Новости черная дыра м87

Искусственный интеллект доработал знаменитое фото сверхмассивной черной дыры в центре галактики Messier 87 (M 87). На изображении, опубликованном четыре года. Черная дыра, получившая название M87, является наиболее изученной черной дырой на сегодняшний день и первой, изображение которой было непосредственно получено в 2019 году. Ее тень в форме «бублика» увенчана нечетким ореолом света. Снимок зафиксировал свет, искривленный гравитацией черной дыры, которая в четыре миллиона раз массивнее Солнца. Астрономы получили новое изображение центральной сверхмассивной черной дыры M87*, которая находится в центре галактики Мессье 87 (M87) в скоплении галактик Девы на расстоянии 55 миллионов световых лет от Земли. Черная дыра, получившая название M87, является наиболее изученной черной дырой на сегодняшний день и первой, изображение которой было непосредственно получено в 2019 году. Ее тень в форме «бублика» увенчана нечетким ореолом света.

Визуализирована структура джета Черной дыры

Чёрная дыра в центре Млечного Пути стала второй, изображение тени которой смог получить Телескоп горизонта событий. Открытие позволило астрономам окончательно доказать существование чёрной дыры в центре нашей галактики. В начале мая 2022 года астрономам NASA удалось записать «звучание» сверхмассивной чёрной дыры, которая находится в центре скопления галактик в созвездии Персей.

Наблюдения заняли лишь неделю, а, чтобы разобраться в этом неимоверном количестве информации, собрать настоящую фотографию черной дыры, ушло все остальное время с апреля 2017-го.

Естественно, все это проводилось не вручную, а на суперкомпьютерах, которые обрабатывали несметное количество данных. Но даже у них на это ушли многие месяцы, чтобы получить эту фотографию. Исследователи из проекта Event Horizon Telescope ставили перед собой четыре основные научные задачи.

Первое было простым: сфотографировать черную дыру. Проверяйте, как у них это получилось. Другие три были более сложными.

Исследователи также хотели больше узнать о том, как растут черные дыры и что происходит с материалом, вращающимся вокруг них, со временем. Исследователи надеются, что ответ на этот вопрос может также объяснить, почему материал, окружающий Стрельца А черная дыра в центре нашей собственной галактики необычно тусклый для материала, окружающего сверхмассивную черную дыру. Наконец, исследователи жаждали шанса проверить работу Эйнштейна.

Общей Теории Относительности этого известного ученого уже более 100 лет, и она действительно хорошо сохранилась за прошедшее столетие.

Наука Астрофизики изучили структуру черной дыры в галактике М87 Астрофизики провели исследование черной дыры, расположенной в галактике М87 в созвездии Девы. Им удалось изучить структуру ее струй. Изображение взято с: Pixabay В рамках научной работы эксперты проанализировали поведение черной дыры. Согласно результатам, объект вырабатывает разные формы излучения. Ученым удалось определить, на каких участках появляются радио- и гаммаизлучения — они провоцируют джеты струи плазмы, вырывающиеся из центров ядер М87.

Телескопы, участвующие в EHT-наблюдениях за черной дырой в центре галактики Messier 87.

Credit: M. Wielgus, D. Хотя при построении изображений не делается никаких предположений о морфологии источника, при моделировании данные сравниваются с семейством геометрических шаблонов, в данном случае с кольцами неоднородной яркости. Затем используется статистическая структура, чтобы определить, согласуются ли данные с такими моделями, и найти наиболее подходящие параметры модели. Диаметр тени черной дыры остался в соответствии с предсказанием Общей теории относительности Эйнштейна для черной дыры с массой 6,5 миллиардов масс Солнца. Иллюстрация показывает соответствие измеренного диаметра кольца и колебания ориентации.

Чем так примечательна галактика Мессье 87 и что о ней нужно знать?

Сверхмассивную черную дыру в центре галактики M87 сфотографировали в поляризованном свете, что позволило ученым впервые измерить поляризацию на самом краю – Самые лучшие и интересные новости по теме: Космос, лонгрид, м87 на развлекательном портале Изображение тени сверхмассивной черной дыры в ядре галактики M 87, полученное в радиодиапазоне с помощью Event Horizon Telescope (2019). Искусственный интеллект доработал знаменитое фото сверхмассивной черной дыры в центре галактики Messier 87 (M 87). На изображении, опубликованном четыре года.

Астрономам удалось сфотографировать магнитные поля черной дыры в М87

Новая фотография чёрной дыры М87, полученная при помощи машинного обучения, позволила нам увидеть этот грандиозный объект в новом свете. Оказалось, что знаменитый «оранжевый пончик» довольно тонкий и извергает лучи энергии, которые простираются на 5000 световых. Черные дыры: почему они черные, как их находят и при чем здесь квазары. Если пончик в руках исследовательницы, представившей открытие, сопоставить по размеру с нашей чёрной дырой, то чёрная дыра галактики M87 будут размером со спортивный стадион. Черную дыру в центре галактики М87 удалось снять с высоким качеством потому, что эта дыра очень активно «глотает» вещество и перед приемом «пищи» сильно ее нагревает (трением частиц поглощаемого вещества друг о друга).

Черную дыру M87 и ее массивный джет впервые в истории сфотографировали вместе

Именно в этом направлении, как установили учёные, и идёт вращение диска. Как они объясняют, наиболее яркая его область — это та, где вещество несётся по направлению к нам, а более тусклая, соответственно, — где движется от нас. Дело в том, что при движении излучающего свет объекта к нам длина волны этого света делается короче, то есть смещается в сторону синего света, что называется синим смещением. И наоборот, удаляющийся объект кажется более красным, более тусклым, потому что длина его световых волн увеличивается. Это красное смещение.

Так по внешнему виду аккреционного диска учёные определяют, в каком направлении он вращается. Сравнение двух снимков сверхмассивной чёрной дыры в центре М 87, сделанных в 2017 и 2018 годах. Если считать, что это смещение вещества по мере вращения диска, то, получается, за год это вещество прошло одну двенадцатую часть полного круга, то есть на один оборот диска вокруг чёрной дыры должно уходить 12 лет. Но учёные пишут, что, по расчётам, он должен вращаться заметно быстрее, поэтому у них есть предположение, что это сдвиг не совсем по мере вращения, скорее, по мере некоторого смещения самой плоскости диска.

Они просмотрели также и снимки, сделанные после 2018 года, и обнаружили, что внешний вид кольца меняется ежегодно. По их подозрениям, снимок 2018 года показывает, как кольцо на самом деле располагается чаще всего.

Мы знаем, как должна работать аккреция.

На суперкомпьютере мы смоделировали 60 тысяч черных дыр с разными параметрами и веществом, которое на них падает. Большинство из них оказались совсем непохожими на действительное — значит в них спин, магнитное поле или какие-то другие параметры неправильные. А вот те изображения, которые напоминали реальное, определили диапазон физических параметров черной дыры и окружающего вещества.

Оказалось, что более яркая нижняя половина кольца объясняется допплеровским усилением излучения из-за вращения вещества вокруг черной дыры: сама она быстро вращается, а вещество вокруг нее сильно замагничено. Это первое наблюдение черной дыры позволило опровергнуть некоторые теории гравитации. Например, в центре М87 точно находится не кротовая нора и не голая сингулярность.

Так что общая теория относительности пока выдерживает проверку. Зачем продолжили наблюдать и обрабатывать данные? Во-первых, научные результаты обязательно нужно перепроверять.

Недавно ученые «открыли» высокотемпературный сверхпроводник. Потом проверили — не подтвердилось, расстроились — работают дальше. В случае с EHT так не получится, потому что аналогичных телескопов нет.

Свои результаты EHT может подтвердить только сам. Во-вторых, были данные. Телескоп работал в 2018-м, когда даже внутри коллаборации ни у кого еще не было изображений за прошлый год и никто не знал, успешны ли те наблюдения.

Раз данные есть — надо их обработать. Обработали — публиковать. В-третьих, хотелось ответить новыми результатами на критику японских астрономов под руководством Макото Миёси.

Его команда утверждала, что в данных EHT 2017 года нет никакого кольца, зато есть джет протяженностью 1000—10000 микросекунд. Но EHT в 2017-м не мог регистрировать такие большие структуры — это раз. Мы нашли ошибки в их алгоритмах — это два.

И в конце концов получили такое же кольцо по новым данным. Шах и мат. В-четвертых, в 2018 году чувствительность EHT увеличилась в 1,5 раза благодаря более широкой полосе приема сигнала.

А к наблюдениям подключился телескоп в Гренландии. При небольшом числе телескопов добавление одного увеличивает количество данных на целых 30 процентов. Правда, погода подвела, и поэтому в 2018 году качество данных получилось похожим на 2017-й.

Более того, ни одна черная дыра не является бесконечно маленькой: минимальная масса выше или равна массе Планка, которая составляет около 22 микрограммов. Самая быстрорастущая черная дыра во Вселенной расположена в созвездии Центавра. Ежесекундно она втягивает в себя объем материи, эквивалентный размеру Земли и в три миллиарда раз массивнее Солнца. Черные дыры производят звук.

Когда черная дыра втягивает что-то, ее горизонт событий заряжает частицу близко к скорости света, производя звук. Космические телескопы улавливают звуковые волны, которые уже прошли миллионы световых лет от их источника.

Эти туманности являются остатками галактики среднего размера, которая поглощалась M 87 в течение последних миллиардов лет.

Характерные свойства спектра планетарных туманностей также позволили астрономам обнаружить стропилообразную структуру в гало М 87, что свидетельствует о продолжающемся росте этой гигантской галактики. Это один из самых массивных объектов, известных науке. Она считалась самым массивным объектом такого рода, пока её рекорд не побили сверхмассивные чёрные дыры в галактиках NGC 3842 и NGC 4889 с массами в 9,7 и 27 млрд масс Солнца.

Вокруг чёрной дыры вращается диск из ионизованного газа , из которого с релятивистской скоростью почти перпендикулярно вырывается джет. Масса газа, падающего в чёрную дыру, достигает примерно одной массы Солнца каждые 10 лет. Наблюдения показали, что, возможно, сверхмассивная чёрная дыра находится не в центре М 87, а в стороне от него, на расстоянии 82 световых лет.

Основанием для этого предположения стало противоположное направление одностороннего джета, это может означать, что чёрная дыра была смещена из центра этим самым джетом. По другой гипотезе, причиной смещения джета стал процесс слияния с другой сверхмассивной чёрной дырой.

Астрономам удалось сфотографировать магнитные поля черной дыры в М87

Космические телескопы улавливают звуковые волны, которые уже прошли миллионы световых лет от их источника. По оценкам астрономов, в Млечном Пути насчитывается от 10 миллионов до 1 миллиарда звездных черных дыр, масса которых примерно в три раза превышает массу Солнца. А недавно ученые получили первое изображение тени черной дыры в центре нашей галактики. В 1974 году Стивен Хокинг предположил, что черные дыры излучают небольшое количество фотонных частиц, что заставляет их постепенно терять массу и исчезать со временем. Этот процесс испарения называется «излучение Хокинга». Черные дыры не всасывают объекты: этот процесс запускается только в случае втягивания чего-либо в вакуум.

Полные результаты наблюдений опубликованы в The Astrophysical Journal. EHT — это глобальный массив телескопов, выполняющих синхронизированные наблюдения с использованием метода интерферометрии с очень длинной базой VLBI.

Вместе они образуют виртуальную радиотарелку размером с Землю, обеспечивая исключительно высокое разрешение изображений. Фотография сверхмассивной черной дыры в галактике Messier 87. В 2017 году EHT достиг зрелости с телескопами, расположенными в пяти различных местах по всему миру. Но эти результаты были основаны только на наблюдениях, проведенных в течение недели в апреле 2017 года, что слишком мало для оценки изменений. Телескопы, участвующие в EHT-наблюдениях за черной дырой в центре галактики Messier 87.

В 1-й половине 1990-х гг. Массы сверхмассивных чёрных дыр оценивались по движению «пробных тел» звёзд, газовых облаков, газовых дисков и т. Радиусы сверхмассивных чёрных дыр в ряде случаев удавалось оценить с применением наблюдательных методов высокого углового разрешения. В настоящее время общепринято, что в ядре практически каждой галактики существует сверхмассивная чёрная дыра. Кроме того, в ядрах многих галактик наблюдаются массивные звёздные скопления , которые в ряде случаев сосуществуют со сверхмассивной чёрной дырой. Методы определения масс сверхмассивных чёрных дыр Чтобы определить массу сверхмассивной чёрной дыры, достаточно знать скорость движения «пробного тела» в её окрестностях и расстояние от этого тела до чёрной дыры. Ввиду того, что это расстояние намного больше гравитационного радиуса, то для определения массы чёрной дыры вполне оправдано применение закона всемирного тяготения. Различают три базовых метода определения масс сверхмассивных чёрных дыр: метод разрешённой кинематики; метод эхокартирования; метод, основанный на статистическом анализе движения ансамбля звёзд вокруг сверхмассивной чёрной дыры с применением законов звёздной динамики. Движение звезды S2 по орбите вокруг сверхмассивной чёрной дыры в центре нашей Галактики представление художника по результатам наблюдений научных групп Р. Генцеля и А. Перевод подписей и обозначения: БРЭ.

Сверхмассивные черные дыры могут остановить звездообразование, потому что их рост высвобождает огромное количество высокоэнергетического излучения, которое может нагревать галактики и вытеснять газ из них. Галактикам нужны огромные облака газа и пыли, чтобы коллапсировать под действием собственной гравитации, создавая тем самым новые звезды, пишет The Guardian. Более подробная информация опубликована в научном журнале Nature.

Опубликованы многоволновые изображения черной дыры в галактике М87

Что на самом деле происходит внутри черных дыр? Телескоп "Джеймс Уэбб" только что сделал ПЕРВОЕ РЕАЛЬНОЕ изображение внутренней части черной дыры! Ученые использовали глобальную сеть телескопов, названную Event Horizon Telescope, для изучения сверхмассивной черной дыры, располагающейся в созвездии Стрельца на расстоянии 26 тысяч световых лет от Земли. Гигантская галактика М87 в созвездии Девы, находящаяся на расстоянии 55 миллионов световых лет от Земли, привлекает астрофизиков относительной близостью и сверхмассивной черной дырой в ее центре, которая в 6,5 миллиардов раз массивнее Солнца. Как светят те остатки несчастных звёздочек, коих затянуло в чёрную дыру, что расположена в центре эллиптической галактики M87. (Перенаправлено со сверхмассивной черной дыры M87*). Эта черная дыра называется Мессье 87 или Дева А, она находится на расстоянии около 53 миллионов световых лет от Земли. Масса Мессье 87 превышает массу Солнца в шесть с половиной миллиардов раз.

Первый снимок черной дыры

Первая настоящая фотография сверхмассивной черной дыры Отмечается, что размеры данной черной дыры M87 поистине колоссальны, а расположена она на расстоянии 55 миллионов световых лет от Земли в галактике Messier 87 в Скоплении Девы в Местном сверхскоплении галактик.
Первое изображение сверхмассивной черной дыры в галактике M87 Как и черная дыра, обнаруженная внутри М87, Sgr A* изгибает весь свет вокруг себя. Чёрные дыры действительно поглощают вещество и могут разрывать целые.

Впервые получен снимок черной дыры, испускающей мощный джет

Обсерватории по всему миру сделали множество изображений объекта, которые затем объединили в одно. На картинке нельзя увидеть саму черную дыру, поскольку она абсолютно черная, но на наличие объекта указывает светящийся вокруг нее газ: тёмная центральная область окружена яркой структурой, похожей на кольцо. Снимок фиксирует свет, который искривлен мощной гравитацией черной дыры, которая в четыре миллиона раз массивнее Солнца.

В них осталось мало пыли, из которой могли бы возникнуть галактические туманности, служащие местом рождения новых звезд. Поэтому в таких галактиках преобладают старые звёзды, в составе которых относительно высокое содержание элементов, отличных от водорода и гелия.

Эллиптическая форма этой галактики установилась случайными орбитальными движениями входящих в неё звёзд, что контрастирует со спиральными галактиками , например, Млечным Путём. Пространство между звёздами в М 87 заполнено межзвёздным газом, который обогащён элементами, выброшенными звёздами, которые сошли с Главной последовательности. Углерод и азот постоянно синтезируются звёздами, которые находятся в ветви асимптотических гигантов. Более тяжёлые элементы, от кислорода до железа , создаются взрывами сверхновых звёзд.

Распределение этих элементов предполагает, что в ранней истории галактики коллапсирующие сверхновые внесли больший вклад в насыщение межзвёздного пространства М 87 металлами. В то время как материал для массивных звёзд постепенно был исчерпан, только сверхновые типа Ia стали единственными источниками тяжёлых элементов в межзвёздном пространстве М 87.

Первое же в истории изображение черной дыры было опубликовано в апреле 2019 года. Тогда в ходе долгих наблюдений за этим загадочным космическим явлением учёным удалось запечатлеть эту же черную дыру в галактике М87. Данные были собраны группой из 760 ученых и инженеров из почти 200 учреждений, охватывающих 32 страны и региона, и с использованием 19 земных и космических обсерваторий по всему миру.

Наблюдения были сосредоточены с конца марта по середину апреля 2017 года.

Она находится от Земли на расстоянии в 53,5 миллиона световых лет. В центре расположилась описанная выше черная дыра, которая делает ядро М87 активным. От других галактик она отличается тем, что не имеет выраженных полос пыли и лишена каких-либо отличительных черт. Яркость, как у большинства типичных эллиптических галактик, уменьшается при увеличении расстояния от центра.

Антивоенное этническое движение «Новая Тыва» New Tuva , Центр Т, Светов Михаил Владимирович, Региональная общественная организация помощи женщинам и детям, находящимся в кризисной ситуации «Информационно признаны в РФ иностранными агентами.

Похожие новости:

Оцените статью
Добавить комментарий