Мы активно развиваем искусственный интеллект в медицине. Борис Зингерман — директор Ассоциации разработчиков и пользователей искусственного интеллекта в медицине и его экспертиза в этом вопросе особенна ценна. Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении?
Яндекс Образование
Одно из наиболее значимых преимуществ роботизированной хирургии — уровень точности, ведь даже у самых опытных врачей дрожат руки. Робототехника позволяет устранить это, обеспечивая устойчивость движений. Эта функция особенно полезна при микрохирургических кардио- и нейро- операциях с минимальной погрешностью. Благодаря им врачи отрабатывают хирургические операции в виртуальной среде перед проведением их непосредственно на пациентах. Используя AR-гарнитуры, хирурги накладывают цифровые изображения на тело пациента, что позволяет им в режиме реального времени следить за состоянием критических структур — кровеносных сосудов или опухолей. Эта технология значительно повышает точность и снижает риск осложнений во время операции. Медицинские школы и институты используют AR-приложения для преподавания анатомии, позволяя студентам взаимодействовать с 3D-моделями человеческого тела. Столь практический подход улучшает понимание и запоминание сложных медицинских концепций. В то же время VR — мощный инструмент для снятия негатива во время разного рода процедур. Пациенты погружаются в успокаивающую VR-среду, отвлекаясь от боли и дискомфорта при обработке ран или физиотерапии.
VR также используется при лечении фобий, посттравматических стрессовых расстройств ПТСР и тревожности.
Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т.
Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу.
Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет: Источник: McKinsey and Company За искусственным интеллектом будущее, и оно наступает уже сегодня. Мы в Azoft стремимся использовать все возможности новейших технологий. Наш отдел RnD разрабатывает и использует искусственный интеллект, машинное обучение и нейронные сети для решения задач в области медицины и не только.
ИИ используется для интеграции нескольких медицинских изображений, чтобы создать полное представление об анатомии пациента. Это важно при лучевой терапии, хирургии под визуальным контролем и других медицинских процедурах. ИИ можно использовать для автоматической идентификации и классификации поражений, опухолей и других аномалий по размеру и текстуре.
ИИ можно научить распознавать закономерности на медицинских изображениях и прогнозировать прогрессирование заболевания или вероятность рецидива. ИИ может помочь рентгенологам в анализе медицинских изображений, таких как рентгеновские снимки, компьютерная томография и МРТ, для выявления аномалий и помощи в диагностике. Роль ИИ в дерматологии ИИ можно использовать для анализа изображений кожных заболеваний, таких как дерматит, рак кожи или другие поражения кожи. ИИ можно научить классифицировать различные типы поражений кожи, такие как меланома или немеланомный рак кожи. Это может помочь повысить точность диагностики. ИИ можно использовать для разработки индивидуальных планов лечения кожных заболеваний, таких как меланома, с использованием информации о пациентах и рекомендаций, основанных на данных.
ИИ может извлекать сложную количественную информацию из медицинских изображений для создания радиомикроскопических сигнатур различных видов рака. ИИ можно использовать для анализа больших объемов данных для выявления потенциальных новых лекарств и методов лечения рака. ИИ можно использовать для разработки индивидуальных планов лечения онкологических больных. Эти персонализированные планы лечения могут быть основаны на индивидуальных факторах пациента, таких как генетическая информация и биология опухоли. Роль ИИ в кардиологии ИИ может помочь в диагностике сердечных заболеваний. Он может анализировать данные ЭКГ для обнаружения аритмий, таких как мерцательная аритмия.
ИИ можно использовать для анализа рентгенограмм грудной клетки для выявления признаков сердечных заболеваний, таких как увеличенное сердце или жидкость в легких. ИИ можно использовать для оценки риска сердечно-сосудистых заболеваний у пациента на основе таких факторов, как демографические данные, история болезни и образ жизни. На основании чего можно выявить пациентов, нуждающихся в раннем вмешательстве. ИИ можно использовать для обнаружения и диагностики сердечных заболеваний, таких как ишемическая болезнь сердца или заболевания сердечных клапанов, путем анализа изображений с эхокардиограмм или компьютерной томографии. Раннее выявление важно для контроля и лечения сердечных заболеваний, а прогнозы на основе ИИ могут спасти жизнь. Роль ИИ в инфекционных заболеваниях ИИ может помочь в диагностике инфекционных заболеваний, идентифицируя микроорганизмы, такие как бактерии, вирусы и грибки, на основе данных секвенирования ДНК.
ИИ можно использовать для прогнозирования устойчивости микроорганизмов к различным антибиотикам. Таким образом, ИИ может помочь оптимизировать лечение и уменьшить распространение устойчивости к противомикробным препаратам. ИИ можно использовать для мониторинга распространения инфекционных заболеваний, отслеживая количество случаев заболевания и смертей. ИИ можно использовать для выявления факторов риска и потенциальных вспышек инфекционных заболеваний путем анализа больших объемов данных электронных медицинских карт. Роль ИИ в разработке лекарств ИИ можно использовать для анализа больших объемов данных из различных источников, таких как молекулярные базы данных, научная литература и клинические испытания, для определения новых мишеней для лекарств и потенциальных методов лечения. ИИ можно использовать для разработки новых лекарств.
Прогнозируя, какие химические соединения будут наиболее эффективными и наименее токсичными, ИИ может улучшить дизайн лекарств. Роль ИИ в персонализированном уходе ИИ может анализировать большие объемы данных о пациентах для выявления закономерностей, корреляций и взаимосвязей между различными переменными, такими как демографическая информация, история болезни и история лечения. Эта информация может помочь в разработке индивидуальных планов лечения. ИИ можно использовать для определения оптимальной дозы препарата для пациента путем анализа данных о конкретном пациенте. Это может улучшить результаты лечения за счет снижения риска побочных эффектов. ИИ можно использовать для разработки точных методов лечения рака путем анализа генетической информации пациента.
Эти методы лечения могут быть адаптированы в соответствии с конкретной генетической мутацией, ответственной за конкретный рак. Роль ИИ в мониторинге пациентов ИИ можно использовать для постоянного наблюдения за пациентами, отслеживания состояния их здоровья и изменения планов лечения по мере необходимости.
Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык. Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача. Медработнику нужно осознать, проанализировать, сопоставить, пропустить через себя и выйти на принятие решения, на которое есть только минуты, а то и секунды. А если специалист не в настроении или плохо себя чувствует, то эффективность его диагностики снижается в разы. Хочу отдельно коснуться потенциальной пользы применения ИИ в медицине.
Почему потенциальной? Потому, что сейчас систем ИИ, которые быстро определяют риски и учитывают множество входных параметров, не очень много и порядок их применения пока полностью не урегулирован. ИИ и нейросети способны в будущем преобразить современное здравоохранение. Изменить к лучшему систему диагностики, повысить качество оказания медицинских услуг при одновременном снижении расходов. Искусственный интеллект учится на клинических данных и историях заболеваний пациентов. Учитывает множество входных параметров при вычислениях и потенциально способен быстро определить риски возникновения заболеваний, предсказать динамику их течения. О морали и экономической целесообразности Работник здравоохранения должен принимать решения на основе фактов, и эти решения должны быть рациональными и практичными. Но не менее важны ценности, на которых строится этот выбор: этика, мораль, представления о добре и зле, о благе для пациента. Порой рациональным решением кажется отказ от дальнейшей борьбы за жизнь и здоровье пациента. Стоимость, ресурсоемкость, плохой прогноз на излечение — это рациональные параметры.
Олия Артемова
Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. нейротехнологии и технологии искусственного интеллекта. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме
Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний.
Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ?
MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии.
Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта.
Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам.
В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил. То есть в ней была база знаний, правила вывода, семантические сети.
При поиске решения применялось нечёткое сопоставление то есть правила нечёткой логики. Я всегда мог объяснить врачам, почему система, основываясь на наблюдениях за состоянием пациента, сообщала о вероятности того или иного диагноза. Говоря научным языком, «Джейн» относилась к объяснимому искусственному интеллекту. Росстандарт принял первый в нашей стране ГОСТ по этой теме только несколько месяцев назад. К его созданию имел отношение Технический комитет по стандартизации ТК 164 «Искусственный интеллект», в работе которого я участвую.
Новая серия стандартов «Системы искусственного интеллекта в клинической медицине» начала действовать с 1 марта 2022 года. ГОСТ был разработан под руководством Научно-практического клинического центра диагностики и телемедицинских технологий Департамента здравоохранения города Москвы. Раньше ИИ в российской медицине находился, по сути, в серой зоне. И государство не шло на массовое распространение таких систем, потому что не было ни правовой, ни нормативно-технической базы, на основании которой можно было эти системы внедрять и использовать. Сейчас такая база появляется.
Инвестиции в генеративный ИИ стремительно растут. Несмотря на снижение общих частных инвестиций в ИИ в прошлом году, финансирование генеративного ИИ резко выросло, увеличившись по сравнению с 2022 годом и достигнув 25,2 млрд долларов. ИИ повышает производительность труда сотрудников.
В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции. Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками. Благодаря искусственному интеллекту научный прогресс ускоряется еще сильнее.
В 2022 году ИИ начал ускорять научные открытия. Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов.
Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона. То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней. Они просто отмечали в электронном дневнике дни, в которые происходили приступы.
Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей. Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания.
То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов.
У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике.
Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество.
В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями.
Это позволяет исследователям фокусироваться на наиболее перспективных стратегиях для дальнейшего изучения, а также снизить риски во время испытаний препаратов. В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Камила Зарубина,.
Будущее здравоохранения с искусственным интеллектом
В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту. Благодаря алгоритму, большой системный процесс автоматизируется, у врачей появляется свободное время — его можно уделить более тщательной диагностике, которую пока нельзя доверить технике. Этика применения ИИ Расширение участия ИИ в медицине поставило перед специалистами ряд этических вопросов, связанных, в том числе, с его использованием без контроля врача. Речь идет о вероятности самостоятельного применения инструментов пациентом. Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист.
Чтобы пациенты не использовали технологии себе во вред и не занимались самолечением, существует Всероссийский свод этических правил применения искусственного интеллекта в медицине. Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз. Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема.
Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону. Понятно, что нельзя просто прийти к врачу и показать часы, которые, например, сообщили о плохой динамике сердцебиения. Пациенту в любом случае назначат комплексное обследование, прежде чем делать выводы о возможной патологии. Контроль на законодательном уровне Фонд «Сколково» принял участие в разработке норм регулирования применения ИИ в медицине и оказал экспертную поддержку — софт, необходимый для врачебной практики, может попасть в систему здравоохранения только после обязательной регистрации.
Это означает, что перед этим он пройдет ряд проверок и испытаний. В рамках системы контроля также установлены определенные классы риска ПО, присвоение которых зависит от данных и решений, принимающихся ИИ. Самый низкий класс — это учетные медицинские системы, которые никак не влияют на пациента. Максимально высокий класс — это ПО, от которого зависит жизнь человека.
Например, есть софт, который отправляет сигналы на имплантированный кардиостимулятор.
Это позволяет медицинским учреждениям, в которых выполнялись исследования, получать второе мнение в сложных ситуациях. Работу центра в числе других информационных систем поддерживает сервис «N3. Обмен данными инструментальных исследований». В число спикеров и делегатов ITM-AI вошли организаторы здравоохранения из разных регионов страны, представители национальных медицинских исследовательских центров и федеральных университетов, разработчики продуктов на базе ИИ и других решений для цифровой медицины. Опубликовано: 16 февраля 2024 года Подпишитесь на обновления в блоге Ошибка при отправке формы Когда появится новый полезный материал, мы сразу отправим вам его на почту!
Решение уже успешно внедрено в нескольких регионах страны. В России также есть цифровая гистологическая лаборатория UNIM, которая исследует гистологические материалы при помощи нейронной сети для постановки верного диагноза. Помимо этого, большой потенциал существует у использования ИИ в разработке и тестировании новых лекарств. Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка. Это потенциально способно существенно ускорить процесс разработки новых лекарств. Основные препятствия Несмотря на большие перспективы, существует целый спектр ограничений для развития ИИ в медицине. Эти стоп-факторы должны стать основным объектом для совместной работы технологических компаний и медицинских организаций, так как их минимизация способна существенно расширить возможности применения этой технологии в здравоохранении. Нехватка компетенций и сотрудников. Для эффективного внедрения технологии искусственного интеллекта необходимы квалифицированные специалисты, наличие ресурсов для тестирования гипотез и разработки эффективных бизнес-моделей. Это касается рынка систем ИИ в целом, и медицинские организации не меньше других сталкиваются с дефицитом кадров, недостатком квалификации уже работающих сотрудников, а также нехваткой ресурсов для внедрения технологии. Недостаток структурированных данных. Далеко не во всех сферах здравоохранения достигнуты такие результаты, как, например, в борьбе с раком.
Второе - это работа с таргетами. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована, - сказал эксперт. Например, когда роботизированный хирургический комплекс дополняется ассистентами, в том числе позволяющими в режиме реального времени распознавать и размечать путь хирургического вмешательства. Это снижает риск врачебной ошибки, облегчает нагрузку на хирурга и ускоряет сам процесс проведения операции". По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования. В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации. Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована С ИИ синтезировать все препараты вручную не требуется. А дальше другие программы определяют - правильно ли он их сгенерировал. Из миллиона выбирается 50 самых лучших, и уже эти 50 мы синтезируем и проверяем".
Яндекс Образование
Чем так хорош искусственный интеллект в медицине? Технологии ИИ проникают во все сферы деятельности человека, в числе которых и медицина со здравоохранением. К примеру, не так давно Министерство здравоохранения РФ вместе с Ростехом создали первую версию федеральной платформы ИИ для здравоохранения. С ее помощью ИТ-разработчики смогут получать доступ к обезличенным медицинским данным жителей России из медицинских карт. Главная цель этого проекта заключается в том, чтобы объединить обезличенные медицинские данные в верифицированные датасеты наборы данных , а также дать отечественным ИТ-компаниям площадку для разработки и тестирования сервисов ИИ в сфере здравоохранения. Компаниям нужен доступ к структурированным данным для разработки алгоритмов, которые смогут стать основой систем поддержки врачебных решений. Появление подобных сервисов поможет усовершенствовать систему здравоохранения. Врачам нужно на постоянной основе обновлять информацию о последних исследованиях в медицине. Они не способны это делать с такой же скоростью, что и искусственный интеллект, так как врач не может одновременно и лечить людей, и отдыхать, и обновлять информацию, а еще и держать ее в голове. Искусственный интеллект может регулярно обновлять данные об исследованиях и хранить всю полученную информацию. Внедрение такой технологии облегчит жизнь медикам и поможет спасти чьи-то жизни.
Так, суперкомпьютер IBM Watson, изучив 20 млн статей о раке, помог выявить редкую форму лейкемии у 60-летней пациентки с неверным диагнозом. С помощью ИИ можно распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушение работы головного мозга, туберкулез, нарушения зрения. Примером работы программы выступает сервис Ada.
Благодаря им врачи отрабатывают хирургические операции в виртуальной среде перед проведением их непосредственно на пациентах.
Используя AR-гарнитуры, хирурги накладывают цифровые изображения на тело пациента, что позволяет им в режиме реального времени следить за состоянием критических структур — кровеносных сосудов или опухолей. Эта технология значительно повышает точность и снижает риск осложнений во время операции. Медицинские школы и институты используют AR-приложения для преподавания анатомии, позволяя студентам взаимодействовать с 3D-моделями человеческого тела. Столь практический подход улучшает понимание и запоминание сложных медицинских концепций.
В то же время VR — мощный инструмент для снятия негатива во время разного рода процедур. Пациенты погружаются в успокаивающую VR-среду, отвлекаясь от боли и дискомфорта при обработке ран или физиотерапии. VR также используется при лечении фобий, посттравматических стрессовых расстройств ПТСР и тревожности. Пациенты безопасно противостоят страхам в контролируемой виртуальной среде, что делает терапию более эффективной.
Интернет медицинских вещей IoMT Интернет медицинских вещей — один из главных технологических трендов в здравоохранении в 2023 году. IoMT — это сеть подключенных медицинских приборов, которые интегрированы с облачными вычислительными системами.
К этой сфере исследований сейчас наблюдается повышенный интерес, и это понятно: никто не хочет вновь пережить то, что до сих пор происходит в мире с декабря 2019 года в процессе борьбы с пандемией. Во избежание повторения событий последних двух лет группа учёных с моим непосредственным участием в настоящее время проводит внедрение предиктивной аналитики, которое реализуется с помощью искусственного интеллекта и позволяет моделировать различные сценарии развития событий и анализировать ход эпидемий, что даёт возможность заранее подготовить систему здравоохранения к вероятности масштабного противостояния очередным заболеваниям и «предсказать» их возможные последствия. Современные технологии необходимы и административному аппарату, и непосредственно в лечении. К примеру, давно установлено, что некоторые элементы высокоточных операций лучше доверить автоматике, исключив тем самым влияние человеческого фактора и снизив вероятность ошибок. Думаю, что в дальнейшем доля участия ИИ в непосредственном лечении, а также в последующем сопровождении пациентов будет только увеличиваться.
Как Вы считаете, обоснована ли на данном этапе развития российской медицины такая статья расходов? Несомненно, что потребуются значительные финансовые ресурсы, однако столь же очевидно, что такие вложения имеют долгосрочную отдачу. Постепенное расширение сектора ИИ в медицине способствует повышению качества медицинского обслуживания, а следовательно, позитивно отражается на здоровье нации. Есть, кстати, и обратная зависимость: недостаток финансирования сектора развития ИИ влечёт за собой достаточно масштабные последствия. Их мы могли наблюдать, в частности, на примере первого года борьбы с пандемией.
Например, в сельском хозяйстве технологию используют для изменения свойств продуктов: можно удалить из арахиса ген, который вызывает аллергическую реакцию, можно создавать необычные сорта. Ученые даже занимались созданием комаров, не способных переносить малярию. Редакторы генов, основанные на технологию CRISPR и полученные из микробов, хоть и являются важным и незаменимым инструментом, часто демонстрируют значительные функциональные недостатки, особенно при переносе в чужеродную среду, например в клетки человека. Компания Profluent считает, что основанный на AI-технологиях генный редактор OpenCRISPR представляет собой мощную альтернативу, которая позволит обойти различные ограничения и даст возможность создавать оптимальные свойства.
Используя большие языковые модели LLM , обученные работе с биологическим разнообразием, мы демонстрируем успешное и максимально точное редактирование генома человека с помощью программируемого редактора генов, разработанного с использованием искусственного интеллекта. Это удалось благодаря систематическому анализу 26 терабаз собранных геномов и метагеномов. С помощью AI появилась возможность генерировать в 4,8 раза больше белковых кластеров, чем существует в природе.
VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году
Нормативное регулирование искусственного интеллекта в медицине. Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Влияние Искусственного интеллекта в области медицины увеличивается с каждым годом. Благодаря возможностям искусственного интеллекта (ИИ) здравоохранение в России постепенно трансформируется по мере того, как передовые технологии меняют медицинскую практику, включая диагностику, лечение пациентов и медицинские операции.
Технология мРНК
- Как AI может повлиять на CRISPR?
- Последние новости про современные технологии в медицине
- Эксперимент
- Прошу удалить мой номер
- Искусственный интеллект в медицине | Обрфм
- Что такое CRISPR?
Искусственный интеллект в здравоохранении внедряют 70 регионов России
Всемирная организация здравоохранения (ВОЗ) выпустила новую публикацию, в которой излагаются основные принципы регулирования технологий искусственного интеллекта (ИИ) в здравоохранении. В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества.
Полная роботизация: как искусственный интеллект помогает врачам
Со ссылкой на последние исследования и данные становится очевидной тенденция усиления значимости искусственного интеллекта в обеспечении здоровья нации. В этих целях всем медицинским организациям в субъектах РФ в 2024 году предписано внедрить не менее трех решений с ИИ , об этом сообщил заместитель министра здравоохранения РФ Павел Пугачев. Cтратегия также опубликована на сайте Правительства — Искусственный интеллект РФ , а также на ai.
Технологии ИИ находят все большее применение в биологических науках, медицине и национальных системах здравоохранения. Авторы выделили пять основных уровней, где внедрение ИИ за последние годы дало наибольшие результаты: на уровне живой клетки — ИИ применяется в биоинформатике, биотехнологических и медицинских исследованиях, дизайне лекарственных препаратов; на уровне тканей и органов — активно используются технологии компьютерного зрения; на уровне целого организма — интенсивно развивается разработка носимых устройств медицинский интернет вещей , мобильные приложения, цифровые медицинские консьержи, платформы агрегации медицинских данных и др.
Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах.
Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства. Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины. Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень.
В России любое программное обеспечение, созданное для применения в медицинских целях, считается медицинским изделием. Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации. С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ.
Также в указанном перечне присутствуют: программный модуль для анализа флюорограмм и рентгенограмм грудной клетки человека, система для диагностики ковида, нейросеть для анализа маммографии, нейросеть для определения продольного плоскостопия, системы для принятия врачебных решений и многое другое. В России медизделия на основе искусственного интеллекта применяются во многих регионах, однако не во всех. Ситуация изменится совсем скоро: к концу этого года все субъекты РФ обязаны будут внедрить не менее одного медизделия с искусственным интеллектом в одну из централизованных подсистем государственной информационной системы в сфере здравоохранения.
Искусственный интеллект в медицине: добро или зло?
Искусственный интеллект в медицине. Как может ИИ улучшить систему здравоохранения, по мнению Билла Гейтса? Во-первых, он освободит медицинских работников от рутинных задач и позволит врачам максимально эффективно использовать своё время. Искусственный интеллект в медицине. Как может ИИ улучшить систему здравоохранения, по мнению Билла Гейтса? Во-первых, он освободит медицинских работников от рутинных задач и позволит врачам максимально эффективно использовать своё время. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Будущее искусственного интеллекта в здравоохранении безоблачно и имеет огромный потенциал, чтобы революционизировать способы оказания медицинской помощи.
Будущее ИИ в здравоохранении
- Искусственный интеллект (ИИ) для диагностики
- Для чего в российских регионах используют ИИ в медицине
- Альманах ИИ №11. ИИ в здравоохранении
- VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году
- Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек