Согласно гипотезе мира РНК, на заре жизни за Земле молекулы РНК были как носителями наследственной информации, так и ферментами (рибозимами).
Ученые описали, как появилась РНК
Полимеразы происходили от РНК-лигазы класса I — рибозима, который получили в лаборатории Джека Шостака еще в 1995 году. В присутствии матрицы и праймера ферменты Джойса могли реплицировать РНК длиной более 100 нуклеотидов. В работе 2020 года исследователи получили РНК-полимеразы класса I, способные синтезировать своего «предка» — РНК-лигазу класса I — в виде трех отдельных цепей, которые затем собирались в функциональный рибозим. На этом примере можно понять, как работает эволюция РНК in vitro. Один из этапов эволюции РНК-полимеразы класса I —рибозима, производящего рибозимы. Credit: PNAS, 2020. DOI: 10. На праймер отжигается матрица коричневый для синтеза участка РНК, превращающего шпильку с биотином в рибозим — молекулу РНК типа «головка молота» hammerhead , которая разрезает сама себя. Полимераза синтезирует hammerhead голубой на матрице, и вся конструкция захватывается на магнитные шарики со стрептавидином.
Источник фото: Фото редакции Репликация полимера осуществлялась через циклическое изменение температуры между горячей и холодной фазами, что напоминает циклы день-ночь. Ученые предполагают, что древние полимеры могли использовать такие циклы для размножения, возможно, полагаясь на неорганические поверхности, например, камни, в этом процессе. Эти новые данные открывают дополнительные перспективы для понимания исходных этапов эволюции жизни на Земле.
Не пойму почему тогда они должны быть первичными по отношению к белкам?
Чем белки хуже? По идее предположительная репликация белков по аналогии с репликацией РНК должна идти более быстро и эффективно, чем репликация РНК если сравниваемые белки и их предположительные функциональные РНК - аналоги ещё относительно малы. Потому, что РНК ещё нужно развернуть, что требует времени а потом - свернуть. Белки же лишены этих недостатков.
И пока количество хранимой информации было относительно мало короткие белки почему бы белкам нельзя было одержать вверх над РНК, если предположить, что белки могли тоже как и РНК размножаться по репликационному принципу грубо говоря, примерно, так, как это происходит у прионов? А уж потом, когда белки "выросли" по мере эволюционного накопления информации увеличилось негативное влияние шума при их репликации и возникла потребность более надежного хранения информации. Что, в принципе, можно достичь свертыванием в цепь. Но на эту роль РНК подходят более удачно, чем белки.
Из них уже сформировались простые аминопиримидины, которые вступили в реакцию с муравьиной кислотой и образовали амидопиримидины. Они в свою очередь в реакции с сахарами и образовали пурины в больших количествах. Таким образом, новое весомое доказательство получила так называемая гипотеза РНК-мира, согласно которой именно молекулы РНК стояли у истоков земной жизни, и они стали первыми сохранять и передавать генетическую информацию. РНК дожизненные молекулы пурины рибонуклеиновая кислота Поделиться: Информация предоставлена Информационным агентством "Научная Россия".
Ученые обнаружили новые доказательства гипотезы РНК-мира
Одна из научных гипотез предполагает, что первоначально на Земле существовали несвязанные молекулы РНК, возможно, вместе с белками и другими органическими веществами. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Но окончательно гипотеза мира РНК смогла сформироваться лишь после открытия в 1981 году рибосомальной РНК из ресничного простейшего Tetrahymena, которая способна к автосплайсингу.
ELife: выявлено самовоспроизведение молекул, подтверждающее гипотезу РНК-мира
Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира. Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе. Это предположение называется гипотезой РНК-мира и пользуется поддержкой среди современных учёных. Сторонники гипотезы РНК-мира считают, что на начальном этапе зарождения жизни на нашей планете возникли автономные РНК-системы, которые катализировали «метаболические» реакции (например, синтеза новых рибонуклеотидов) и самовоспроизводились. Новости о недвижимости, экономики и финансах в России. Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира.
Установлено, как первые формы жизни, возможно, упаковывали РНК
В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям.
Однако наука — область фактов, и после открытия космической радиации и ее губительного действия на все живое панспермия, казалось, умерла. Но чем глубже ученые погружаются в вопрос, тем больше всплывает нюансов. Так, теперь — в том числе и поставив многочисленные эксперименты на космических аппаратах — мы с куда большей серьезностью относимся к способностям живых организмов переносить радиацию и холод, отсутствие воды и прочие «прелести» пребывания в открытом космосе. Находки всевозможных органических соединений на астероидах и кометах, в далеких газопылевых скоплениях и протопланетных облаках многочисленны и не вызывают сомнений. А вот заявления об обнаружении в них следов чего-то подозрительно напоминающего микробы остаются недоказанными.
Легко заметить, что при всей своей увлекательности теория панспермии лишь переносит вопрос о возникновении жизни в другое место и другое время. Что бы ни занесло первые организмы на Землю — случайный ли метеорит или хитрый план высокоразвитых инопланетян, они должны были где-то и как-то родиться. Пусть не здесь и гораздо дальше в прошлом — но жизнь должна была вырасти из безжизненной материи. Вопрос «Как? Ненаучно: Самозарождение Спонтанное происхождение высокоразвитой живой материи из неживой — как зарождение личинок мух в гниющем мясе — можно связать еще с Аристотелем, который обобщил мысли множества предшественников и сформировал целостную доктрину о самозарождении. Как и прочие элементы философии Аристотеля, самозарождение было доминирующей доктриной в Средневековой Европе и пользовалось определенной поддержкой вплоть до экспериментов Луи Пастера, который окончательно показал, что для появления даже личинок мух нужны мухи-родители. Не стоит путать самозарождение с современными теориями абиогенного возникновения жизни: разница между ними принципиальная. В опытах Миллера — Юри было получено больше 20 аминокислот, сахара, липиды и предшественники нуклеиновых кислот.
Современные вариации этих классических экспериментов используют куда более сложные постановки, которые точнее соответствуют условиям ранней Земли. Имитируются воздействия вулканов с их выбросами сероводорода и двуокиси серы, присутствие азота и т. Так ученым удается получать огромное и разнообразное количество органики — потенциальных кирпичиков потенциальной жизни. Главной проблемой этих опытов остается рацемат: изомеры оптически активных молекул таких как аминокислоты образуются в смеси в равных количествах, тогда как вся известная нам жизнь за единичными и странными исключениями включает лишь L-изомеры. Впрочем, к этой проблеме мы еще вернемся. Здесь же стоит добавить, что недавно — в 2015 году — кембриджский профессор Джон Сазерленд John Sutherland со своей командой показал возможность образования всех базовых «молекул жизни», компонентов ДНК, РНК и белков из весьма нехитрого набора исходных компонентов. Главные герои этой смеси — циановодород и сероводород, не столь уж редко встречающиеся в космосе. К ним остается добавить некоторые минеральные вещества и металлы, в достаточном количестве имеющиеся на Земле, — такие как фосфаты, соли меди и железа.
Ученые построили детальную схему реакций, которая вполне могла создать насыщенный «первичный бульон» для того, чтобы в нем появились полимеры и в игру вступила полноценная химическая эволюция. Гипотезу абиогенного происхождения жизни из «органического бульона», которую проверили эксперименты Миллера и Юри, выдвинул в 1924 году советский биохимик Александр Опарин. И хотя в «темные годы» расцвета лысенковщины ученый принял сторону противников научной генетики, заслуги его велики. В знак признания роли академика имя его носит главная награда, вручаемая Международным научным обществом изучения возникновения жизни ISSOL , — Медаль Опарина.
До относительно недавнего времени над всеми гипотезами науки о жизни довлела центральная догма молекулярной биологии: ДНК — РНК — белок, описывающая основную цепь событий, приводящую к синтезу всех белков всех организмов.
Сегодня Зоя Андреева рассматривает гипотезу РНК-мира, необязательно верную, но способную свергнуть центральную догму. В отличие от ДНК РНК обычно не формирует двойные спирали, хотя и они, и другие сложные структуры у нее иногда встречаются. Азотистое основание и сахар их совокупность называется сахаро-фосфатным остовом составляют своего рода кирпичик для построения нуклеиновой кислоты, и они, соединяясь друг с другом через остаток фосфорной кислоты, формируют итоговую полимерную цепь. История изучения РНК походит то на мелодраму, то на детектив. Впервые она была выделена в далеком 1868 году.
Тогда швейцарский физиолог Иоганн Фридрих Мишер выделил ее вместе с ДНК в виде непонятного нового вещества, которое он назвал нуклеином — в честь клеточного ядра по-латински nucleus. Потом удалось выяснить состав сахаров, и РНК получила свое современное название. Вплоть до 1940-х годов многие считали , что РНК — это нуклеиновая кислота растений и одноклеточных, тогда как ДНК можно найти только у животных. Когда экспериментально было показано, что это не так, тут же начались разговоры о том, зачем вообще она нужна. Уже в середине века стала складываться концепция молекулярной догмы, когда было обнаружено, что РНК участвует в синтезе белка, связываясь с микросомами — теперь мы знаем эти органеллы под названием рибосом.
Постепенно РНК заняла свою позицию в догме — она работает как агент, связывающий ДНК и белок, параллельно с этим выполняя ряд других функций: от переноски аминокислот до регуляции генов. И чем больше открывали у РНК возможностей, тем больше было вопросов к ее реальному месту в жизненном цикле клетки и организма в целом. Предпосылки развития гипотезы РНК — уникальная молекула. Основная ее функция — это связь между геном и белком, она выражена в центральной догме молекулярной биологии: ДНК — РНК — белок. Нужный для синтеза ген, представленный в виде двухцепочечной ДНК, служит матрицей для создания одноцепочечной РНК, точно повторяющей структуру этого гена и способной перенести инструкцию по сборке белка из ядра в цитоплазму клетки.
В цитоплазме РНК «находит» рибосому — молекулярную «машину» для синтеза белка. Рибосома, «читая» нуклеотиды в РНК, подбирает для будущего белка аминокислоты согласно генетическому коду — почти каждому триплету то есть трем нуклеотидам соответствует какая-то аминокислота есть еще несколько стоп-кодонов, прерывающих синтез белка, и старт-кодон, с которого всё начинается. Так, нанизывая аминокислоту за аминокислотой, рибосома формирует белок. И если раньше считалось, что РНК — это просто помощник, то за последние годы появилось много данных, опровергающих ее подчиненное положение. Вполне возможно, что РНК не серая мышь рядом со своей куда более известной сестрой, а серый кардинал за ее троном.
Оказалось, что РНК не только играет роль посредника между ДНК и синтезом белка, но и обладает каталитической активностью, то есть может работать как фермент. Долгое время считалось, что ферментами могут быть исключительно белки, и открытие рибозимов — РНК-ферментов — перевернуло представления науки о функциях РНК. Обнаружили каталитическую активность практически случайно. Зачем в ферментах РНК? Белок и нуклеиновую кислоту «разделили» и… неожиданно отметили, что и лишенная белка РНК справлялась со своей каталитической функцией.
Сначала биохимики подумали, что это ошибка, артефакт, оставшийся или занесенный извне белок — но и искусственно созданная РНК с той же последовательностью работала как фермент.
Эти эксперименты доказывают, что первым молекулам РНК не нужно было обладать достаточно хорошими каталитическими свойствами. Они развились потом в ходе эволюции под действием естественного отбора. В 2009 году канадские биохимики из Монреальского университета К. Боков и С. Штейнберг, изучив основную составляющую рибосомы бактерии Escherichia coli, молекулу 23S-рРНК, показали, каким образом из относительно небольших и простых рибозимов мог развиться механизм белкового синтеза. Молекула была подразделена на 60 относительно самостоятельных структурных блоков, основным из которых является каталитический центр пептидил-трансферазный центр, PTC, peptidyl-transferase centre , ответственный за транспептидацию образование пептидной связи. Было показано, что все эти блоки можно последовательно отсоединять от молекулы без разрушения её оставшейся части до тех пор, пока не останется один лишь транспептидационный центр. При этом он сохраняет способность катализировать транспептидацию.
Если каждую связь между блоками молекулы представить в виде стрелки, направленной от того блока, который при отрыве не разрушается, к тому блоку, который разрушается, то такие стрелки не образуют ни одного замкнутого кольца. Если бы направление связей было случайным, вероятность этого составляла бы менее одной миллиардной. Следовательно, такой характер связей отражает последовательность постепенного добавления блоков в процессе эволюции молекулы, который исследователям удалось детально реконструировать. Таким образом, у истоков жизни мог стоять сравнительно простой рибозим — PTC-центр молекулы 23S-рРНК, к которому затем добавлялись новые блоки, совершенствуя процесс синтеза белка. Предполагается, что такая структура возникла в результате дупликации удвоения одной исходной лопасти. Методом искусственной эволюции были получены функциональные РНК рибозимы , способные катализировать транспептидацию. Структура этих искусственно выведенных рибозимов очень близка к структуре той проторибосомы, которую «вычислили» авторы.
Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК
Однако точность синтеза РНК оставалась недостаточно высокой, и лишь незначительная доля молекул лигазы, которые они синтезировали, обладала каталитической активностью. Авторы отмечали, что понадобится более строгий отбор, чтобы получить РНК-полимеразы с высокой точностью, которые смогли бы синтезировать более длинные молекулы. В новой работе Джойс и соавторы получили РНК-полимеразы, способные синтезировать целую молекулу РНК-лигазы с достаточно низким уровнем ошибок. Стратегия эволюции, которая использовалась в эксперименте, аналогична вышеописанной. В этот раз РНК-полимераза синтезировала на матрице РНК-лигазу, а затем подвергалась обратной транскрипции, причем оставалась связанной со своим продуктом.
Если РНК-лигаза, которую синтезировал данный вариант РНК-полимеразы, была функциональна, то она сшивала разрыв, и вся конструкция могла быть выделена с помощью бусин со стрептавидином. К сожалению, мы не можем показать эту иллюстрацию, так как статья закрытая. В итоге удалось получить рибозимы, обладающие необходимой — беспрецедентно высокой, подчеркивают авторы — точностью. Лучше всего показал себя рибозим, отличающийся от ранее полученного варианта десятью точечными мутациями и обозначенный 71-89 для его получения потребовался в общей сложности 71 раунд эволюции.
В соответствие с ней предполагается, что до того, как ДНК эволюционировала и получила способность кодировать синтез белка, молекулы РНК вели себя и как кодирующие нуклеотиды и как биологический катализатор — предок ферментов. Тем не менее, найти доказательства в пользу того, что РНК могла выполнять обе эти функции, гораздо сложнее. В современных биохимических системах молекулы РНК практически не участвуют в каталитических процессах, исключение составляют нуклеозиды — малые ядерные РНК, для работы которых требуется кофактор — ионы металла, чаще всего - магния. Однако Лорен Уильямс Loren Williams из Технологического Института Джорджии отмечает, что дискуссии со специалистами по геологии заставили его более точно смоделировать условия на Земле, которые существовали во время существования предполагаемого мира РНК, около 2,5 миллиардов лет назад — значительное количество ионов железа II и малая концентрация свободного кислорода в атмосфере.
Естественный отбор мог способствовать развитию каталитической эффективности этих молекул. Модель также указывает на то, что кооперативные каталитические сети могли быть отобраны эволюцией, что привело к функциональной дифференциации олигомеров на катализаторы и субстраты. Это открытие представляет важный шаг в понимании того, как жизнь могла зародиться из примитивных химических систем на ранних этапах существования Земли и как она эволюционировала к более сложным формам, включающим каталитическую активность.
Часть проблемы заключается в том, что молекулы РНК образуют стабильные структуры, называемые дуплексами. Эти структуры обладают так называемым сильным сродством связывания. Это означает, что молекулы РНК с трудом отделяются друг от друга и действуют как матрицы для дальнейшей репликации в отсутствие ферментов.
У Кришнамурти теперь есть экспериментальные доказательства, чтобы продемонстрировать, что жизненный процесс на Земле мог начаться с молекул, которые выглядели как смесь РНК и ДНК. В последнем выпуске Nature Chemistry он и первый автор исследования, Субхенду Боумик, доктор философии, также из Научно-исследовательского института Скриппса, сообщают, что эти смешанные молекулы образуют нестабильные дуплексы и имеют меньшую аффинность к себе.
Получено экспериментальное подтверждение гипотезы РНК-мира
Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert). Ученые Брукхейвенской национальной лаборатории обнаружили новые доказательства гипотезы РНК-мира. Последние новости по теме рнк. Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле. Пост автора «Хайтек+» в Дзене: Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями.
СВЯЗАТЬСЯ С РЕДАКЦИЕЙ
- Навигация по записям
- Установлено, как первые формы жизни, возможно, упаковывали РНК
- Семь научных теорий о происхождении жизни. И пять ненаучных версий
- Приобщаем к делу пептиды
Учеными из США найдены новые доказательства РНК-мира
Полимеразы происходили от РНК-лигазы класса I — рибозима, который получили в лаборатории Джека Шостака еще в 1995 году. В присутствии матрицы и праймера ферменты Джойса могли реплицировать РНК длиной более 100 нуклеотидов. В работе 2020 года исследователи получили РНК-полимеразы класса I, способные синтезировать своего «предка» — РНК-лигазу класса I — в виде трех отдельных цепей, которые затем собирались в функциональный рибозим. На этом примере можно понять, как работает эволюция РНК in vitro. Один из этапов эволюции РНК-полимеразы класса I —рибозима, производящего рибозимы. Credit: PNAS, 2020. DOI: 10. На праймер отжигается матрица коричневый для синтеза участка РНК, превращающего шпильку с биотином в рибозим — молекулу РНК типа «головка молота» hammerhead , которая разрезает сама себя. Полимераза синтезирует hammerhead голубой на матрице, и вся конструкция захватывается на магнитные шарики со стрептавидином.
Репликация полимера происходила за счет циклического изменения температуры между горячей и холодной фазами, что поддерживало процесс размножения. Возможно, древние полимеры зависели от таких циклов для своего размножения. Дополнительно, неорганические поверхности, такие как камни, могли способствовать этому процессу. Эти открытия выявляют новые механизмы, которые могли способствовать зарождению жизни на Земле и поддержанию процессов самовоспроизводства. Они указывают на то, что процессы, касающиеся первичной жизни и РНК-мира, могли иметь множество путей развития, включая спонтанные образования рибозимов и циклические изменения окружающей среды, способствующие репликации полимеров. Эти исследования поднимают важные вопросы о происхождении жизни на Земле и механизмах, которые могли сыграть ключевую роль в ее зарождении.
Структура этих искусственно выведенных рибозимов очень близка к структуре той проторибосомы, которую «вычислили» авторы. Чаще всего постулируется необходимость агрегирующих РНК мембран или размещения РНК на поверхности минералов и в поровом пространстве рыхлых пород.
В 1990-е годы А. Четвериным с сотрудниками была показана способность РНК формировать молекулярные колонии на гелях и твёрдых субстратах при создании им условий для репликации. Происходил свободный обмен молекулами, которые при столкновении могли обмениваться участками, что показано экспериментально. Вся совокупность колоний в связи с этим быстро эволюционировала. После возникновения белкового синтеза колонии, умеющие создавать ферменты, развивались успешнее. Ещё более успешными стали колонии, сформировавшие более надёжный механизм хранения информации в ДНК и, наконец, отделившиеся от внешнего мира липидной мембраной, препятствующей рассеиванию своих молекул. Шапиро критикует гипотезу РНК-мира, считая, что вероятность спонтанного возникновения РНК, обладающей каталитическими свойствами, очень низка. Взамен гипотезы «вначале была РНК», он предлагает гипотезу «вначале был метаболизм», то есть возникновение комплексов химических реакций — аналогов метаболических циклов — с участием низкомолекулярных соединений, протекающих внутри компартментов — пространственно ограниченных самопроизвольно образовавшимися мембранами или иными границами раздела фаз — областей.
Эта концепция близка к коацерватной гипотезе абиогенеза, предложенной А. Опариным в 1924 году. Другой гипотезой абиогенного синтеза РНК, призванной решить проблему низкой оценочной вероятности синтеза РНК, является гипотеза мира полиароматических углеводородов, предложенная в 2004 году и предполагающая синтез молекул РНК на основе стека из полиароматических колец. Фактически, обе гипотезы «пре-РНК миров» не отвергают гипотезу мира РНК, а модифицируют её, постулируя первоначальный синтез реплицирующихся макромолекул РНК в первичных метаболических компартментах, либо на поверхности ассоциатов, отодвигая «мир РНК» на вторую стадию абиогенеза. Академик РАН А.
Это обнажает генетический код , состоящий из последовательностей генетических оснований A, T, C и G, которые обычно заперты в ступеньках лесенки ДНК. Каждая цепочка затем используется как шаблон для воссоздания копии. С помощью этого механизма гены передавались от родителей к ребенку с самого начала жизни. Ваши гены были переданы древней бактерией — и на каждом шагу копировались, используя механизм, обнаруженный Криком и Уотсоном. Крик и Уотсон изложили свои выводы в статье в Nature в 1953 году. Следующие несколько лет биохимики пытались выяснить точно, какую информацию переносит ДНК и как эта информация используется в живых клетках. Впервые сокровенные тайны жизни были выставлены напоказ. Оказалось, что ДНК делает только одну работу. Ваша ДНК говорит клеткам, как делать белки: молекулы, которые выполняют важнейшие задачи. Без белков вы не могли бы переваривать пищу, ваше сердце остановилось бы и дышать было бы невозможно. Но процесс использования ДНК для создания белков оказался чрезвычайно запутанным. Это стало большой проблемой для любого, кто пытается объяснить происхождение жизни, поскольку трудно представить, как что-то настолько сложное вообще могло появиться само по себе. Каждый белок представляет собой длинную цепь аминокислот, соединенных в определенном порядке. Последовательность этих аминокислот определяет трехмерную форму белка, а значит, и его назначение. Эта информация закодирована в последовательности оснований ДНК. Поэтому когда клетке нужно сделать конкретный белок, она считывает соответствующий ген в ДНК, чтобы получить последовательность аминокислот. Но есть нюанс. ДНК очень ценная, поэтому клетки предпочитают хранить ее в безопасности. И, наконец, процесс преобразования информации в этой цепи РНК в белок происходит в чрезвычайно сложной молекуле под названием «рибосома». Этот процесс протекает в каждой живой клетке, даже у простейших бактерий. Он так же необходим для жизни, как еда и воздух. Любое объяснение происхождения жизни должно показать, как эта сложная троица — ДНК, РНК и белок рибосомы — появилась и начала работать. Клетки могут быть невероятно сложными И внезапно идеи Опарина и Холдейна уже кажутся наивными и простыми, а эксперимент Миллера, который произвел несколько аминокислот, и вовсе дилетантским. Его исследование было лишь первым шагом на длинной дороге. Что нам делать, чтобы найти органическую химию, которая будет делать все это за один раз? Первым человеком, который попытался прямо ответить на этот вопрос, стал английский химик Лесли Оргел. Оргел намеревался упростить задачу. В 1968 году, при поддержке Крика, он предположил, что первая жизнь не имела белков или ДНК. Вместо этого она почти полностью была сделана из РНК. В таком случае первичным молекулам РНК приходилось быть особенно универсальными. С одной стороны, они должны были уметь создавать копии самих себя, по-видимому, используя тот же механизм образования пар, что и ДНК. Идея того, что жизнь началась с РНК, оказала колоссальное влияние. И разразила научную войну, которая продолжается по сей день. ДНК лежит в основе всех живых существ Предположив, что жизнь началась с РНК и кое-чего еще, Оргел по сути предположил, что один из важнейших аспектов жизни — ее способность воспроизводить себя — появился до всех остальных. В некотором смысле он предположил не только, как жизнь появилась: он предположил кое-что о самой сути жизни. Многие биологи согласны с идеей Оргела «сперва воспроизводство». В дарвиновской теории эволюции способность производить потомство находится в центре: это единственный способ для организма «выиграть» — оставить после себя детей. Но у жизни есть и другие функции, которые кажутся одинаково важными. Самая очевидная — это метаболизм: способность извлекать энергию из окружающей среды и использовать ее для поддержания своей жизни. Для многих биологов метаболизм определяет первичную суть жизни, а воспроизводство уже потом. Поэтому начиная с 1960-х годов в рядах ученых, изучающих происхождение жизни, наблюдается раскол. Между тем третья группа поддерживает гипотезу о том, что сперва появился контейнер для ключевых молекул, который не позволял им расплываться. Другими словами, должна была быть клетка — как подчеркивали Опарин и Холдейн за несколько десятков лет до этого — возможно, закрытая мембраной из простых жиров и липидов. Все три идеи приобрели сторонников и сохранились до наших дней. Ученые страстно поддерживали свои идеи, иногда даже совершенно слепо. Неразбериха в рядах ученых достигла апогея, а журналисты, сообщающие о результатах, одни часто говорили, что «другие ученые тупые» или еще хуже. Благодаря Оргелу, идея начала жизни с РНК освежила движение к разгадке. Затем наступили 1980-е, а вместе с ними произошло открытие, которое в значительное степени подтвердило идею Оргела. РНК может быть ключом к началу жизни Часть третья: в поисках первого репликатора Эволюция важнее всего. Итак, после 1960-х годов ученые, пытающиеся понять происхождение жизни, разделились на три группы. Некоторые из них были убеждены в том, что жизнь началась с формирования примитивных версий биологических клеток. Другие считали, что ключевым первым шагом была метаболическая система, а третьи сосредоточились на важности генетики и репликации. Эта последняя группа начала выяснять, как мог бы выглядеть первый репликатор, подразумевая, что он был сделан из РНК. Уже в 1960-е годы ученые имели основания полагать, что РНК была источником всей жизни. Это одноцепочечная молекула, поэтому, в отличие от жесткой, двухцепочечной ДНК, она может складывать себя в целый ряд различных форм. Похожая на оригами, складывающаяся РНК в целом напоминала по поведению белки. Белки тоже в основном представляют длинные цепи — только из аминокислот, а не нуклеотидов — и это позволяет им создавать сложные структуры. Это ключ к самой удивительной способности белков. Некоторые из них могут ускорять, или «катализировать», химические реакции. Такие белки известны как ферменты. Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового. Множество ферментов можно найти у вас в кишках, где они разбивают сложные молекулы из пищи на простые типа сахаров, которые могут использовать ваши клетки. Без ферментов жить было бы невозможно. Лесли Оргел и Фрэнсис Крик начали кое-что подозревать. Если РНК может складываться как белок, возможно, она может и образовывать ферменты? Если бы это было правдой, то РНК могла бы быть оригинальной — и универсальной — живой молекулой, хранящей информацию, как это делает сейчас ДНК, и катализирующей реакции, как это делают некоторые белки. Это была прекрасная идея, но за десять лет она не получила никаких доказательств. Томас Чех, 2007 год Томас Чех родился и вырос в штате Айова. Еще ребенком он был очарован горными породами и минералами. И уже в младших классах средней школы он заглядывал в местный университет и стучался в двери геологов с просьбой показать модели минеральных структур. Однако, в конце концов, он стал биохимиком и сосредоточился на РНК. В начале 1980-х годов Чех и его коллеги по Университету Колорадо в Боулдере изучали одноклеточный организм Tetrahymena thermophila. Часть ее клеточного механизма включает цепи РНК. Чех обнаружил, что отдельный сегмент РНК каким-то образом оказался отделен от остальных, словно его вырезали ножницами. Когда ученые убрали все ферменты и другие молекулы, которые могли выступать молекулярными ножницами, РНК продолжала выделываться. Так они нашли первый фермент РНК: короткий участок РНК, который способен вырезать себя из длинной цепи, частью которой является. Результаты работы Чех опубликовал в 1982 году. В следующем году другая группа ученых обнаружила второй фермент РНК, «рибозим» сокращение от «рибонуклеиновая кислота» и «энзим», он же фермент. Обнаружение двух ферментов РНК одного за другим указывало на то, что их должно быть много больше. И так идея начала жизни с РНК начала выглядеть солидно. Как грудной имплантат сохранил жизнь женщины Однако имя этой идее дал Уолтер Гилберт из Гарвардского университета в Кембридже, штат Массачусетс. Как физик, восхищающийся молекулярной биологией, Гилберт также стал одним из первых сторонников секвенирования генома человека. Первая стадия эволюции, утверждал Гилберт, состояла из «молекул РНК, выполняющих каталитическую деятельность, необходимую для сборки самих себя в бульон нуклеотидов». Наконец, они нашли способ создавать белки и белковые ферменты, которые оказались настолько полезными, что в значительной степени вытеснили версии РНК и дали начало жизни, которую мы имеем. Вместо того, чтобы полагаться на одновременное образование десятков биологических молекул из первичного бульона, «одна за всех» молекула могла сделать всю работу. В 2000 году гипотеза «мира РНК» получила колоссальную порцию подтверждающих доказательств. Рибосома делает белки Томас Стейц провели 30 лет, изучая структуры молекул в живых клетках. В 1990-е годы он посвятил себя самой серьезной задаче: выяснить структуру рибосомы. Рибосома есть в каждой живой клетке. Эта огромная молекула считывает инструкции в РНК и выстраивает аминокислоты, чтобы сделать белки. Рибосомы в ваших клетках построили большую часть вашего тела. Было известно, что рибосома содержит РНК. Но в 2000 году команда Стейца произвела подробное изображение структуры рибосомы, которое показало, что РНК была каталитическим ядром рибосомы. Это было важно, так как рибосома фундаментально важна для жизни и при этом очень древняя. Но с тех пор ученые начали сомневаться. С самого начала у идеи «мира РНК» было две проблемы. Могла ли РНК действительно выполнять все функции жизни сама по себе? Могла ли она образоваться на ранней Земле? Прошло 30 лет с тех пор, как Гилберт заложил фундамент для «мира РНК», и мы до сих пор не нашли твердых доказательств, что РНК может выполнять все, что от нее требует теория. Это маленькая умелая молекула, но она может не уметь всего. Как он-лайн вечеринки меняют нашу жизнь. Личный опыт Ясно было одно. Если жизнь началась с молекулы РНК, РНК должна была быть способна делать копии себя: она должна была быть самовоспроизводящейся, самореплицирующейся. Но ни одна из известных РНК не может самовоспроизводиться. Как и ДНК. Поэтому в конце 1980-х годов несколько ученых начали весьма донкихотские поиски. Они задумали создать самовоспроизводящуюся РНК самостоятельно. Джек Шостак Джек Шостак из Гарвардской школы медицины был одним из первых, кто принял в этом участие. В детстве он был так очарован химией, что завел лабораторию в подвале своего дома. Пренебрегая собственной безопасностью, однажды он даже устроил взрыв, после которого в потолке застряла стеклянная трубка. В начале 1980-х годов Шостак помог показать, как гены защищают себя от процесса старения. Это довольно раннее исследование в конечном итоге принесло ему часть Нобелевской премии. Однако очень скоро он восхитился ферментами РНК Чеха. Шостак решил улучшить открытие, произведя новые ферменты РНК в лаборатории. Его команда создала набор случайных последовательностей и проверила, обладает ли хоть одна из них каталитическими способностями. Затем они брали эти последовательности, переделывали и снова проверяли. Спустя 10 раундов таких действий Шостак произвел фермент РНК, который ускорял протекание реакции в семь миллионов раз. Он показал, что ферменты РНК могут быть по-настоящему мощными. Но их фермент не мог копировать себя, даже чуточку. Шостак оказался в тупике. Возможно, жизнь началась не с РНК Следующий крупный шаг осуществил в 2001 году бывший студент Шостака Дэвид Бартель из Массачусетского технологического института в Кембридже. Другими словами, он добавлял не случайные нуклеотиды: он правильно копировал последовательность. Пока это был еще не саморепликатор, но уже что-то похожее. Была надежда, что несколько настроек позволят ему построить цепь длиной в 189 нуклеотидов — как и он сам. Лучшее, что удалось сделать, принадлежало Филиппу Холлигеру в 2011 году из Лаборатории молекулярной биологии в Кембридже. Его команда создала модифицированный R18 под названием tC19Z, который копировал последовательности до 95 нуклеотидов длиной. В 2009 году они создали фермент РНК, который размножается косвенно. Их фермент объединяет два коротких кусочка РНК для создания второго фермента. Затем объединяет другие два кусочка РНК, чтобы воссоздать исходный фермент. При наличии сырья этот простой цикл можно продолжать до бесконечности. Но ферменты работали только тогда, когда им давали правильные цепочки РНК, которые приходилось делать Джойсу и Линкольну. Для многих ученых, которые скептически относятся к «миру РНК», отсутствие самовоспроизводящейся РНК является фатальной проблемой этой гипотезы. РНК, по всей видимости, просто не может взять и начать жизнь. Также проблему усугубила неудача химиков в попытках создать РНК с нуля. Казалось бы, простая молекула по сравнению с ДНК, но сделать ее чрезвычайно трудно. Это животное остается беременным всю жизнь без перерыва Проблема лежит в сахаре и основании, которые составляют каждый нуклеотид. Можно сделать каждый из них по отдельности, но они упорно отказываются связываться. К началу 1990-х годов эта проблема стала очевидной. Многие биологи заподозрили, что гипотеза «мира РНК», несмотря на всю привлекательность, может быть не совсем верной. Вместо этого, возможно, на ранней Земле был какой-то другой тип молекулы: что-то проще, чем РНК, которая на самом деле могла собрать себя из первичного бульона и начать самовоспроизводиться. Это была по существу сильно модифицированная версия ДНК. Он назвал новую молекулу полиамидной нуклеиновой кислотой, или ПНК. Непонятным образом с тех пор она стала известна как пептидная нуклеиновая кислота. ПНК никогда не встречали в природе. Но ведет она себя практически как ДНК. Стэнли Миллер был заинтригован. Глубоко скептически относясь к РНК-миру, он подозревал, что ПНК была куда более вероятным кандидатом на первый генетический материал. В 2000 году он произвел несколько уверенных доказательств. К тому времени ему уже стукнуло 70 и он пережил несколько инсультов, которые могли отправить его в дом престарелых, но не сдался. Он повторил свой классический эксперимент, который мы обсуждали в первой главе, в этот раз используя метан, азот, аммиак и воду — и получил полиамидную основу ПНК. Молекула треозо-нуклеиновой кислоты Другие химики придумали собственные альтернативные нуклеиновые кислоты. Это та же ДНК, но с другим сахаром в основе. Более того, ТНК может складываться в сложные формы и даже связываться с белком. В 2005 году Эрик Меггес сделал гликолевую нуклеиновую кислоту, которая может формировать спиральные структуры. У каждой из этих альтернативных нуклеиновых кислот есть свои сторонники. Но никаких следов их в природе не найти, поэтому если первая жизнь действительно использовала их, в какой-то момент она должна была полностью отказаться от них в пользу РНК и ДНК. Это может быть правдой, но никаких доказательств нет. В итоге к середине 2000-х годов сторонники мира РНК оказались в затруднительном положении. С одной стороны, РНК-ферменты существовали и включали одну из важнейших частей биологической инженерии, рибосому. Альтернативные нуклеиновые кислоты могли бы решить последнюю задачу, но нет никаких доказательств, что они существовали в природе. Не очень хорошо. Очевидный вывод был таким: «мир РНК», несмотря на свою привлекательность, оказался мифом. Между тем с 1980-х годов постепенно набирала обороты другая теория. Вместо этого она началась с механизма использования энергии. Жизни нужна энергия, чтобы оставаться живой Часть четвертая: энергия протонов Во второй главе мы узнали, как ученые разделились на три школы мысли, размышляя об истоках жизни. Одна группа была убеждена, что жизнь началась с молекулы РНК, но не смогла показать, как РНК или подобные молекулы могли спонтанно образоваться на ранней Земле, а затем наделать копий самих себя. На первых порах их усилия воодушевляли, но в конечном итоге осталось только разочарование. Тем не менее другие исследователи происхождения жизни, которые двигались иными путями, пришли к кое-каким результатам. Теория «мира РНК» опирается на простую идею: самое важное, что может сделать живой организм, это воспроизвести себя. Многие биологи с этим согласились бы. От бактерий до голубых китов, все живые существа стремятся завести потомство. Тем не менее многие исследователи происхождения жизни не считают воспроизводство чем-то фундаментальным. Перед тем как организм сможет размножаться, говорят они, он должен стать самодостаточным. Он должен поддерживать себя в живом состоянии. В конце концов, вы не сможете иметь детей, если сначала умрете. Мы поддерживаем себя в живых, поглощая пищу; зеленые растения делают это путем извлечения энергии из солнечного света. На первый взгляд, человек, поедающий сочный стейк, сильно отличается от поросшего листвой дуба, но если разобраться, они оба нуждаются в энергии. Этот процесс называется метаболизм. Сначала вам нужно получить энергию; допустим, из богатых энергией химических веществ вроде сахара. Затем вы должны использовать эту энергию, чтобы построить что-нибудь полезное вроде клеток. Этот процесс использования энергии настолько важный, что многие исследователи считают его первым, с которого началась жизнь. Вулканическая вода горячая и богата минералами Как могли бы выглядеть эти предназначенные только для метаболизма организмы? Одно из самых интересных предположений было выдвинуто в конце 1980-х годов Гюнтер Вахтершаузер. Он не был штатным ученым, скорее патентным юристом с небольшими познаниями в химии. Вахтершаузер предположил, что первые организмы «радикально отличались от всего, что мы знали». Они не были сделаны из клеток. Нет, вместо этого Вахтершаузер представил поток горячей воды, вытекающей из вулкана. Эта вода богата вулканическими газами вроде аммиака и содержит следы минералов из сердца вулкана. Там, где вода текла через скалы, начинали происходить химические реакции. В частности, металлы из воды помогали простым органическим соединениям сливаться в более крупные. Поворотным моментом стало создание первого метаболического цикла. Это процесс, в котором одно химическое вещество превращается в ряд других химических веществ, пока в конце концов не будет воссоздан исходник. В процессе этого вся система накапливает энергию, которая может быть использована для перезапуска цикла — и для других вещей. Инопланетная жизнь может обитать рядом с белыми карликами Все остальное, из чего состоит современный организм — ДНК, клетки, мозги — появились позже, поверх этих химических циклов.