Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям. Нильс Бор и созданная им школа физиков положили начало новому стилю исследовательской работы в теоретической физике. Нильс Бор: в гостях у атомов Великий датский ученый, основоположник атомной физики, Нильс Бор (1885-1962) еще на студенческой скамье умудрился сделать открытие, изменившее научную картину мира. Датский физик Нильс Бор смог описать современную модель атома благодарю сну о солнечной системе.
Содержание
- Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду
- 1. Система Коперникум
- Новость детально
- Исследование Нильса Бора: теоретик и создатель современной физики
- Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре | Аргументы и Факты
Новость детально
Нильс Бор в ответ на коронную фразу Эйнштейна про кости отвечал: «Не наше дело предписывать Богу, как ему следует управлять миром». 3. Датский физик Нильс Бор в 1922 году был удостоен Нобелевской премии «за заслуги в изучении строения атома». Датский физик Нильс Бор считается одной из важнейших фигур в современной физике.
Институт Нильса Бора опубликовал снимок с черной дырой, пожирающей звезду
Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул» [21] , опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента [22] : общие утверждения постулаты о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома , представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики , на которое накладываются дополнительные квантовые условия например, квантование углового момента электрона. Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода , а также объяснить с поправкой на приведённую массу электрона наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга [23]. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений. Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 году Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех [24]. Нильс Бор и Альберт Эйнштейн вероятно, декабрь 1925 В 1949 году Альберт Эйнштейн так вспоминал о своих впечатлениях от знакомства с теорией Бора: Все мои попытки приспособить теоретические основы физики к этим результатам [то есть следствиям закона Планка для излучения чёрного тела] потерпели полную неудачу. Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить.
Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли [25]. Весной 1914 года Бор был приглашён Резерфордом заменить Чарльза Дарвина , внука знаменитого естествоиспытателя , в качестве лектора по математической физике в Манчестерском университете Шустеровская школа математической физики [26]. Он оставался в Манчестере с осени 1914 года до лета 1916 года. В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 года он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем [27]. В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана , однако ему не удалось получить расщепление более чем на два компонента. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории.
Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [28]. Дальнейшее развитие модели. Принцип соответствия 1916—1923 [ править править код ] Летом 1916 года Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 года он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою модель, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [30]. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна , определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [31]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы.
Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики [33]. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки [33]. В 1921 — 1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева , представив схему заполнения электронных орбит оболочек , согласно современной терминологии [34]. Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 году нового элемента гафния Дирком Костером и Георгом Хевеши , работавшими в то время в Копенгагене [35]. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию , а не к редкоземельным элементам , как думали ранее [36]. Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия простейшей двухэлектронной системе , которой они занимались с 1916 года. Бор отчётливо понимал ограниченность существующих подходов так называемой «старой квантовой теории» и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему [26].
Нобелевская премия[ править править код ] В 1922 году по по вкладу в изучение ядерных реакций Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома» [37].
Присоединяйтесь к нам в Facebook и ВКонтакте. Подписка Отписаться можно в любой момент. Он был одним из самых выдающихся физиков-ядерщиков ХХ века, лауреатом Нобелевской премии, но его «полуеврейское» происхождение не соответствовало нацистским стандартам, а отказ от сотрудничества с нацистами грозил ему смертью. Во время оккупации Дании, осознав, что его арест неизбежен, он вынужден был бежать из Копенгагена сначала на рыбацкой лодке в Швецию, оттуда в бомбоотсеке военного самолета - в Шотландию, а операция по его спасению стала одной из самых крупных и опасных операций во времена Холокоста. Его отец был профессором физиологии Копенгагенского университета, мать происходила из еврейской семьи банкиров.
Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям. В семье никто не сомневался, что в будущем он будет заниматься наукой. После окончания школы юноша поступил в Копенгагенский университет, где начал изучать физику, спустя семь лет защитил докторскую диссертацию, был приглашен на работу в Кембридж, а затем в Манчестер, где начал сотрудничать с Эрнестом Резерфордом, основателем ядерной физики. Именно здесь проводились исследования, которые впоследствии привели Бора к мировой славе, а Розерфорд, с которым они очень подружились, стал для него «вторым отцом». Спустя год Нильс Бор женился на Маргрете Норлунд, и этот брак оказался счастливым. На протяжении всей последующей жизни супруга была его самым близким другом и советчиком.
У них родилось шестеро сыновей, один из которых Оге Бор пошел по стопам отца и стал известным физиком. Весной 1916 года Бор вернулся в Данию, где ему предложили престижную должность профессора в Копенгагенском университете, который теперь носит его имя. Нильс Бор с супругой В 1922 году за выдающиеся успехи в области исследования атома Нильсу Бору была присуждена Нобелевская премия, он стал уважаемым ученым и почетным гражданином Дании, и в последующие годы занимался ядерной физикой, внеся значительный вклад в изучение ядерных реакций. Несколько его немецких коллег-физиков еврейского происхождения потеряли работу, оставшись без каких-либо средств к существованию в своей стране. Бор использовал свои связи, чтобы вывезти их из Германии. По его инициативе был создан комитет по оказанию помощи ученым, вынужденным бежать от нацистского режима.
Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия простейшей двухэлектронной системе , которой они занимались с 1916.
Бор отчётливо понимал ограниченность существующих подходов так называемой «старой квантовой теории» и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему. Принцип дополнительности 1924—1930 [ ] Альберт Эйнштейн и Нильс Бор. Брюссель 1930 Новой теорией стала квантовая механика , которая была создана в 1925 — 1927 годах в работах Вернера Гейзенберга , Эрвина Шрёдингера , Макса Борна, Поля Дирака [35].
Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий ибо использование классической терминологии уже не было правомерным , то есть дать интерпретацию её формализма. Именно над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор.
Итогом стала концепция дополнительности, которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927 [36]. Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [37] , что вылилось в совместную с Крамерсом и Джоном Слэтером статью, в которой было сделано неожиданное предположении о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер.
Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ганса Гейгера [38]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 во время отпуска в Норвегии [39] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел.
Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [40]. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса [41].
Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики [42] и анализа процесса измерения [43] характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата, импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором.
Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности [44]. Через месяц после конгресса в Комо, на пятом Сольвеевском конгрессе в Брюсселе , начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики [45]. Спор продолжился в 1930 на шестом конгрессе, а затем возобновился с новой силой в 1935 после появления известной работы [46] Эйнштейна, Подольского и Розена о полноте квантовой механики.
Дискуссии не прекращались до самой смерти Эйнштейна [47] , порой принимая ожесточённый характер. Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 : Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья. Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [50].
В 1934 Бор пережил тяжёлую личную трагедию. Во время плавания на яхте в проливе Каттегат штормовой волной был смыт за борт его старший сын — 19-летний Христиан; обнаружить его так и не удалось [51]. Всего у Нильса и Маргарет было шестеро детей.
Один из них, Оге Бор, также стал выдающимся физиком, лауреатом Нобелевской премии 1975. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона, ускорителя ван-де-Граафа [52]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций.
В 1936 Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него. Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад. При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра.
Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций, а также интерпретировать распад составного ядра в терминах испарения частиц [53]. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения. Как было показано в 1939 в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком, при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установится и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования.
Развитие теории в этом направлении привело к созданию в 1953 Виктором Вайскопфом, Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [54]. Одновременно с представлением о составном ядре Бор совместно с Ф.
Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов. Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950 -х годов Оге Бором, Беном Моттельсоном и Джеймсом Рейнуотером [55].
Велик вклад Бора в объяснение механизма деления ядер, при котором происходит освобождение огромных количеств энергии. Деление было экспериментально обнаружено в конце 1938 Отто Ганом и Фрицем Штрассманом и верно истолковано Лизе Мейтнер и Отто Фришем во время рождественских каникул.
Этому посвящено приложение «Радиоактивные превращения». Сергей Собянин: «Московская электронная школа» уже стала неотъемлемой частью учебного процесса Как пользоваться библиотекой «МЭШ» Библиотека «МЭШ» — сервис проекта «Московская электронная школа», разработанный городским Департаментом образования и науки совместно с Департаментом информационных технологий Москвы. В библиотеке собрано более 49 тысяч сценариев уроков и свыше 4,7 тысячи видеоуроков, около 1600 электронных учебных пособий, 348 учебников, свыше 124 тысяч образовательных интерактивных приложений, семь уникальных виртуальных лабораторий по физике и математике, 245 произведений художественной литературы, а также огромное количество тестовых заданий, соответствующих содержанию ОГЭ и ЕГЭ, и многое другое.
Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре
1 марта 1869 года русский ученый-энциклопедист Дмитрий Иванович Менделеев открыл периодический закон и составил систему химических элементов. Бор уже в 1939 году понимал, что открытие ядерного деления позволяло создать атомную бомбу, однако полагал, что инженерные работы по отделению урана-235 потребуют колоссальных, а потому непрактичных промышленных затрат. В 1922 году после присуждения Нобелевской премии, великому ученому Нильсу Бору, соотечественники-пивовары из компании Carlsberg, подарили дом неподалеку от своего завода. Однако мы решили остановить свой выбор на Терлецком — он мог бы произвести своей широкой эрудицией и осведомленностью нужное впечатление на Нильса Бора.
Краткая информация
- НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024
- Нильс Хенрик Давид Бор - РНТБ
- Ларри Пейдж и Google
- Последние новости:
- Нильс Бор: физик и философ
Так рождалась квантовая физика. Hильс Бор в Институте физических проблем Академии наук СССР
Адлера сделалась матерью будущего национального героя. Наука мирового уровня в тогдашней Дании тоже присутствовала слабо, но все же отец отца квантовой механики Христиан Бор входил в научную и культурную элиту Копенгагена, хотя в истории запечатлелся больше тем, что основал университетскую команду по такому новомодному виду спорта, как футбол, способствовав его превращению в национальное увлечение. Папа вовлек в игру и обоих своих сыновей, старшего Нильса и младшего Харальда. Харальд впоследствии вошел в сборную страны, завоевавшую серебряную олимпийскую медаль; Нильс же в качестве вратаря не сумел подняться выше второго состава. Харальд вообще выглядел более проворным в практических делах. Нильс же, будучи великолепным лыжником, мастером пинг-понга, яхтсменом, выглядел увальнем, еще в юности склонным ходить с опущенной огромной головой. Крупные черты лица делали его обаятельным скандинавским джентльменом, но отнюдь не красавцем, что тоже могло бы вызывать раздражение. Его бесспорное научное лидерство уравновешивалось простодушием, с которым он в виде отдыха предавался просмотрам вестернов: тут уж любой студент лучше его разбирался в том, кто из ковбоев угнал чье стадо и чьей невестой является та блондинка, которую похитил злодей. В отличие от младшего брата, блестящего лектора, Бор-главный был не мастер говорить перед большой аудиторией, да и в общении с начальством утомлял мучительно тихим голосом и слишком подробным анализом очевидностей в которых-то, как правило, и таятся ошибки. Все, что я произношу, не ленился повторять Бор, следует рассматривать как вопрос, а не как утверждение. А когда Бора спрашивали, как ему удалось создать едва ли не величайшую в истории научную школу, он неизменно отвечал: «Я не боялся называть себя дураком».
Бор и слава Хорошо называть себя дураком, когда в это не поверит даже последний идиот… Нильса Бора уже на студенческой скамье считали гением, но в противоположность этому титулу карьера его развивалась удивительно гладко. В 1910 году золотая медаль Датской академии за экспериментальное исследование сил поверхностного натяжения. В 1911 докторская диссертация по непривычной еще «электронной теории металлов», которую в легендарном Кембридже знаменитый «Джи Джи» Томсон, открывший электрон, рекомендовал по-видимому, правда, не читая к печати, только Бор отказался сократить ее вдвое. Но зато в Манчестере у великого Резерфорда пришло сначала признание его таланта, а затем и революционное открытие. Пришла мировая слава, лавина последователей, иногда выхватывавших открытие у него из-под носа, но по-настоящему сердился он только тогда, когда дело касалось чужих приоритетов. В 1917 году в военном конфликте он был на стороне своей страны и радовался, что ей вернули последнюю отнятую территорию по подписке специально для него в Копенгагене было начато строительство института теоретической физики, будущей Мекки всех теоретиков. Как всякий громкий научный принцип, принцип дополнительности породил свой социальный фантом: все объекты вообще, а объекты микромира в особенности описываются сразу двумя взаимоисключающими теориями. Тем не менее, каждому наблюдателю открыта своя часть правды: «противоположности суть дополнения», отчеканено на золотой медали, учрежденной в Дании в честь ее национального гения. Из 29 участников пятого Сольвеевского конгресса 1927г. Бор и атомная бомба После расщепления атомного ядра Бор первым угадал и тот изотоп урана, и тот еще не открытый элемент плутоний , из которых впоследствии и были изготовлены обе бомбы, «Малыш» и «Толстяк», уничтожившие Хиросиму и Нагасаки.
Нильс Бор под именем Николаса Бейкера «дядюшки Ника» , доставленный в Лос-Аламос после многочисленных приключений чего стоит один только перелет из Швеции в Англию в бомбовом отсеке, из коего в случае опасности классика надлежало сбросить в море , служил консультантом Манхэттенского проекта, многим участникам которого он самолично помог спастись от Гитлера.
Вторая мировая война В 1940 году Нильс Бор находился в Копенгагене, и в результате Второй мировой войны через три года он был вынужден бежать со своей семьей в Швецию, потому что Бор имел еврейское происхождение.. Там он поселился и присоединился к команде сотрудничества Манхэттенского проекта, который произвел первую атомную бомбу.
Этот проект был выполнен в лаборатории, расположенной в Лос-Аламосе, в Нью-Мексико, и во время своего участия в этом проекте Бор сменил название на Николас Бейкер.. Возвращение домой и смерть В конце Второй мировой войны Бор вернулся в Копенгаген, где он снова стоял в качестве директора Северного института теоретической физики и всегда выступал за применение атомной энергии с полезными целями, всегда стремясь к эффективности в различных процессах.. Эта склонность объясняется тем, что Бор осознавал огромный ущерб, который может быть причинен тем, что он обнаружил, и в то же время он знал, что этот мощный тип энергии более конструктивно используется.
Затем, с 1950-х годов, Нильс Бор посвятил себя чтению лекций, посвященных мирному использованию атомной энергии.. Как упоминалось ранее, Бор не упустил из виду величину атомной энергии, поэтому в дополнение к пропаганде ее надлежащего использования он также указал, что именно правительства должны обеспечить, чтобы эта энергия не использовалась разрушительным образом.. Это понятие было представлено в 1951 году в манифесте, подписанном более чем сотней известных исследователей и ученых того времени..
Как следствие этого действия и его предыдущей работы в пользу мирного использования атомной энергии, в 1957 году Фонд Форда присудил ему премию «Атом для мира», присуждаемую личностям, которые стремились содействовать позитивному использованию этого вида энергии.. Нильс Бор скончался 18 ноября 1962 года в Копенгагене, его родном городе, в возрасте 77 лет.. Вклад и открытия Нильса Бора Модель и строение атома Атомная модель Нильса Бора считается одним из его величайших вкладов в мир физики и наук в целом.
Он был первым, кто продемонстрировал атом как положительно заряженное ядро, окруженное орбитами электронов.. Бору удалось обнаружить механизм внутреннего функционирования атома: электроны способны самостоятельно вращаться вокруг ядра. Количество электронов, присутствующих на внешней орбите ядра, определяет свойства физического элемента.
Чтобы получить эту атомную модель, Бор применил квантовую теорию Макса Планка к атомной модели, разработанной Резерфордом, получив в результате модель, которая принесла ему Нобелевскую премию. Бор представил атомную структуру как маленькую солнечную систему. Квантовые понятия на атомном уровне То, что привело к тому, что атомную модель Бора стали считать революционной, это метод, который она использовала для ее достижения: применение теорий квантовой физики и их взаимосвязь с атомными явлениями..
Благодаря этим приложениям Бор смог определить движение электронов вокруг атомного ядра, а также изменение их свойств.. Таким же образом, благодаря этим понятиям, он смог получить представление о том, как материя способна поглощать и излучать свет от своих самых незаметных внутренних структур.. Открытие теоремы Бор-ван Леувена Теорема Бор-ван Леувена - это теорема, примененная к области механики.
Сначала работа Бора была выполнена в 1911 году, а затем дополнена ван Леувеном.
Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [40]. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса [41]. Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики [42] и анализа процесса измерения [43] характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата, импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором. Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности [44].
Через месяц после конгресса в Комо, на пятом Сольвеевском конгрессе в Брюсселе , начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики [45]. Спор продолжился в 1930 на шестом конгрессе, а затем возобновился с новой силой в 1935 после появления известной работы [46] Эйнштейна, Подольского и Розена о полноте квантовой механики. Дискуссии не прекращались до самой смерти Эйнштейна [47] , порой принимая ожесточённый характер. Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 : Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья. Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [50]. В 1934 Бор пережил тяжёлую личную трагедию. Во время плавания на яхте в проливе Каттегат штормовой волной был смыт за борт его старший сын — 19-летний Христиан; обнаружить его так и не удалось [51]. Всего у Нильса и Маргарет было шестеро детей.
Один из них, Оге Бор, также стал выдающимся физиком, лауреатом Нобелевской премии 1975. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона, ускорителя ван-де-Граафа [52]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций. В 1936 Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него. Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад. При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра. Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций, а также интерпретировать распад составного ядра в терминах испарения частиц [53]. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения.
Как было показано в 1939 в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком, при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установится и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования. Развитие теории в этом направлении привело к созданию в 1953 Виктором Вайскопфом, Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [54]. Одновременно с представлением о составном ядре Бор совместно с Ф. Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов. Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950 -х годов Оге Бором, Беном Моттельсоном и Джеймсом Рейнуотером [55]. Велик вклад Бора в объяснение механизма деления ядер, при котором происходит освобождение огромных количеств энергии.
Деление было экспериментально обнаружено в конце 1938 Отто Ганом и Фрицем Штрассманом и верно истолковано Лизе Мейтнер и Отто Фришем во время рождественских каникул. Бор узнал об их идеях от Фриша, работавшего тогда в Копенгагене , перед самым отъездом в США в январе 1939 [56]. В Принстоне совместно с Джоном Уилером он развил количественную теорию деления ядер, основываясь на модели составного ядра и представлениях о критической деформации ядра, ведущей к его неустойчивости и распаду. Для некоторых ядер эта критическая величина может быть равна нулю, что выражается в распаде ядра при сколь угодно малых деформациях [57]. Теория позволила получить зависимость сечения деления от энергии, совпадающую с экспериментальной. Кроме того, Бору удалось показать, что деление ядер урана-235 вызывается «медленными» низкоэнергетичными нейтронами, а урана-238 — быстрыми [58]. Противостояние нацизму. Борьба против атомной угрозы 1940—1950 [ ] После прихода к власти в Германии нацистов Бор принял активное участие в устройстве судьбы многих учёных-эмигрантов, которые переехали в Копенгаген.
В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам [59]. После оккупации Дании в апреле 1940 года возникла реальная опасность ареста Бора в связи с его полуеврейским происхождением. Тем не менее, он решил оставаться в Копенгагене, пока это будет возможно, чтобы гарантировать защиту института и своих сотрудников от посягательств оккупационных властей. В октябре 1941 Бора посетил Гейзенберг , в то время руководитель нацистского атомного проекта. Между ними состоялся разговор о возможности реализации ядерного оружия, о котором немецкий учёный писал следующим образом: Копенгаген я посетил осенью 1941 г. К этому времени мы в «Урановом обществе» в результате экспериментов с ураном и тяжёлой водой пришли к выводу, что возможно построить реактор с использованием урана и тяжёлой воды для получения энергии. Такой разговор состоялся во время вечерней прогулки в районе Ни-Карлсберга. Зная, что Бор находится под надзором германских политических властей и что его отзывы обо мне будут, вероятно, переданы в Германию, я пытался провести этот разговор так, чтобы не подвергать свою жизнь опасности.
Чёрные дыры промежуточной массы — самый редкий тип экстремальных объектов, который очень сложно обнаружить. Эти черные дыры намного тяжелее обычных, но не такие массивные, как в центрах галактик, хотя всё равно смертоносные из-за того, что поглощают всё вокруг. И одна такая чёрная дыра промежуточной массы была обнаружена в момент ужасающего разрыва звезды в далёкой галактике. Учёные из института Нильса Бора Дания смоделировали обнаруженное ими разрушение звезды, и эта модель показала, что масса чёрной дыры составляет от 50 000 до 800 000 масс Солнца, что является колоссальным масштабом по сравнению с обычными чёрными дырами.
НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024
Получивший известность в качестве основоположника квантовой теории, Нильс Бор глубоко погружался не только в науку, но также в религию и философию. Его главное физическое открытие — догадка о квантовании действия в атомах, модель атома Бора (1912). История Нильса Бора и Института Нильса Бора — это история научной деятельности о том, чтобы сделать неизвестное известным.
Бор, Нильс
В 1910 году Нильс Бор был удостоен степени магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов. Датский физик Нильс Бор считается одной из важнейших фигур в современной физике. В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов. Бор Нильс — чем известен, биография, открытия и достижения, работы и цитаты — РУВИКИ: Интернет-энциклопедия. О роли в этой истории американских денег, датского нейтралитета, новых форм организации науки и фигуре Нильса Бора, который сумел всем этим воспользоваться.
103 года назад Нильс Бор предложил планетарную модель строения атома
Дарвин утверждал, что все организмы со временем развиваются или изменяются очень медленно. Эти изменения являются приспособлениями, которые позволяют виду выживать в окружающей среде. Эти приспособления происходят случайно. Если вид не адаптируется, он может вымереть.
Он назвал этот процесс естественным отбором. Изображение эволюции Darwinian evolution in the genealogy of haemoglobin 4. Луи Пастер До того, как французский химик Луи Пастер начал эксперименты с бактериями в 1860-х годах, люди не знали, что вызывает болезнь.
Он не только обнаружил, что болезнь вызывается микроорганизмами, но также понял, что бактерии можно убить нагреванием и дезинфицирующим средством. Эта идея заставила врачей мыть руки и стерилизовать инструменты, что спасло миллионы жизней. Эксперименты с бактериями Louis Pasteur 1822—1895 5.
Теория относительности Специальная теория относительности Альберта Эйнштейна, которую он опубликовал в 1905 году, объясняет отношения между скоростью, временем и расстоянием. Сложная теория утверждает, что скорость света всегда остается неизменной независимо от того, насколько быстро кто-то или что-то движется к нему или от него. Эта теория стала основой для большей части современной науки.
Специальная теория относительности The General Theory of Relativity 6. Теория большого взрыва Никто точно не знает, как возникла Вселенная, но многие ученые считают, что это произошло около 13,7 миллиардов лет назад в результате мощного взрыва, называемого Большим взрывом. Теория гласит, что вся материя во Вселенной изначально была сжата в крошечную точку.
За долю секунды точка расширилась, и вся материя мгновенно заполнила то, что сейчас является нашей Вселенной. Это событие положило начало времени. Научные наблюдения, кажется, подтверждают теорию.
The Discovery of the Big Bang 7. Пенициллин Антибиотики — это сильнодействующие лекарства, которые убивают опасные бактерии в нашем организме, вызывающие болезни. В 1928 году Александр Флеминг, участвовавший в нашем блоге «Величайшие шотландские ученые», открыл первый антибиотик, пенициллин, который он вырастил в своей лаборатории с использованием плесени и грибков.
Без антибиотиков такие инфекции, как острый фарингит, могут быть смертельными. Общая структура пенициллинов Penicillin: its discovery and early development 8. Двое ученых обнаружили структуру двойной спирали ДНК.
Он состоит из двух нитей, которые переплетаются друг с другом и имеют почти бесконечное разнообразие химических паттернов, которые создают инструкции для человеческого тела. Наши гены состоят из ДНК и определяют, каковы наши вещи, например, какой у нас цвет волос и глаз. В 1962 году за эту работу они были удостоены Нобелевской премии.
Чтобы его постичь, нужно уйти от привычек и стереотипов и постараться видеть мир незамутненным взором, взором ребенка. И Нильс Бор успешно справляется с этим. Ему помогает прекрасно развитое чувство юмора. Напомню, например, его суждение о своем ученике, потерпевшем неудачу в науке: «Он стал поэтом — для физики у него было слишком мало воображения». Не менее известно и высказывание Бора об одной из физических теорий: «Нет сомнения, что перед нами безумная теория, но весь вопрос в том, достаточно ли она безумна, чтобы оказаться еще и верной! Нильс Бор парировал: «Но, право же, не наша печаль — предписывать Господу Богу, как ему следовало бы управлять этим миром! Нильс Бор и Альберт Эйнштейн на праздновании 50-летия присвоения докторской степени Хендрику Лоренцу. Так, соотношение неопределенностей Гейзенберга виделось ему физической основой ответа на вопрос, интересовавший его еще во времена «Эклиптики», — вопрос о свободе воли. Весь мир живых организмов, а также и психических явлений виделся ему подобным миру атомных частиц: и там, и там действуют единые принципы. Видя глубокие аналогии между восточной философией и представлениями той науки, которой он посвятил жизнь, Бор выбрал символ Тайцзы, выражающий взаимосвязь между противоположными первоначалами инь и ян, а в качестве девиза латинскую фразу «Contraria sunt complementa» «Противоположности дополняют друг друга».
Обсудить статью в сообществе читателей журнала "Человек без границ" Подписаться на журнал "Человек без границ" Журнал "Человек без границ". При цитировании материалов ссылка обязательна. Mailto: admin manwb.
Ведущим производителем в последнее десятилетие выступает Казахстан. На другие два места в топ-3 в последние годы попадали Канада, Австралия и Намибия. На четыре эти страны в совокупности приходится три четвертых всего производимого в мире урана.
Брат Х. Отец О.
В 1908 г. В 1911—1912 гг. Томсона и в Манчестере у Э. Резерфорда , где в 1914—1916 гг. В 1916 г. С 1920 г. В 1943 г.
100 лет атому Бора, отмеченные на родине знаменитой теории
В 1910 году Нильс Бор получил звание магистра университета, через год защитил диссертацию, после чего получил докторскую степень. К концу 1930-х ученые из многих стран мира, включая Нильса Бора, Энрико Ферми, Ирен Кюри и ее мужа Фредерика Жолио, находились на пороге эпохального достижения, но первыми все равно стали немцы. В 1901 году немецкий ученый получил премию за открытие излучения, которое носит его имя. Нильс Бор прожил 77 лет и умер от сердечного приступа в 1962 году.
Ранние годы и учеба в университете
- Краткая информация
- НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024
- Какое величайшее научное открытие всех времен? / Хабр
- Открытия, сделанные во сне
- Журнал «ПАРТНЕР»
Нильс Хенрик Давид Бор
Контролируемая цепная реакция, в свою очередь, легла в основу ядерной энергетики, а неконтролируемая — в основу ядерного оружия. Стол, за которым было открыто расщепление ядра. Военные перспективы нового источника энергии были очевидны. Уже в апреле 1939 года в командование вермахта поступило письмо от двух ученых из Гамбурга: «Мы взяли на себя инициативу с целью обратить Ваше внимание на самые последние события в мире ядерной физики; по нашему мнению, они, по всей вероятности, открывают возможности для изготовления взрывчатого вещества, которое по своей разрушительной силе на много порядков превзойдет взрывчатые вещества обычных типов». Пауль Гартек и Вильгельм Грот были абсолютно правы и в своем выводе: «Та страна, которая первой сумеет практически овладеть достижениями ядерной физики, приобретает абсолютное превосходство над другими».
Военному руководству Третьего рейха, занятому подготовкой к нападению на Польшу, потребовалось несколько месяцев для запуска новой идеи в производство. Лишь 26 сентября 1939 года в Управлении армейских вооружений состоялось совещание, в котором приняли участие ведущие физики страны из тех, что не были изгнаны нацистами из Германии за свое еврейское происхождение. Ученые заявили военным, что ядерное оружие реально, причем его создание возможно в самое ближайшее время. Результатом встречи стало тотальное засекречивание немецкого «Уранового проекта».
Для его реализации организовывалась кооперация более 20 научных организаций рейха, над темой принялись работать около сотни крупнейших немецких физиков, а теоретическим руководителем программы стал молодой 37-летний ученый Вернер Гейзенберг, к тому времени уже бывший лауреатом Нобелевской премии. Вернер Гейзенберг. Вероятным противникам Третьего рейха точно так же были понятны перспективы ядерного оружия и те преимущества, которые оно дает в геополитическом масштабе. В августе 1939 года Альберт Эйнштейн, в 1933 году после прихода нацистов к власти вынужденный уехать из Германии в США, направил Франклину Рузвельту письмо, в котором сообщал президенту страны о существовании немецкой ядерной программы и косвенно предупреждал о перспективе создания в рейхе урановой атомной бомбы.
В этом же документе Эйнштейн призывал к скорейшему началу в США научных работ по атомной теме, аналогичных германским. Рузвельт верно оценил предупреждение Эйнштейна, отдав осенью 1939 года, уже после начала Второй мировой, приказ создать т. Ядерная гонка В начале 1940-х годов Третий рейх опережал любую другую страну в своей ядерной программе. У нацистской Германии уже существовала организационная структура, занимавшаяся проблематикой, имелся необходимый интеллектуальный ресурс для работы над ней, соответствующей работе обеспечивалось достаточное финансирование.
Проблемой могло стать отсутствие на территории страны нужного количества сырья для атомного проекта, но и этот вопрос был решен в результате экспансии рейха. После аннексии Судетской области Чехословакии в 1938 году в распоряжении немцев оказались урановые рудники города Яхимов. Более тысячи тонн оксида урана из африканских колониальных шахт было захвачено во время оккупации Бельгии в 1940-м. В том же 1940 году в результате вторжения в Норвегию нацисты получили и единственный в мире завод по производству тяжелой воды, которая должна была использоваться для замедления цепной реакции.
Все эти мероприятия позволили Вернеру Гейзенбергу начать практическую работу по созданию первого ядерного реактора, или «урановой машины», как его называли в то время. Бывшие урановые выработки в чешском Яхимове. Примерно до начала 1942-го ядерные проекты Германии и США развивались параллельно и с одинаковым успехом, однако к середине этого года в ядерной гонке произошел принципиальный перелом. Внутренний анализ в «Урановом комитете» привел его руководство к выводу, что в стране достаточно ресурсов, теоретических и практических, для создания ядерного оружия еще в ходе текущего конфликта и потенциального его применения.
Огромная богатая страна без боевых действий на своей территории была практически не ограничена в выборе средств достижения этой цели. Германия находилась в совсем иных условиях. Хотя интеллектуальный потенциал немецких ученых приблизительно соответствовал американскому, иные ресурсы были несопоставимы. Провал в конце 1941 года вроде бы неоднократно доказавшей свою эффективность концепции «блицкрига» привел к пониманию, что война может затянуться, а ее результат вовсе не гарантирован.
Именно он в 1913 году предложил модель строения атома, в которой электроны могут двигаться только по определенным орбитам, не излучая энергию, а ее излучение или поглощение происходит лишь в момент перехода с одной орбиты на другую. Повторить тему строения атома и атомного ядра поможет одноименное интерактивное приложение. Тогда и был найден ответ на вопрос, почему атомы радиоактивного вещества подвержены спонтанным видоизменениям. Этому посвящено приложение «Радиоактивные превращения».
Резерфордом планетарной модели атома Бор показал, что устойчивость атома и многие его свойства можно объяснить, введя некоторые ограничения постулаты Бора на движение электрона в атоме.
Построенная на этих постулатах 1913 и развитая затем самим Бором и другими физиками теория атома впервые объяснила не только устойчивость атома, но и сохранение им своей структуры при относительно слабых столкновениях, а также его спектры и существующие в них закономерности. В 1923 г. Бор сформулировал принцип соответствия , определяющий границы применимости классической физики в описании квантовых систем. В том же году на основе своей теории атома он дал объяснение периодической системы химических элементов. После создания квантовой механики Бор активно включился в разработку её основных принципов, соотношения квантовой физики с классической и в создание общей теории, внутренне непротиворечиво объясняющей известные процессы в микромире, в предельном случае переходящие в макроскопические явления.
В 1927 г. Бор дал общую формулировку принципа дополнительности , утверждающего невозможность при наблюдении микромира совмещения приборов двух принципиально различных классов, соответственно тому, что в микромире нет таких состояний, в которых объект обладал бы одновременно точными значениями всех динамических величин. В 1936 г.
Количество выделенной энергии, уносимой электроном и нейтроном, хорошо известно, поэтому остаток будет равен массе нейтрино. Точность определения составляет 0,2 электрон-вольт еV. Предполагается строительство детектора NuMass, в котором будет использоваться электронный захват в ядро редкоземельного металла гольмия электрона.
Еще одно предложение касается детектора «Птолемей», в котором будет использоваться не газообразный, а твердый тритий на графене. Это позволит фиксировать большее число распадов. Чувствительность такого эксперимента оценивается в 0,04 eV. Одна из сложностей, связанных с квантовой физикой, заключается в том, что ее феномены проявляют себя при сверхнизких температурах и на очень малых расстояниях. И вот в лозаннском Институте технологии создали оптомеханическую полость с ультранизким шумом. Швейцарцы создали маленький барабан, с помощью которого стало возможно измерять квантовые вибрации, возникающие при давлении света Rpf — Radiation pressure force , при комнатной температуре.
До сих пор Rpf измеряли при глубоком охлаждении с целью максимально подавить тепловые вибрации, что сложно и дорого. В Лозанне барабан в условиях вакуума поместили между двумя зеркалами, создавшими оптическую полость для «уловления» лазерного луча. А он, в свою очередь, усилил квантовую силу воздействия света на барабан с его специфической частотой колебаний. Ученые определили, что вибрации зеркал были ослаблены в 700 раз.