Новости наукастинг осадков на 2 часа

Прогноз осадков на 2 часа (наукастинг). По моим данным, он циклон балканского происхождения по имени «Бенедикт». За сегодняшний день в Москве выпадет около 30% месячной нормы осадков. Новости. Телеграм-канал @news_1tv. В итоге получается своеобразный ультракраткосрочный прогноз или наукастинг — на ближайшие два часа с шагом в десять минут. Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд.

Как менялась Яндекс.Погода: от виджета до погодных карт

​Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым Актуальные новости о погоде и окружающей среде.
​Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым В задаче наукастинга осадков необходимо минимизировать отклонение спрогнозированных мм от истинного.
Роман Вильфанд: вопрос использования "больших данных" обсуждается во всем метеорологическом мире Об этом сообщает РИА Новости со ссылкой на данные Росгидрометцентра. Высота осадков составила 20 мм.

Метеоролог и я

Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз. Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед.

Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем.

Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты.

Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно.

Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок.

Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза.

Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции.

Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т. Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше.

Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных.

Можно пропустить какие-то данные — а радары довольно часто запаздывают. Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля. Но всё победил тот самый лазерный меч в Иваново.

Когда он висит над вами как дамоклов меч и зануляет вокруг себя все вектора, то облака не могут ни пересечь его, ни двигаться в одном районе с ним. Даже какого-то физического движения на картинке не происходит. Поэтому в конечном итоге мы пришли к нейронной сети.

Это большой методический вопрос, который обсуждается во всем метеорологическом мире. Для того чтобы использовать наблюдения, нужно, чтобы они велись методически правильно. Ошибка большая в наблюдениях влечет за собой большую ошибку в прогнозе.

Можно сфотографировать зарождение смерча в отдаленном районе, который не фиксировали. Если для смерча созданы условия, значит, в атмосфере существует сильная неустойчивость. Мгновенно все метеорологи должны насторожиться.

Но вдруг снимки — фейк? У нас страна огромная. Есть регионы, где в принципе нет наблюдений — нет людей.

Есть труднодоступные станции: забрасывается группа на полгода, живет там, передает информацию. Это очень значимо. Но если наблюдения приходят от оленеводов или волонтера, работающего в золотодобывающей партии, как относиться к таким данным?

С одной стороны, с благодарностью, с другой — с осторожностью. Сейчас разрабатываются методы, как с помощью двойного, тройного контроля все-таки использовать эти данные. Да, в рамках метеорологического общества, когда оно будет создано, я думаю, это будет один из действительно очень значимых вопросов, на который сейчас нет ответа.

Но общество будет, конечно, решать гораздо больше проблем. Программа по защите от селевых потоков создаст эффективную систему мониторинга в КБР — В принципе, идея такого общества витала в воздухе уже достаточно давно. С моей точки зрения, это очень хорошая, продуктивная идея.

У нас сейчас метеорологи, синоптики — специальность редкая, даже "редкостная". Она разбросана по разным ведомствам, регионам. В общем-то, все они мало связаны.

Общество позволит объединить всех людей, которые заинтересованы в развитии метеорологии. На самом деле, все люди в душе немножко метеорологи. Но, конечно же, предполагается, что это будет более-менее профессиональное сообщество.

Общество сможет выработать позиции, которые необходимо реализовать государству либо социуму, понять, что нужно сделать, чтобы климатические исследования нашли значимое применение, чтобы химический состав воздуха определялся повсеместно, чтобы прогнозы стали лучше. Когда выступает Росгидромет и говорит, что необходимо развитие наблюдательной сети, финансирование того или другого направления, это же выступают все-таки люди государственные. И отношение к ним одно.

А когда существует сообщество людей, у которых разные точки зрения, но которые в результате дискуссии, общения пришли к консенсусу, то это совершенно по-другому воспринимается органами исполнительной власти, структурами государства. Кроме того, сообщество может корректировать и позиции тех людей, которые профессионально занимаются метеорологией. Почему не делается какая-то работа?

Нужно доказать, обосновать, потому что разговор идет с профессионалами, людьми, имеющими образование соответствующее. В общем, это то, что сейчас принято называть "мягкой силой". Таких обществ много за рубежом.

Американское метеорологическое общество — очень уважаемая организация. Русское географическое общество как воспринимается? Это же действительно настоящая интеллектуальная мощь.

В 1914 году температура в этот день опускалась до 32 градусов мороза. С этого года Росгидромет начнет создавать высокоточные краткосрочные прогнозы погоды для Москвы и еще 15 городов-миллионников, сообщил сегодня на коллегии Росгидромета Максим Яковенко. И отметил, что есть поручение президента о создании подобных программ для городов-миллионников. Столица станет пионером при создании таких прогнозов. В прошлом году был проведет "пилотный" проект по наукастингу осадков - высокоточным прогнозам на несколько часов - в зоне действия девяти радаров Кострома, Нижний Новгород, Валдай, Внуково, Воейково, Тула, Смоленск, Брянск, Курск. Наукастинг является перспективным направлением, которое позволяет создавать высокоточные краткосрочные прогнозы на малых территориях. К примеру, он позволяет информировать людей о погоде в определенном районе города или улице, что очень актуально для больших городов, в которых климат центра и окраин отличается.

Росгидромет создаст высокоточные краткосрочные прогнозы погоды для городов-миллионников Но быстро создать такую систему не получится. К примеру, по всей Москве прогнозировать точную погоду на несколько часов можно будет только через три года.

В России радиолокаторы установлены в наиболее населенных и интересных с метеорологической точки зрения регионах. Рэй Курцвейл: «В ближайшие 10 лет мы начнем печатать себе одежду дома» Мнения Ранее «Хайтек» писал о портативно детекторе погоды — разработке компании BloomSky. Детектор умеет измерять температуру, влажность, атмосферное давление и количество осадков и показывать актуальные изображения окружающих погодных условий каждые пять минут, а затем собрать их в time-lapse. Читайте также.

​Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым

Такой прогноз называется наукастинг, обычно он делается на ближайшие часы (до 2-6 часов вперед). Главная» Новости» Больше всего осадков в городе 2024. Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. Прогноз осадков по ЕТР на 2 часа (наукастинг).

В Росгидромете назвали точную дату наступления весны

В некоторых регионах России уже прошли оранжевые дожди. Например, вчера такие осадки выпали в Белгороде и Крыму, автомобили покрылись желтой пылью. Начальник Челябинского центра по гидрометеорологии и мониторингу окружающей среды Валерий Кочегоров пояснил, что преодолев большое расстояние африканская пыль немного рассеялась и на Южном Урале в осадках будет небольшое содержание песка.

This type of forecast therefore includes details that cannot be solved by numerical weather prediction NWP models running over longer forecast periods. Principle[ edit ] Nowcasting in meteorology uses surface weather station data, wind profiler data, and any other weather data available to initialize the current weather situation and forecast by extrapolation for a period of 0 to 6 hours. In this time range it is possible to forecast small features such as individual storms with reasonable accuracy. Weather radar echoes and satellite data, giving cloud coverage, are particularly important in nowcasting because they are very detailed and pick out the size, shape, intensity, speed and direction of movement of individual features of weather on a continuous basis and a vastly better resolution than surface weather stations. Different research groups, public and private, have developed such programs. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river etc.

Depending on the area of built-up space, drainage and land-use in general, a forecast warning may be issued.

Название происходит от английских слов now и forecasting, дословно можно перевести как «прогноз на сейчас». В 2017 году мы начали разрабатывать погодные карты. На карте можно посмотреть, как в режиме реального времени двигаются тёплые и холодные воздушные массы, где сейчас особенно сильный ветер и низкое давление, а также как закручиваются воздушные потоки в циклонах и антициклонах. Чтобы отрисовать красивые анимированные карты, компьютеры ежесекундно производят огромное количество математических операций, сопоставляя данные о прогнозе с картой. Так выглядит карта ветров в Яндекс. Погоде Так выглядит карта ветров в Яндекс. Погоде В 2018 году мы прошли ещё один важный этап в развитии гиперлокального прогноза: добавили в алгоритм расчёта данные со спутниковых снимков, эта технология получила название спутникового наукастинга. Снимки со спутников позволили повысить точность прогноза в зонах со слабым радарным покрытием и снизили зависимость прогноза от радиолокаторов, которые иногда выходят из строя.

Самым сложным оказалось вывести данные с радаров и спутников на одной карте, ведь нужно было согласовать их по времени и правильно склеить. С этой задачей помогла нейросеть — благодаря хитрой склейке на карте незаметны границы зон действия радаров и нет резких изменений областей осадков на стыках радаров и спутника. Они позволяют строить точные прогнозы, но у каждого из них есть недостаток: станций не так много, у радаров есть погрешности из-за рельефа местности, зданий и птиц, а спутники висят над экватором, поэтому высокие широты, где и находится Россия, на снимках не очень хорошо видны.

Для решения задачи можно обозначить две возможные архитектуры: сверточные нейронные сети [3]; многослойные персептроны [4]. Первый тип нейросетей целесообразно применять в том случае, если мы используем данные большого размера в изначальном, матричном виде, так как сверточные нейронные сети предназначены для обработки данных, имеющих топологию в виде сетки Второй тип подойдет в том случае, если мы используем данные небольшой размерности. Например, это может быть, когда размерность была сознательно уменьшена в целях облегчения данных для тестирования новых моделей и проверки гипотез. Для использования данного метода будет необходимо использовать данные в виде одномерного массива. Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей.

Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений. Регион: Центральный федеральный округ. Период испытаний: июнь — сентябрь 2020 г. Рисунок 1. Содержание файлов.

Карты погоды в Спутнике

В задаче наукастинга осадков необходимо минимизировать отклонение спрогнозированных мм от истинного. Порядка 30% от месячной нормы осадков прольется на Москву в субботу, сообщил ведущий специалист центра погоды "Фобос" Евгений Тишковец в своем Telegram-канале. Об этом сообщает РИА Новости со ссылкой на данные Росгидрометцентра. Высота осадков составила 20 мм. есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить.

☔ТОП самых точных сайтов прогноза погоды на 2024 год

это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения. Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов. Метеорологическая карта прогноза осадков в Европе. Прогноз осадков на 2 часа (наукастинг). Согласно прогнозу, который озвучил ведущий специалист центра погоды «Фобос» Евгений Тишковец, первый весенний месяц будет холодным – усилятся морозы, будет идти снег. У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. Прогноз осадков на 2 часа (наукастинг).

Похожие новости:

Оцените статью
Добавить комментарий