Новости 26 задача егэ информатика

На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. Разобраны все актуальные виды заданий 26 (100+ задач) и 27 (170+ задач). Дана вся необходимая теория.

Рубрика «Информатика варианты»

В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода. Задания 26, 27 позволяют набрать по 2 первичных балла каждый. 9 задание егэ информатика, какие то проблемы. Информатика. Решения, ответы и подготовка к ЕГЭ от Школково. 9 задание егэ информатика, какие то проблемы.

Досрочный период КЕГЭ по информатике 9 апреля 2024

Шпаргалка по задачам по ЕГЭ по информатике 2023. Скачать вариант ЕГЭ 2023 по информатике: скачать. В данной статье публикую полный разбор досрочного апрельского варианта по информатике ЕГЭ 2024 года. Всего 27 заданий. Задания графически и наглядно разобраны, приведены коды программ.

26 Задание | Excel | Информатика ЕГЭ

В столбце А выделяем диапазон, который на превышает полученное число, фиксируем количество 110 и массу последнего большого груза 123. Стараются взять как можно больше грузов, если это можно сделать несколькими способами, выбирают тот способ, при котором самый большой из выбранных грузов имеет наибольшую массу. Постараемся найти такой груз, что бы грузоподъемность была наибольшей и количество грузов не поменялось. Будем подбирать Ответ: 123 10000.

Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b. В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам.

В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество. Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент. Пробегаемся по списку a, начиная с конца. Ищем кем можно заменить удалённый элемент. Мы идём с конца, поэтому в приоритете будут самый большие элементы. После того, как найденный элемент будет умещаться в список b, можно печатать ответ. Ответ: Задача Двумерные списки В лесничестве саженцы сосны высадили параллельными рядами, которые пронумерованы идущими подряд натуральными числами.

Растения в каждом ряду пронумерованы натуральными числами начиная с единицы. По данным аэрофотосъёмки известно, в каких рядах и на каких местах растения не прижились. Найдите ряд с наибольшим номером, в котором есть ровно 13 идущих подряд свободных мест для посадки новых сосен, таких, что непосредственно слева и справа от них в том же ряду растут сосны.

При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда целое число от 1 до 10 000 и номер позиции в ряду целое число от 1 до 10 000. Точка экрана, в которую попала хотя бы одна частица, считается светлой, точка, в которую ни одна частица не попала, — тёмной.

Вам необходимо по заданному протоколу определить номер ряда с наибольшим количеством светлых точек в чётных позициях.

Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Чтобы вложенные контейнеры было лучше видно, их цвета при вложении обязательно должны чередоваться, то есть нельзя вкладывать контейнер в контейнер такого же цвета. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку.

Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация

Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции.

В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33.

Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1.

В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода. Докажем это.

Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает. В нашем случае будет ход Вани. Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32.

В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает. Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31. Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия.

При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая. Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках.

Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков?

Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход?

Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев.

После хода Вани может возникнуть одна из 4-х позиций: 8,20 , 21,20 , 7,21 , 7,60. В каждой из этих позиций Петя может выиграть одним ходом, утроив количество камней во второй куче. В качестве ответа можно представить значение S и дерево всех возможных партий при выбранной стратегии Пети см. Решение задания 3. Необходимо найти S, причем обязательно учитывать условия: - у Вани есть выигрышная стратегия первым или вторым ходом при любой игре Пети; - первый ход не гарантированно выигрышный.

То есть, первая стратегия может быть выигрышная, может нет, но вторая — однозначно должна быть выигрышной. S, при котором гарантированно можно выиграть вторым ходом — 20, позиция 6,20 см. После первого хода Пети возможны позиции: 7,19 , 18,19 , 6,20 , 6,57. В позициях 18,19 и 6,57 Ваня может выиграть первым ходом, утроив количество камней во второй куче. Из позиций 7,19 и 6,20 Ваня может получить позицию 7,20. Эта позиция разобрана в п. Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом.

Далее должо быть представлено дерево всех возможных решений. Также дерево решений может быть представленно в виде таблицы: Положение после очередных ходов 1-й ход Пети все возможные ходы 1-й ход Вани указаны только ходы по стратегии 2-й ход Пети все возможные ходы 2-й ход Вани указаны только ходы по стратегии 6, 19.

К этой записи дописываются справа ещё два разряда по следующему правилу: а складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа справа. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью результирующего числа R. Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления. Решение: Здесь мы также можем объединить условия А и Б. От предыдущей задачи эта отличается только тем, что в ответе нужно указать не число R, а число N. Последняя цифра двоичной записи удаляется.

Если исходное число N было нечётным, в конец записи справа дописываются цифры 10, если чётным — 01. Результат переводится в десятичную систему и выводится на экран. Алгоритм работает следующим образом. Двоичная запись числа N: 1101. Удаляется последняя цифра, новая запись: 110. Исходное число нечётно, дописываются цифры 10, новая запись: 11010.

Эта позиция разобрана в п.

Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом. В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня выделены жирным шрифтом. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы. Примечание для эксперта. Дерево всех партий может быть также изображено в виде ориентированного графа — так, как показано на рисунке, или другим способом. Важно, чтобы множество полных путей в графе находилось во взаимно однозначном соответствии со множеством партий, возможных при описанной в решении стратегии.

Дерево всех партий, возможных при Ваниной стратегии. Ходы Пети показаны пунктиром; ходы Вани — сплошными линиями. Прямоугольником обозначены позиции, в которых партия заканчивается. Не является ошибкой указание только одного заключительного хода выигрывающего игрока в ситуации, когда у него есть более одного выигрышного хода Указания по оцениванию Баллы В задаче требуется выполнить три задания. Их трудность возрастает. Количество баллов в целом соответствует количеству выполненных заданий подробнее см. Ошибка в решении, не искажающая основного замысла и не приведшая к неверному ответу — например, арифметическая ошибка при вычислении количества камней в заключительной позиции — при оценке решения не учитывается.

Задание 1 выполнено, если выполнены оба пункта: а и б , то есть для п. Задание 2 выполнено, если правильно указана позиция, выигрышная для Пети, и описана соответствующая стратегия Пети — так, как это сделано в примере решения, или другим способом, например, с помощью дерева всех возможных при выбранной стратегии Пети партий и только их. Задание 3 выполнено, если правильно указана позиция, выигрышная для Вани, и построено дерево всех возможных при Ваниной стратегии партий и только их. Во всех случаях стратегии могут быть описаны так, как это сделано в примере решения, или другим способом.

Вы точно человек?

Способ решения задания №26 ЕГЭ по информатике (без использования программирования) с помощью MS Excel. Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике.

ЕГЭ по информатике (2024)

Заспамили меня по поводу оформления второй части, особенно по 26 заданию, поэтому ловите. Задания по информатике. Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград. Разбор всей демоверсии ЕГЭ по информатике 2024 в плейлисте. 26 задание ЕГЭ по информатике: изучай теорию и решай онлайн тесты с ответами.

Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация

Программа должна напечатать одно число — максимально возможную сумму, соответствующую условиям задачи. Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000. Пример организации исходных данных во входном файле: 3 11 9 5 23 Для указанных входных данных значением искомой суммы должно быть число 36 выбраны числа 4, 9 и 23, их сумма 36 делится на 6. В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла B.

Строится двоичная запись числа N. К этой записи дописываются справа ещё два разряда по следующему правилу: а складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа справа. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью результирующего числа R. Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления. Решение: Здесь мы также можем объединить условия А и Б.

От предыдущей задачи эта отличается только тем, что в ответе нужно указать не число R, а число N. Последняя цифра двоичной записи удаляется. Если исходное число N было нечётным, в конец записи справа дописываются цифры 10, если чётным — 01. Результат переводится в десятичную систему и выводится на экран. Алгоритм работает следующим образом. Двоичная запись числа N: 1101. Удаляется последняя цифра, новая запись: 110.

В этом случае Петя, очевидно, не может выиграть первым ходом. Однако он может получить позицию 7, 20. После хода Вани может возникнуть одна из четырёх позиций: 8, 20 , 21, 20 , 7, 21 , 7, 60. В каждой из этих позиций Петя может выиграть одним ходом, утроив количество камней во второй куче. Замечание для проверяющего. Ещё одно возможное значение S для этого задания — число 13. При такой позиции Ваня не может выиграть первым ходом, а после любого хода Вани Петя может выиграть, утроив количество камней в большей куче. Достаточно указать одно значение S и описать для него выигрышную стратегию. Задание 3 Возможное значение S: 19. После первого хода Пети возможны позиции: 7, 19 , 18, 19 , 6, 20 , 6, 57. В позициях 18, 19 и 6, 57 Ваня может выиграть первым ходом, утроив количество камней во второй куче. Из позиций 7, 19 и 6, 20 Ваня может получить позицию 7, 20. Эта позиция разобрана в п. Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом. В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня выделены жирным шрифтом. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы. Примечание для эксперта. Дерево всех партий может быть также изображено в виде ориентированного графа — так, как показано на рисунке, или другим способом.

Выполните следующие задания. Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Разбор 26 задания ЕГЭ 2017 1. Поэтому можно считать, что единственный возможный ход — это добавление в кучу одного камня. Выигрышная стратегия есть у Вали. Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали.

Похожие новости:

Оцените статью
Добавить комментарий