Новости катод заряд

Профессор Нисихара и его команда полагают, что GMS-лист станет важной вехой в производстве углеродных катодов для литий-O2-батарей.

Разработаны новые органические электродные материалы для калий-ионных аккумуляторов

Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Что такое Анод и Катод? Метка: катод. Литий-металлические аккумуляторы сохраняют 80% емкости после 6 000 циклов заряда-разряда – исследование.

В КНР ученые нашли пагубное влияние черного чая на легкие — ведет к онкологии

  • Как здания влияют на микробиом и здоровье человека
  • Новости технологий и науки
  • Наука РФ - официальный сайт
  • Подписка на дайджест
  • Российские ученые создали эффективную замену литию в аккумуляторах - Новости
  • Аккумуляторы будущего: masterok — LiveJournal

Автоматическое зарядное устройство КАТОДЪ-501

Десятилетие науки и технологий в России Российская наука стремительно развивается. Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.

Историк Марьяна Скуратовская Узнать больше Подпишитесь на ежемесячную рассылку новостей и событий российской науки!

Самые интересные проекты, открытия и исследования, а также информация о конкурсах и мероприятиях в вузах и научных центрах России в одном удобном формате. Будьте в курсе событий Десятилетия науки и технологий!

Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.

Среди их плюсов по сравнению с неорганическими материалами можно выделить высокую удельную энергоемкость, высокие скорости зарядки и разрядки, устойчивость к механическим деформациям, а также высокую экологичность — переработать их можно так же, как и обычный бытовой пластик. Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Поэтому нами была поставлена задача смоделировать и исследовать новые макромолекулы, потенциально обладающие более высокой энергоемкостью. Созданный нами новый материал продемонстрировал превосходные характеристики при плотностях тока до 200 С полный заряд и разряд аккумулятора происходит всего за 18 секунд.

EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей

Потом произошел «откат», и стоимость лития значительно снизилась к концу 2023 года, но тренд уже всем понятен — литий будет постоянно дорожать из-за его острой нехватки для нужд стремительно растущей аккумуляторной промышленности. Очевидно, что нужна альтернативная технология хранения энергии — не литиевые аккумуляторы, а какие-то другие, которые работают без лития, но при этом дают сопоставимые технические характеристики. Самой логичной заменой литию будут натрий и калий — это близкие по природе химические элементы, которые находятся в той же группе периодической таблицы, что и литий. Однако натрия и калия много как в земной коре, так и в мировом океане — эти ресурсы почти безграничны. Потому стоимость натрия и калия на порядки ниже, чем лития. К сожалению, просто так взять и заменить литий в аккумуляторе на натрий или калий не получится. В качестве типичных электродных материалов в современных аккумуляторах используются оксиды или соли тяжелых металлов катод и графит анод , между которыми в ходе зарядки и разрядки «курсируют» ионы лития. Ионы натрия и калия значительно больше по размеру, потому они попросту не помещаются в структуру тех катодных материалов, которые работают с ионами лития. Аналогично натрий не внедряется в графитовый анод, а калий делает это с трудом.

В качестве основы они выбрали полиароматическую азотсодержащую молекулу дигидрофеназина и соединяли ее с дифениламином или фенотиазином. В результате получались объемные сополимеры. Авторы проверили емкость устройства после 25 000 циклов заряда-разряда и обнаружили, что она составила треть от первоначальной. Если бы аккумулятор в телефоне был так же стабилен, его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Удельная емкость таких устройств варьировалась от 82 до 101 миллиампер-часа на грамм в зависимости от силы тока при заряде и разряде. Кроме того, зарядить такие аккумуляторы ученые смогли всего за несколько секунд.

В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность.

Его внедрение на предприятиях не потребует перестройки производственной цепочки и, следовательно, больших вложений. Помимо этого, новая катодная масса будет в каждом аккумуляторе устройства, в то время как, например, выключатель прикрепляется только к одному из них, и если нагревание батареи начнется не с него, то сигнал о неполадках придет с опозданием. Еще один плюс проекта состоит в том, что изменения в катоде не отразятся на размере исходного изделия, что упростит масштабирование технологии в производство. Ребята планируют сотрудничать с производителями аккумуляторов для мобильных телефонов, бытовой техники и автомобилей, а также с изготовителями крупных промышленных батарей, например, для подводных лодок или электрокаров, предлагая предприятиям готовый продукт или лицензию на свою разработку. Студенты уже ведут переговоры с некоторыми компаниями. Команды, представившие самые наукоемкие и коммерчески перспективные бизнес-модели, получат денежные призы от эндаумент-фонда СПбГУ. Первое место принесет 300 000 рублей, второе — 200 000 рублей, а третье — 100 000 рублей. Кроме того, двум победившим командам могут предложить создать совместно с Университетом малые инновационные предприятия. Гранты на их развитие составят 1 000 000 и 700 000 рублей. Сейчас участники определяют, из каких веществ должен состоять катод, чтобы он наиболее эффективно смог обезопасить аккумулятор от перегрева.

Архив материалов

  • Автоматическое зарядное устройство КАТОДЪ-501
  • Катод — Википедия
  • Новый материал для батарей поможет электрокарам ездить дольше на одном заряде
  • Последние комментарии

Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях

В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт. Отрицательный заряд катода привлекает положительные ионы и приводит к образованию нейтральных частиц. В описанном процессе заряда полимерное покрытие катода остается стабильным во всем диапазоне рабочих потенциалов. В описанном процессе заряда полимерное покрытие катода остается стабильным во всем диапазоне рабочих потенциалов. 29 июля команда сети магазинов "КАТОД" приняла участие в забеге Trail Run от "Гонки Героев".

Подписка на дайджест

  • Новый материал катода ускорит зарядку литий-ионных батарей
  • Новые материалы для катодов ускорят зарядку в 3-4 раза
  • Как технологии твердотельных Ssbt-аккумуляторов изменят мир
  • В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)
  • Из полимеров сделали катоды для литиевых аккумуляторов

В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)

Увеличение диапазона электромобилей требует материалов для изготовления аккумуляторов, которые смогут хранить больший заряд при более высоких напряжениях, то есть необходимо достичь высокой «плотности энергии». Существует ограниченное количество способов увеличения плотности энергии литий-ионных катодных материалов. Большинство современных катодных материалов представляют собой слоистые оксиды переходных металлов, включающие, например, кобальт, никель и марганец.

Они планировали изучить и оптимизировать вариант Li-SOCl2 системы с более доступным натрием вместо лития.

Авторы изготовили плоскую ячейку с жидким электролитом и разделителем из кварцевых волокон. Анод сделали из металлического натрия, а катод — из пористых аморфных углеродных наносфер. Полученная ячейка показала довольно высокую разрядную емкость — 2800 миллиампер-час на грамм катода.

После этого авторы неожиданно обнаружили, что батарею можно перезарядить и затем разрядить снова. Емкость такого цикла оказалась ниже, чем емкость первого разряда — 1200 миллиампер-час на грамм катода при токе 100 миллиампер — однако в дальнейшем емкость больше не снижалась. Батарея пережила 200 циклов заряда и разряда, сохраняя кулоновскую эффективность отношение заряда, который батарея отдает при разряде, к тому, который необходим для заряда около 99 процентов.

Чтобы выяснить причины такой неожиданной стабильности, авторы аккуратно вскрыли батарею и изучили ее содержимое с помощью сканирующей электронной микроскопии, рентгеновской фотоэлектронной спектроскопии и масс-спектрометрии. Они обнаружили, что во время первого разряда образующийся NaCl в основном осел на пористом углеродном катоде, а при последующем заряде хлорид ионы из NaCl окислились до молекулярного хлора Cl2. При последующем разряде хлор снова восстанавливается до хлорид-иона Cl-.

По словам специалистов "Катода", контракт рассчитан до весны 2004 года. Но руководство консорциума ведет переговоры о долгосрочной эксплуатации завода и выкупе контрольного пакета акций. Что касается технического аспекта, то технология, которую они применяют, не совсем наша, и потому может возникнуть вопрос, как хорошо будут работать эти аккумуляторные батареи зимой". Из них легковые автомобили -- 20,3 млн штук. Таким образом, минимальная потребность российского рынка в новых аккумуляторах составляет 7 млн единиц. По оценке отдела маркетинга "Катода", минимальная потребность российского рынка в аккумуляторах составляет 10 млн штук.

Потребность в аккумуляторах автомобилестроительной промышленности РФ составляет более 1 млн штук см.

Теоретическая емкость аккумулятора с таким анодом почти втрое выше, чем с углеродным, однако недостатком всех металлических анодов является заметное изменение их объема при внедрении лития. Проблему удалось решить благодаря применению кремния, из которого стали изготавливать аноды в виде тонких аморфных пленок или наноструктурированных композитов с углеродом. Сегодня емкость ЛИА лимитируется в основном свойствами катодных материалов. В качестве последних используют различные по структуре соединения. Наиболее широкое распространение получил упомянутый выше кобальтат лития LiCoO2: его слоистая структура обеспечивает двумерную диффузию ионов лития. Преимуществами этой системы являются высокое рабочее напряжение 4 В , относительная простота синтеза, высокая электронно-ионная проводимость, что способствует циклированию при больших плотностях тока, и т. Однако у LiCoO2 имеется и немало недостатков: токсичность, невысокая практическая удельная емкость около половины от теоретической , недостаточная термическая и структурная устойчивость и др. К тому же кобальтовое сырье довольно дорого. В последние годы стали использоваться и другие соединения со слоистой структурой, содержащие ионы нескольких переходных металлов кобальта, никеля, марганца , практическая емкость которых в полтора раза превосходит емкость кобальтата лития.

В отличие от слоистой, шпинельная структура обеспечивает трехмерную диффузию ионов лития. Однако свободный объем, доступный для ионов лития, невелик, что ограничивает скорость диффузии и снижает мощность электрохимической ячейки в целом. Недостатками LiMn2O4 являются также заметная растворимость марганца в электролите и структурная неустойчивость при напряжениях ниже 3 В. В последние годы большое внимание уделяется исследованиям катодных материалов с каркасной структурой на основе соединений лития и переходных металлов Fe, Mn, Co, Ni с полианионами, такими как PO4 3—, AsO4 3— и др. LiFePO4 отличается высокой структурной и химической устойчивостью при циклировании, а также нетоксичностью и доступностью. Однако у него очень низкая электронная и литий-ионная проводимость и, как следствие, неудовлетворительная циклируемость при больших токах. Однако в ходе многочисленных исследований были разработаны разнообразные методы для улучшения свойств LiFePO4. Например, нанести на поверхность частиц слой высокопроводящего углеродного покрытия, в результате чего электронная проводимость материала может возрасти многократно Ravet, Armand, 1999. Этому же способствует, например, и допирование материала катода алюминием, цирконием и другими металлами Chiang, 2002. Время российского «нано»?

В 2000 г. Ямато Sony первым показал, что в наноразмерном состоянии железофосфат лития способен работать даже при высоких скоростях заряда-разряда. На сегодняшний день наноразмерные композиты железо-фосфата лития и углерода практически не уступают по электрохимическим показателям другим известным катодным материалам. Поэтому они являются перспективными для использования в гибридных энергетических системах и крупногабаритных аккумуляторах для электромобилей, где большое значение имеют цена и безопасность.

В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)

Международный коллектив, в который вошли учёные Сколтеха и их коллеги из Франции, США и Швейцарии, обнаружил причину энергетических потерь в цикле заряда-разряда литий-ионных. Кроме передачи электронов, отрицательный заряд катода обусловлен свойствами вещества, из которого изготавливается катод. В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт.

Похожие новости:

Оцените статью
Добавить комментарий