времени жизни верхнего возбужденного состояния точки, ответственного за генерацию каскада.

В новом эксперименте длительность импульса была доведена до времени жизни указанного уровня, и была показана перспективность использования фотонных пар от квантовых точек на частотах выше ГГц, хотя пока остается широкое поле для дальнейших исследований и усовершенствований. Sreekanth Институт материаловедения и инжиниринга IMRE , Сингапур и соавторы продемонстрировали в своём эксперименте новый спектрограф для резонансной рамановской спектроскопии с поверхностным усилением в участке ближнего ИК-спектра [4]. Это устройство может применяться для идентификации молекул по частотам их колебательных линий. Использовался перестраиваемый брэгговский отражатель из чередующихся слоёв стибнита Sb2S3, вносящего малые фазовые потери, и слоёв SiO2, а также тонкой металлической плёнки.

Будьте в курсе событий Десятилетия науки и технологий! Десятилетие науки и технологий в России Российская наука стремительно развивается. Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна.

В этих экспериментах ядра выглядели больше, чем по расчетам, и это годами ставило ученых в тупик. Однако теперь загадка решена — команда BNL обнаружила эффект, который отвечает за странное поведение глюонов в ядрах.

Как оказалось, глюоны рассредоточены в большей степени, чем казалось прежде, и из-за этого выглядели больше. Открытие можно использовать для разработки новых технологий, например, для изучения ядер ионов золота. И расширяет наше понимание квантовой физики и странных феноменов, которые возникают на атомном уровне. В прошлом году физики из Института Макса Планка сообщили о разработке эффективного метода создания квантовой запутанности между фотонами. Более того, они продемонстрировали его на рекордно большом количестве частиц света.

В результате бомбардировки ядрами хрома 54Cr мишени из урана 238U они получили ранее неизвестный изотоп ливермория 288Lv 116-го элемента Периодической таблицы Менделеева со временем жизни чуть менее одной миллисекунды. Уникальный атом не был непосредственной целью эксперимента и стал приятной неожиданностью.

Дело в том, что сверхтяжёлые элементы от 114-го — флеровия до 118-го — оганесона были синтезированы [1], [2], [3] в реакциях с пучком 48Ca, а самое тяжёлое вещество, которое можно наработать в количестве, достаточном, чтобы сделать мишень — калифорний. Слияние ядер кальция 20-й элемент и калифорния 98-й элемент как раз и образует 118-й элемент — последний из синтезированных на сегодняшний день. Чтобы получить сверхтяжёлые элементы с большим атомным номером надо использовать ядра не кальция, а элементов с большим количеством протонов. Так, для получения 120-го элемента предлагается реакция хрома 54Cr 24-й элемент с мишенью из кюрия 96-й элемент. Исследованием этого снаряда и занят ОИЯИ. Полученный результат позволяет надеяться на успешное использование ядра 54Cr для синтеза 120-го элемента, приступить к которому ОИЯИ планирует в 2025 году. После этого, видимо, будет сделана попытка синтезировать также ещё не открытый 119-й элемент, бомбардируя Америций 95-й элемент.

Рентгеновская подпись атома Команда физиков из нескольких американских лабораторий под руководством профессора Со Вай Хла Saw Wai Hla, Университет Огайо разработала метод, использующий синхротронное рентгеновское излучение для исследования отдельного атома в веществе. В качестве объекта изучения были выбраны атомы железа и тербия. Для решения этой задачи авторы работы сделали своеобразный гибрид рентгеновского спектроскопа и сканирующего туннельного микроскопа, назвав новый метод «синхротронной рентгеновской сканирующей туннельной микроскопией» SX-STM. Исследователи одновременно с туннельным сканированием облучали образец рентгеновским излучением, которое проникало на нижние электронные оболочки, возбуждало близкие к ядру электроны и приводило к их туннелированию. В зависимости от состояния атома его электроны находятся на разных орбиталях, имеют разную энергию и соответственно поглощают фотоны разной длины волны. Регистрируя зависимость туннельного тока от частоты излучения можно распознать не только сам атом, но и его химическое состояние — на каких орбиталях находились электроны 4. Стерильных нейтрино нет?

Отрицательный результат — тоже важный для науки результат.

Квантовые технологии

Новости и события Физики предложили новый способ безыгольных инъекций Ученые Центра фотоники и двумерных материалов МФТИ с коллегами представили инновационный способ безыгольных инъекций. квантовая физика. 24.10.2019. Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода.

Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс

Лауреатом в номинации «Перспектива» стал Илья Семериков, кандидат физико-математических наук, заместитель руководителя научной группы в Российском квантовом центре, научный сотрудник Физического института имени Лебедева ФИАН. Премия присуждена за создание ионного квантового процессора с использованием многоуровневых квантовых систем. Лауреатом в номинации «Инженерное решение» стал Гамлет Ходжибагиян, директор по научной работе Лаборатории физики высоких энергий Объединенного института ядерных исследований ОИЯИ , кандидат физико-математических наук.

По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. Международная гонка кубитов Доцент CAS Лян Футянь Liang Futian сказал, что ключевые показатели чипа Xiaohong, как ожидается, достигнут уровня производительности чипов основных международных облачных платформ квантовых вычислений, таких как IBM. IBM заявила о выпуске чипа на тысячу кубитов в декабре 2023 г.

Журнал Nature назвал его первым в мире. В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2.

Самые интересные проекты, открытия и исследования, а также информация о конкурсах и мероприятиях в вузах и научных центрах России в одном удобном формате. Будьте в курсе событий Десятилетия науки и технологий! Десятилетие науки и технологий в России Российская наука стремительно развивается.

А как можно оценить ценность жизни? Именно такой вопрос задал Ричарду Фейнману психиатр. А мы расскажем вам его ответ из книги «Вы, конечно, шутите, мистер Фейнман» 393 views Квантач Физики из коллаборации IceCube не обнаружили влияния квантовой гравитации на параметры нейтринных осцилляций Создание непротиворечивой и полной теории квантовой гравитации — одна из важнейших задач современной физики. В поиске квантовой гравитации ученым может помочь экспериментальная проверка ее на состояния движущихся частиц во времени. Например, нейтрино во время взаимодействия с квантовыми флуктуациями пространства-времени могут частично терять квантовую когерентность. Это должно проявляться отклонением от ожидаемой картины нейтринных осцилляций на больших расстояниях и высоких энергиях. Но гравитационные квантовые флуктуации не повлияли на атмосферные нейтрино.

Физики обнаружили гигантский невзаимный перенос заряда в топологическом изоляторе

Одно из ключевых явлений квантовой физики — квантовая запутанность частиц: изменение, произошедшее с одной частицей, приводит к изменению другой частицы, находящейся на расстоянии от первой. Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. В интервью РИА Новости он объяснил, какие перспективы открывает новый инструмент коммуникаций и что нужно для его квантовой революцией называют период взрывного технологического роста, последовавшего за созданием квантовой физики.

Квантовая механика

C 1966 по 1969 год работал в Национальной лаборатории имени Лоуренса в Беркли, Ливерморской национальной лаборатории и Калифорнийском университете, где занимался экспериментальными исследованиями теоремы Белла. В 2010 году Клаузер вместе с Аспе и Цайлингером был удостоен премии Вольфа. Антон Цайлингер родился в австрийском городе Рид-им-Иннкрайс в 1945 году. С 1963 года изучал физику и математику в Венском университете, в 1971 году защитил диссертацию по деполяризации нейтронов. После работал в Венском институте атома и читал лекции в ряде ведущих западных университетов. В 1990—2013 годах занимался экспериментальной физикой в университете Инсбрука и Венском университете.

В 2013 году стал её руководителем. По признанию мирового экспертного сообщества, работы Цайлингера «заложили концептуальную и экспериментальную основы изучения квантовой физики». За свою научную деятельность австрийский учёный отмечен рядом престижных наград.

Аспирант Кристофер Остфельдт объясняет далее: «Представьте себе различные способы реализации квантовых состояний как своего рода зоопарк различных реальностей... Если, например, мы хотим построить какое-то устройство, чтобы использовать различные качества, которыми все они обладают и в которых они выполняют разные функции, решают разные задачи, необходимо будет изобрести язык, на котором все они смогут разговаривать. Квантовые состояния должны иметь возможность общаться, чтобы мы могли использовать весь потенциал квантового устройства". Теперь у учёных фактически есть способ заставить двух зверей такого зоопарка рычать на одном языке. Ещё один конкретный, хотя, пожалуй, и сложный для понимания перспектив пример.

Квантовое зондирование. Оно позволит у знать о микромире много нового и интересного. Ведь когда только один из двух запутанных объектов будет подвергаться внешнему воздействию, запутанность позволит измерить нужные свойства второго объекта с невероятной по современным меркам чувствительностью, не ограниченной нулевыми колебаниями. Это как заглянуть в удивительный квантовый мир с помощью микроскопа.

И в зависимости от этого получаем ответ на поставленный вопрос». Процесс сложный, но ученые излучают уверенность и делают кубиты также на сверхпроводниках, которым нужны экстремально низкие температуры. Уже есть успехи — американская IT-компания , например, в конце 2022 года представила процессор, внутри которого 433 кубита. Теоретически в нем может одновременно содержаться на много порядков больше бит информации, чем атомов в наблюдаемой Вселенной. Но решить какую-то задачу гораздо быстрее обычного компьютера, то есть «продемонстрировать квантовое превосходство», такой процессор пока не может — слишком нестабильны элементы. Подобные удачи, впрочем, уже случались.

Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера. Но есть и опасения по поводу новой технологии.

Согласно существующим космологическим теориям, схожие процессы происходили после возникновения Вселенной, так что подобное моделирование может пролить свет на многие загадки, занимающие умы ученых. Читайте также Существует ли край у Вселенной?

Тем самым Юнг доказал волновую природу света. Иллюстрация классического двухщелевого опыта. Свет, проходя через две прорези в ширме, формирует на непрозрачной поверхности экрана ряд чередующихся интерференционных полос Источник: Савенок Д. Для этого они использовали полупроводниковое зеркало с переменной отражаемостью излучения. Исследователи дважды быстро изменяли отражательную способность зеркала, создав две щели во временной области. В процессе физикам удалось зафиксировать интерференционные полосы вдоль частотного спектра отраженного от зеркала света. При этом интерференция происходила на разных частотах, а не в разных пространственных положениях.

В теории эта работа может найти применение в области создания оптических компьютеров. Таким образом физики продемонстрировали наличие элементов и технологий для создания масштабных многоузловых квантовых сетей. Читайте также 7.

Квантовая механика

По его словам, эта разработка значительно приблизила мир к созданию всемирной сети квантовых коммуникаций и к разработке распределенных квантовых вычислительных систем, чьи компоненты удалены друг от друга на очень большие расстояния. Как полагают многие физики в мире, дальнейшее развитие квантовых компьютеров потребует создания систем, способных автоматически находить и корректировать случайные ошибки в их работе. Подобные сбои неизбежно возникают в работе кубитов, квантовых ячеек памяти и примитивных вычислительных блоков в результате их взаимодействия с объектами окружающего мира. Ученые обнаружили, что эти случайные сбои в работе квантовых компьютеров можно подавить, если использовать для расчетов так называемые логические кубиты, виртуальные квантовые ячейки памяти, состоящие из нескольких соединенных друг с другом физических кубитов. Они устроены таким образом, что ошибки в их работе автоматически корректируются, что позволяет вести сложные и длительные вычисления при их помощи.

Во время него в закрытый ящик помещаются кот и механизм, открывающий емкость с ядом в случае распада радиоактивного атома что может случиться или не случиться. В соответствии с принципами квантовой физики кот является одновременно и живым, и мертвым. Отсюда берет свое начало термин "квантовая суперпозиция" — совокупность всех состояний, в которых может одновременно находиться кот.

Сегодня физики активно пытаются создать такого кота Шредингера, которого можно было бы увидеть невооруженным глазом. Роберт Шоелкопф Robert Schoelkopf из Йельского университета США и его коллеги "вырастили" усовершенствованную модель такого квантового "животного", научившись разделять кота Шредингера на отдельные, но, тем не менее, зависящие друг от друга части.

Воздействуя на молекулу микроволновым излучением, ученые привели электроны в состояние квантовой когерентности и удерживали более 100 наносекунд. Фотонные инь и ян Команда ученых из Оттавского университета Канада и Римского университета Сапиенца визуализировала квантовую запутанность, использовав метод бифотонной голографии. Голография позволяет построить трехмерное изображение с двумерной поверхности на основе излучаемого предметами света. Камера с временной меткой отсняла с разрешением порядка наносекунды на каждом пикселе пару запутанных фотонов, визуализировав их «танец» в реальном времени. Картинка напоминает символ инь и ян. Такие голограммы позволят определять волновую функцию запутанных квантовых частиц, что необходимо для точного предсказания их поведения. Основное преимущество модульных квантовых компьютеров заключается в том, что их можно постоянно модифицировать, добавляя процессоры, серверы и проч.

Новости Чем занимались физики в 2023 году В 2023 году произошло довольно много интересных и важных физических исследований. В итоговом небольшом обзоре расскажем о некоторых из них. Как-то так получилось, что почти все они относятся к микромиру. Речь пойдёт о нейтрино, синтезе сверхтяжёлых элементов, квантовой запутанности молекул, исследовании протона и атома и особняком стоит передача энергии из космоса. Результат ожидаемый, но требовавший проверки, поскольку существует предположение, что антиматерия подвержена антигравитации, то есть для неё гравитация приводит к отталкиванию, а не притяжению. Такое её гипотетическое свойство иногда используют для объяснения самых больших загадок современной космологии — преобладания вещества над антивеществом во Вселенной и наблюдаемого её расширения с ускорением, для чего обычно предполагают существование гипотетической тёмной энергии. Рентгеновская подпись всего лишь одного атома железа: зависимость туннельного тока от частоты фотона Изображение Университета Огайо Установка на место 93 тонного детектора STEREO вместе с защитой. Сверху он покрыт черными листами поглотителя нейтронов для уменьшения внешнего фона. Цель эксперимента —обнаружение и изучение взаимодействий нейтрино высоких энергий внутри коллайдера. В магнитной ловушке накопили атомы антиводорода, а затем позволили им свободно падать. Перемещение атомов антивещества отслеживали по аннигиляционным вспышкам на стенках установки. Несмотря на кажущуюся простоту описания, эксперимент очень сложный, потребовавший в том числе учёта большого числа факторов, например, влияния магнитов в установке, чьё действие создаёт силу, сопоставимую с гравитационной. На пути к 120-му элементу В октябре 2023 года на Фабрике сверхтяжёлых элементов в Лаборатории ядерных реакций ОИЯИ Дубна, Россия исследователи впервые успешно синтезировали сверхтяжёлый элемент с помощью снаряда-ядра тяжелее 48Ca. В результате бомбардировки ядрами хрома 54Cr мишени из урана 238U они получили ранее неизвестный изотоп ливермория 288Lv 116-го элемента Периодической таблицы Менделеева со временем жизни чуть менее одной миллисекунды. Уникальный атом не был непосредственной целью эксперимента и стал приятной неожиданностью. Дело в том, что сверхтяжёлые элементы от 114-го — флеровия до 118-го — оганесона были синтезированы [1], [2], [3] в реакциях с пучком 48Ca, а самое тяжёлое вещество, которое можно наработать в количестве, достаточном, чтобы сделать мишень — калифорний. Слияние ядер кальция 20-й элемент и калифорния 98-й элемент как раз и образует 118-й элемент — последний из синтезированных на сегодняшний день.

Эфир существует! Российские ученые совершили прорыв в фундаментальной физике

Новости науки» Tag» Квантовая механика. И расширяет наше понимание квантовой физики и странных феноменов, которые возникают на атомном уровне. В прошлом году физики из Института Макса Планка сообщили о разработке эффективного метода создания квантовой запутанности между фотонами. Нобелевскую премию по физике дали за новаторство в квантовой информатике Награды удостоились француз Ален Аспе, американец Джон Клаузер и австриец Антон Цайлингер. Ученые МФТИ совершили прорыв в области квантовой физики. Новости науки» Tag» Квантовая механика.

Похожие новости:

Оцените статью
Добавить комментарий