Чем короче длинна патрубков от турбины до интеркулера и от интеркулера до впускного коллектора тем меньше турбояма. Поздравления. ДТП. Новости. Сериалы. ПАТРУБОК ТУРБИНЫ НА ГЕРМЕТОСЕ ДЕРЖАТЬСЯ НЕ БУДЕТ# shorts #пежо #автосервис #ep6 #турбо.
Патрубок турбины КамАЗ евро
увидете, что именно к нему подключен сапун. Уплотнительное кольцо патрубка интеркулера дросельная заслонка A0219976645 с стороны турбины пока в поиске. Турбина WĘŻE ПАТРУБКА ИНТЕРКУЛЕРА DUCATO BOXER JUMPER 06-17. Как работает турбонаддув, как устроена турбина, зачем в системе интеркулер и какие они бывают. По моему мнению это либо сальники турбины подсаживаются и начинают пропускать масло, либо его сосет та-же турбина из вентиляции картерных газов, поскольку она подключается прямо перед турбиной.
Выхлопной патрубок паровой турбины
Патрубок турбины (входящий) б\у. Применения и несправности Патрубка турбокомпрессора, ремонт патрубка ТКР, причины выхода из строя, правильная замена патрубка турбокомпрессора. Поздравления. ДТП. Новости. Сериалы. ПАТРУБОК ТУРБИНЫ НА ГЕРМЕТОСЕ ДЕРЖАТЬСЯ НЕ БУДЕТ# shorts #пежо #автосервис #ep6 #турбо. Снимите патрубок с турбины и проверьте вращается ли она на заведенном моторе.
ПАТРУБОК ТУРБИНЫ НА ГЕРМЕТОСЕ ДЕРЖАТЬСЯ НЕ БУДЕТ# shorts #пежо #автосервис #ep6 #турбо
Патрубок турбины для моторов 1.8/2.0 TSI 09-14 под большой интеркулер | у меня тоже так же в патрубке между турбиной и дросселем, стенки патрубка покрылись тонким масляным слоем, но масла не хавает, может изза того что, я не кручу мотор больше 4 тыс. чтоб расход был поменьше и комфортно. |
Патрубок турбины в России - сравнить цены или купить на | Патрубок Турбины Доработал удлинил встал как родной, Т5 Transporter ®. |
1,8 турбо, масло в патрубке из турбины! | Ауди Клуб Россия | METALCAUCHO арт. |
Патрубок турбины КамАЗ евро
Твердотельная модель строилась в программном комплексе Creo Parametric0. Геометрия модели конструкции закладывалась максимально пригодной для МКЭ, с учетом всех параметров, которые могут оказать существенное влияние на результаты расчетов. Учитывая, что выхлопные патрубки правого и левого потоков являются симметричными, для расчета строился выхлопной патрубок только одного потока. Помимо построения геометрии, так же задавались физические параметры материала. В качестве материала задана углеродистая сталь, используемая для изготовления выхлопных патрубков турбин. Данное решение позволяет получить равнопрочную торцевую стенку, практически не подверженную деформации и значительно упростить технологическую цепочку изготовления выхлопного патрубка, так как эллиптическая торцевая стенка будет сформирована путем резки единого штампованного эллиптического днища. Создание сетки конечных элементов. Сетка конечных элементов строилась с использованием программного комплекса Ansys Mechanical5. На этой стадии выбиралось оптимальное количество элементов и узловых точек с целью получения максимально возможного количества областей с регулярной сеткой.
Сетка строилась с использованием функции «curvature» и содержала 1-1,2 млн. Задание нагрузок. Этап задания нагрузок подразумевает наложение действия активных сил на модель выхлопного патрубка. Силы на данном этапе задаются, учитывая особенности реальной работы выхлопного патрубка на рассматриваемом режиме эксплуатации паровой турбины. При расчете, к выхлопному патрубку были приложены следующие нагрузки Рис. Данная сила приложена к опорной поверхности вкладыша генератора; - сила, с которой ротор низкого давления действует на вкладыш подшипника выхлопного патрубка поз. Данная сила приложена к опорной поверхности вкладыша ЦНД; - сила, с которой средняя часть ЦНД и перепускные трубы действуют на фланец вертикального разъема выхлопного патрубка поз. Данная сила приложена ко всей поверхности вертикального фланца; - сила, с которой конденсатор воздействует на выхлопной патрубок.
Данная сила представляет собой вес конденсаторной группы, в рабочих условиях с полностью заполненным водяным пространством и заполненным конденсатом до верхнего допустимого уровня паровым пространством поз.
Указанная сила приложена к нижнему горизонтальному разъему. Давление приложено ко всем внутренним поверхностям патрубка. Давление приложено ко всем наружным поверхностям патрубка. Кроме того, задано ограничение перемещения по лапам опирания на фундаментные рамы.
Расчет и анализ полученных результатов. Расчет проводился с помощью метода конечных элементов в программном комплексе Ansys Mechanical5. По результатам расчета проводится анализ полученных данных путем преобразования полей законов распределения напряжений и деформаций в необходимые графические зависимости либо сводные таблицы. Прочность исходной конструкции отражает картина распределения эквивалентных напряжений по Мизесу , представленная на рис. Жесткость конструкции отражает картина распределения суммарных деформаций, представленная на рис.
Величина максимальных напряжений достигает 191,7 МПа, величина максимальных перемещений составляет 9,1 мм. Указанные величины являются недопустимыми по условиям надежности для вновь спроектированного выхлопного патрубка. Это потребовало проведения следующего этапа модернизации выхлопного патрубка. Наполнение выхлопного патрубка стержневой и реберной системой. С целью совершенствования конструкции выхлопных патрубков, в настоящее время, турбиностроительные завода используют внутреннюю систему стяжек стержней вместо системы ребер, так как стержневая система круглых стяжек обладаем меньшим аэродинамическим сопротивлением в неупорядоченном потоке пара.
На основании этого, в проточную часть выхлопного патрубка внедрена развитая стержневая система в верхней и средней частях. Направляющие ребра установлены только в нижней части нижней половины патрубка. При этом количество ребер и каналов ими образованных в нижней половине было сведено к минимуму. Распределение эквивалентных напряжений выхлопного патрубка с системой направляющих ребер и стержней представлено на рис.
Порядок обращения. Для оформления возврата товара клиенту необходимо обратиться к сотруднику нашей компании любым удобным способом. Клиент оформляет претензии к качеству или заявление на возврат товара непосредственно в офисе продаж или направляет по электронной почте. Такой документ является официальным подтверждением передачи товара.
От двигателя масло поступает в турбину под давлением через трубку подачи масла, далее все детали турбокомпрессора смазываются, после чего масло поступает обратно в картер. Также к турбокомпрессору поступает трубка отвода картерных газов, которая отводит выхлопные газы из картера в турбину, тем самым снижает давление масла в картере. Турбина гонит масло - почему?
Основной причиной данной неисправности является избыточное давление масла в турбокомпрессоре, которое и приводит к выбросу масла в корпус компрессора турбины, а затем вместе с воздухом в камеру сгорания двигателя.
Т5.Транспортёр.Патрубки в масле Не будут.Улучшить легко. Взорванный патрубок турбины.
Тема: Комплектующие на патрубок турбины интеркулера. Патрубок турбины впускной Audi A4, VW Passat B5 1.8T 1064. Понять, что масло попало в патрубок перед турбиной или уже во внутрь интеркулера можно по изменению работы автомобиля. Патрубок турбины впускной Audi A4, VW Passat B5 1.8T 1064. Причина, по которой турбина начинает гнать масло при засорении воздушного фильтра или воздухозаборника, проста.
Турбонаддув: как устроен и как работает
ремонт патрубка действительно оказался очень быстрым и легким. А патрубок после турбины резиновый продаётся только с пластмассовой фигнёй которая идёт после него. Год назад после появления трещины в патрубке турбина-интеркулер, последний был заменен на металлический с селиконовыми переходниками. Год назад после появления трещины в патрубке турбина-интеркулер, последний был заменен на металлический с селиконовыми переходниками. патрубок турбины. Марка. Mercedes-Benz.
Разорвало патрубок турбины
Денег жалко именно из-за того, что я не хочу покупать ненужную мне вторую часть, которая и тянет большую часть стоимости. Патрубок - схема. JPG Поиск решения. В поисках решения я отправился на авто рынок. Изначально думал купить просто более-менее подходящую армированную ленту.
Поменять турбину целиком. Чаще всего это совершенно лишняя затея, потому как масло гонит картридж, а корпуса-"улитки" остаются целыми и менять их не нужно. Замену турбины в сборе любят предлагать официальные дилеры и мультибрендовые сервисы, мастера на которых плохо разбираются в турбинах и ставят задачу получить с клиента максимум денег.
Cнятие, отсоединение трубок подачи масла и антифриза и установка турбины обратно стоит около 4 000 — 5 000 рублей. Поменять картридж турбины. Под замену идет исключительно сам рабочий элемент турбокомпрессора — корпус с валом и крыльчатками.
Поменять готовый картридж может даже мастер, который не специализируется на турбинах. Задача состоит в том, чтобы открутить несколько гаек крепежа, а потом закрутить их обратно. Стоимость картриджа с заменой — около 15 000 — 20 000 рублей.
Отремонтировать картридж. Такая работа под силу исключительно мастерам специализированных автосервисов. Турбину разбирают полностью, моют ультразвуком, выявляют изношенные элементы и меняют их.
Корпус картриджа растачивают на токарном станке, а затем всю конструкцию балансируют в два этапа, чтобы на скорости до 150—200 тысяч оборотов в минуту не было вибрации.
Это обеспечивается, при прочих равных условиях, оптимальным расходом охлаждающего пара, определяемым давлением пара в коллекторе и высотой лопаток его направляющего аппарата. Повышенный по сравнению с оптимальным расход пара увеличивает дальнобойность струи кольца , что затрудняет поступление охлаждающего пара в межлопаточные каналы и одновременно препятствует выходу активного пара из последней ступени в выхлопной патрубок. Уменьшенный расход пара при неизменных его скоростных характеристиках приводит к укорочению высокопотенциального участка струи и сокращению области защиты от эрозии выходных кромок.
Учитывая, что защите от эрозионного износа должен подвергаться участок выходной кромки от корня и обычно до середины до среднего диаметра ступени рабочих лопаток последней ступени, а окружная скорость лопаток на среднем диаметре большинства мощных паровых турбин приближается к критической скорости пара, условие выполнения равенства скорости лопаток и тангенциальной составляющей скорости пара в кольцевой струе может быть выражено с применением обобщенной экспериментальной зависимости для свободной турбулентной струи с критическим истечением, представленной на фиг. На оси ординат указана длина струи, где скорость остается равной критической. Зависимость на фиг. Подставляя эти выражения в основное уравнение, можно получить окончательную формулу для длины лопаток направляющего аппарата коллектора, при которой обеспечиваются перечисленные выше требования надежной защиты выходных кромок от эрозионного повреждения и соответствия тангенциальной составляющей струи пара окружной скорости рабочих лопаток, при котором осуществляется благоприятный вход охлаждающего пара в межлопаточные каналы рабочего колеса последней ступени и эффективное охлаждение периферийной зоны.
Для соблюдения оптимальных условий безопасного входа охлаждающего пара из кольцевой струи в межлопаточные каналы рабочего колеса положение направляющего аппарата 5 относительно выходных кромок 7 рабочих лопаток 1 должно быть определено с учетом расширения свободной турбулентной кольцевой струи в поперечном направлении, то есть в направлении, параллельном оси турбины, таким образом, чтобы внутренняя граница струи, обращенная к рабочим лопаткам 1, контактировала с выходными кромками 7 на участке между корневой 8 и периферийной 9 вихревыми зонами. Точка А соответствует общей границе защищаемой зоны и зоны входа охлаждающего потока в межлопаточные каналы. Для увеличения зоны защиты выходных кромок от эрозионных повреждений и повышения экономичности за счет снижения расхода пара на охлаждение тангенциальная составляющая скорости пара в кольцевой струе должна быть максимально увеличена, для чего в заявляемом устройстве направляющий аппарат 5 имеет минимальный угол выхода потока. Поскольку направляющий аппарат 5 коллектора 2 работает при сверхкритических перепадах давления, что обусловлено скоростью рабочих лопаток последней ступени, в косом срезе конфузорной решетки происходит дополнительное расширение парового потока с возникновением скачков уплотнений и отклонением от геометрического угла выхода потока.
Другое назначение уступа заключается в сбросе жидкостной пленки, движущейся по выпуклой поверхности лопаток 6, в высокоскоростное ядро парового потока, где в зоне скачков уплотнения происходит ее интенсивное дробление на капли размеров, безопасных в эрозионном отношении и благоприятных для процессов тепломассообмена в последней ступени турбины. Работа выхлопного патрубка осуществляется следующим образом. На режимах пуска и холостого хода турбины, а также на теплофикационных режимах с ограниченным расходом пара через часть низкого давления последняя ступень, а при очень малых расходах - и предыдущие ступени, работает в тепловентиляционном режиме с формированием в проточной части вихревых зон 8 и 9 и генерацией тепловентиляционных потерь, компенсируемых отбором мощности от вала турбины. Тепловентиляционные потоки сопровождаются повышением температуры последних ступеней и нагревом покидающим проточную часть паром выхлопного патрубка.
Для обеспечения надежной работы лопаток последних ступеней, их стеллитовых накладок на входных кромках и демпферных связей, а также предотвращения - в результате больших температурных градиентов и высоких температурных уровней - коробления выхлопного патрубка 3, что может сопровождаться ухудшением вибрационного состояния турбоагрегата и вакуума в конденсаторе, подают охлаждающий пар в коллектор 2. Высота лопаток 6 направляющего аппарата 5 должна быть определена с учетом давления пара Р0 в коллекторе 2 и давления Рв в выхлопном патрубке 3 согласно приведенной выше зависимости.
Всё должно быть плотно, где-то слабо- потеет, сопливит, колечки обязательно поменяй, а вот с сепаратором поторопился, его в последний момент надо.