Новости черная дыра м87

В 2019-м работающие на нем ученые сообщили о реконструкции изображения сверхмассивной черной дыры в эллиптической галактике M87* — в 54 миллионах световых лет от Земли в созвездии Девы. Что на самом деле происходит внутри черных дыр? Телескоп "Джеймс Уэбб" только что сделал ПЕРВОЕ РЕАЛЬНОЕ изображение внутренней части черной дыры! Астрофизики МГУ определили массу черной дыры в центре галактики М87 по рентгеновским данным с помощью инновационного метода, статья опубликована в журнале Astronomy and Astrophysics. Астрофизики МГУ определили массу черной дыры в центре галактики М87 по рентгеновским данным с помощью инновационного метода.

Что это за «тень» такая?

  • LPI - 13.05.2022 N+1. Там дыра. Что астрономы увидели в центре Млечного Пути
  • Газета «Суть времени»
  • Первое в истории изображение черной дыры уже стало мемом
  • Сообщить об ошибке в тексте

Первый снимок чёрной дыры в центре нашей Галактики

Это затрудняет точную визуализацию газа, кружащегося вокруг дыры, поскольку он движется по орбите за считанные минуты, в то время как у М87 на это уходят дни или даже недели. И хотя этот объект в 4 миллиона раз массивнее Солнца, аналог М87 в миллиарды раз массивнее. Для получения изображений в течение нескольких ночей команде понадобилась сеть радиообсерваторий телескопа "Горизонт событий".

В апреле 2019 года был получен первый в истории снимок сверхмассивной чёрной дыры в центре галактики M87 в ходе проекта Event Horizon Telescope EHT. Специалисты из коллаборации EHT определили массу этой чёрной дыры — 6,5 млрд солнечных масс. Российские исследователи перепроверили эти данные. Применив метод скалирования масштабирования спектральных характеристик, они выяснили, что масса чёрной дыры в М87 на два порядка меньше заявленной их коллегами из EHT. Условно, вы подбрасываете дрова в костёр и думаете, что он будет ярче. С чёрной дырой не так: вы подбрасываете больше дров, а костёр не разгорается», — заявила в беседе с RT научный сотрудник отдела звёздной астрофизики МГУ Елена Сейфина.

Согласно этой теории, силовые линии магнитного поля действуют как синхротрон, который ускоряет материал, прежде чем запустить его с огромной скоростью. Наши результаты помогут рассчитать количество переносимой энергии и влияние, которое струи черной дыры оказывают на окружающую среду».

Изображение сформировано световыми лучами, искривлёнными мощной гравитацией чёрной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца. Так как эта чёрная дыра находится от Земли на расстоянии около 27 000 световых лет, её видимые размеры на небе примерно соответствуют размерам пончика на Луне. Чтобы получить её изображение, группа создала сверхмощную антенную решётку EHT: восемь крупнейших радиообсерваторий всей планеты, объединившись, создали единый гигантский виртуальный телескоп размером с земной шар. Ученые потратили пять лет, чтобы откалибровать и перепроверить гигантский объем информации и, в итоге, преобразовать его в изображение черной дыры. По словам участников проекта, получить фотографию черной дыры в Млечном Пути было намного сложнее, чем в галактике Messier 87, поскольку газ, вращающийся вокруг нее, совершает полный оборот всего за пару минут, из-за чего яркость и морфология источника меняются очень быстро.

Опубликованы многоволновые изображения черной дыры в галактике М87

Эдуардо Рос, астроном и научный координатор интерферометрии со сверхдлинной базой VLBI в Институте радиоастрономии им. Макса Планка, добавил: «Мы видели кольцо раньше, но теперь мы видим струю. Если вы думаете об этом как об огнедышащем монстре, раньше мы могли видеть дракона и огонь, но теперь мы можем видеть дракона, дышащего огнем ». Использование множества различных телескопов и инструментов дало команде более полное представление о структуре сверхмассивной черной дыры и ее струи, чем это было возможно ранее с помощью EHT, и для создания полной картины требовались все телескопы. Чувствительность 100-метровой собирающей поверхности GBT позволила астрономам разрешить как крупные, так и мелкие части кольца и увидеть более мелкие детали.

Как струи черных дыр приобретают огромную энергию, необходимую для этого, остается загадкой, но физики использовали общую теорию относительности Эйнштейна, чтобы предположить, что материал мог бы получить ее из магнитных полей космических монстров, если бы они быстро вращались вокруг своих осей. Черные дыры, вероятно, приобрели часть своего вращения с первых дней своего существования в качестве звезд, которые, когда они внезапно схлопнулись внутрь, стали подобны фигуристам, которые тянут руки, чтобы вращаться быстрее. Со временем это вращение, вероятно, стало ускоряться из-за эффекта падения материи со звезд, разорванных черными дырами, или из-за катастрофических столкновений с другими массивными объектами.

Чтобы найти ключ к разгадке этого неуловимого вращения, астрономы обратились к сверхмассивной черной дыре M87, которая использует свою массу в 6,5 миллиардов раз больше солнечной для закрепления целой галактики. Изучая M87 с помощью глобальной сети радиотелескопов с 2000 по 2022 год, астрономы обнаружили, что струи черной дыры тикают взад и вперед, как метрономы, отмечающие 11-летний цикл. Это показало, что черная дыра прецессировала или раскачивалась вокруг своей оси во время вращения, подобно волчку.

Как обнаружить черную дыру В конце своей жизни массивные звезды могут превращаться в черные дыры. И на этапе, когда только пытались найти первые черные дыры, возник вопрос: как их можно обнаружить. Первая идея была такой: звезды, особенно массивные, нередко рождаются парами. Одна из таких звезд превращается в черную дыру, и мы перестаем ее видеть. При этом она продолжает существовать. Предполагалось, что мы сможем увидеть вращение соседней звезды вокруг этого невидимого объекта, при помощи вычислений измерить его массу и обнаружить, что в этом месте находится черная дыра.

Сергей Попов рассказывает, что исторически это был первый предложенный способ поиска. С 60-х годов ученые пытались искать их по такому методу, но ничего не обнаружили. Последние пару лет стали появляться возможные кандидаты на звание черных дыр, но ученые пока не уверены, что в паре с обычными звездами находятся именно они. Визуализация черной дыры Фото: NASA Если опять обратиться к черной дыре, которая соседствует со звездой, то вещество с обычной звезды может перетекать в дыру. Черная дыра своей гравитацией будет засасывать это вещество. Если представить, что в нее одновременно кинули два камня, они могут столкнуться над горизонтом на скорости почти равной скорости света. При таком столкновении выделится много энергии, которую можно заметить. Но в звездах не камни, а газ. Когда разные слои газа трутся друг о друга, они нагреваются до миллионов градусов, и это тепло можно увидеть.

С помощью такого способа в конце 60-х — начале 70-х годов, когда стали запускать первые рентгеновские детекторы в космос, открыли и первые черные дыры. Визуализация черной дыры рядом со звездой Фото: NASA В начале 60-х годов стало ясно, что есть яркие астрономические объекты — квазары. Дословно— «похожий на звезду радиоисточник». Это активные ядра галактик на начальном этапе развития, в центре которых находятся сверхмассивные черные дыры. Обнаружить их можно даже на очень отдаленных расстояниях. В ходе изучения квазаров стало ясно, что это небольшой источник, который находится в центре далекой галактики и при этом испускает много энергии. Попов рассказывает, что когда ученые открывают квазар, они уверены, что там «сидит» сверхмассивная черная дыра. Сейчас это самый массовый способ открытия черных дыр. Визуализация квазара Фото: NASA Почти все массивные звезды превращаются в черные дыры, но не все они находятся в двойных системах, или у них нет перетекания.

В таком случае дыры ищут другим способом. Сергей рассказывает, что черная дыра сильно искажает пространство-время вокруг себя, но тут важна не столько масса, сколько компактность. Понять это легко, достаточно представить острый предмет.

Это сверхмассивная черная дыра, масса которой в шесть миллиардов раз превышает массу нашей звезды. Однако не только этим М87 привлекла внимание ученых. Больше всего их заинтриговала плазма, которая струей изливается из самого центра черной дыры. По первым предположениям, это неизвестное вещество, которое по каким-то причинам не попадает за горизонт событий. Черная дыра, согласно наблюдениям, вращается и работает в качестве ускорителя частиц, выбрасывая их в космос. Таким образом можно сказать, что этот гигант работает как маяк для наблюдателей Вселенной.

Event Horizon Telescope, как вы уже знаете, не совсем телескоп. Это целый проект, в котором задействованы целых 8 мощнейших телескопов и другого оборудования, а также сотни ученых по всему миру. Все наблюдения они провели всего за неделю еще два года назад. Восемь телескопов вместе собирали огромные объемы данных, чтобы в итоге собрать эту фотографию. Почему так?

Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом?

Ученые впервые показали реальное фото черной дыры Как светят те остатки несчастных звёздочек, коих затянуло в чёрную дыру, что расположена в центре эллиптической галактики M87.
Черные дыры: почему они черные, как их находят и при чем здесь квазары Ученые, изучающие сверхмассивную черную дыру в центре галактики M87, раскрыли происхождение мощного джета монстра и впервые сфотографировали джет и его источник вместе.

Чем так примечательна галактика Мессье 87 и что о ней нужно знать?

Как и черная дыра, обнаруженная внутри М87, Sgr A* изгибает весь свет вокруг себя. Чёрные дыры действительно поглощают вещество и могут разрывать целые. M 87 — вторая по яркости галактика в Скоплении Девы и одна из самых массивных галактик в Местном сверхскоплении галактик (также известном как Сверхскопление или Суперкластер Девы). ОКАЗАТЬ ПОДДЕРЖКУ С КОСМОСА. Фотография плотного темного ядра черной дыры М87*, обрамленного аморфным светящимся кольцом, попала в заголовки международных СМИ.

Астрофизики впервые показали изображение черной дыры

Но вернёмся к центральной чудовищной чёрной дыре М 87. На знаменитой фотографии 2017 года её видно только благодаря тому, что она окружена нимбом притянутого ею и постепенно поглощаемого ею вещества. Оно называется аккреционным диском. По примерным подсчётам, каждые десять лет из него в эту чёрную дыру падает масса целого Солнца. Вещество в нём расщеплено на элементарные частицы и носится в таком виде со скоростью почти тысяча километров в секунду.

А физика процесса аккреции такова, что при этом от полюсов чёрной дыры, то есть перпендикулярно плоскости диска, вылетают мощнейшие струи того же притянутого вещества, так называемые релятивистские струи. И одна из этих струй из центра М 87 смотрит в нашу сторону — вот она. Релятивистская струя плазмы, идущая от сверхмассивной чёрной дыры в центре М 87. Астрономы сравнили знаменитую самую первую фотографию центра М 87 с той, которая была получена год спустя.

Заметна достаточная разница. Самая яркая область сместилась на 30 градусов против часовой стрелки.

Также по теме Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры Учёные, участвующие в международном проекте Event Horizon Telescope EVT , представили первое в истории изображение чёрной дыры в... В апреле 2019 года был получен первый в истории снимок сверхмассивной чёрной дыры в центре галактики M87 в ходе проекта Event Horizon Telescope EHT. Специалисты из коллаборации EHT определили массу этой чёрной дыры — 6,5 млрд солнечных масс. Российские исследователи перепроверили эти данные. Применив метод скалирования масштабирования спектральных характеристик, они выяснили, что масса чёрной дыры в М87 на два порядка меньше заявленной их коллегами из EHT.

Условно, вы подбрасываете дрова в костёр и думаете, что он будет ярче.

Спитцера, показывает, что М87 выглядит как облако, без выраженных деталей структуры. Однако на изображении видны детали релятивистских джетов, выбрасываемых из центральной области галактики. Джеты протянулись на тысячи световых лет и создают яркие световые следы в галактике.

Более яркий джет справа приближается к нам и находится близко от луча зрения. Направленный в противоположную сторону джет не виден, а на картинке запечатлена дуга из вещества, светящегося под действием созданной джетом ударной волны. На врезке внизу справа показано историческое первое изображение черной дыры.

Ученые просто подтвердили результат? Непросто, но да. Неужели осталось еще что-то не открытое? О, да! По теням черных дыр у EHT три большие задачи: 1.

Получить видео тени черной дыры. Понаблюдать больше черных дыр: все они меньше и дальше, поэтому сложно их разглядеть. Зарегистрировать, наконец, джет в М87. Мне особенно интересно последнее. На самом деле, уже есть изображение тени черной дыры вместе с джетом в М87. Здесь кольцо больше по диаметру, и пока непонятно, почему, ведь фотонные кольца ахроматические: их размер не зависит от частоты излучения и определяется только массой черной дыры. Скорее всего при 86 гигагерцах детектируется внешнее вещество аккреционного диска и не определяется внутреннее, ближайшее к черной дыре. Поэтому диаметр кольца получается больше.

А на высоких частотах диск видно вплоть до границы тени черной дыры, но не видно на больших удалениях, где для высоких частот излучение уже слишком слабое. Большее кольцо также может быть оболочкой джета в самом его начале. Тогда на более низких частотах излучение приходит из внешней его части, а на высоких — из внутренней. Посмотрите на этот красавец-джет. Мы хотим визуализировать его с помощью EHT, потому что все-таки угловое разрешение нашего телескопа в три раза выше и позволит понять, правда ли джет запускается самой черной дырой или же аккреционный диск тоже в деле. В данных 2018 года джет не виден, но в 2021 и 2022 годах мы его наблюдали уже с одиннадцатью телескопами, и на этот раз должны заметить. Кроме показанного сегодня нового изображения предстоит еще совместный анализ наблюдений за два года в поляризованном свете. Очень интересно, изменилась ли напряженность и конфигурация магнитного поля вокруг черной дыры, темп аккреции, сможем ли мы точнее определить спин черной дыры.

Уже скоро мы обо всем этом расскажем. Еще пять лет назад мы не думали, что можно разглядеть черную дыру. Сейчас мы научились наблюдать такие объекты на высоких частотах с интерферометром, подробно изучили две черные дыры, измерили их параметры и убедились, что общая теория относительности работает. Через десять лет мы поймем, как черные дыры разгоняют вещество до скорости света, научимся различать фотонные кольца и, наконец, запишем видео падения вещества в черную дыру. Для этого нам хватит двадцати телескопов и бюджета фильма «Интерстеллар». Только у нас все будет по-настоящему.

Ученые получили первый в истории снимок черной дыры в центре Млечного Пути

По данным, полученным от орбитального рентгеновского телескопа НАСА Chandra, внутри M87 находится сверхмассивная черная дыра, обладающая феноменальной активностью. По словам участников проекта, получить фотографию черной дыры в Млечном Пути было намного сложнее, чем в галактике Messier 87, поскольку газ, вращающийся вокруг нее, совершает полный оборот всего за пару минут. Астрономы впервые получили прямое визуальное изображение сверхмассивной черной дыры в центре галактики М 87 и ее тени. по мере приближения к черной дыре, время относительно земного, будет замедляться. Т.е. падающий в ЧД космонавт будет двигаться все медленнее, а у границы горизонта событий вообще как бы замрёт. Гигантская галактика М87 в созвездии Девы, находящаяся на расстоянии 55 миллионов световых лет от Земли, привлекает астрофизиков относительной близостью и сверхмассивной чёрной дырой в её центре, которая в 6,5 миллиардов раз массивнее Солнца. По данным, полученным от орбитального рентгеновского телескопа НАСА Chandra, внутри M87 находится сверхмассивная черная дыра, обладающая феноменальной активностью.

Сверхмассивная черная дыра в самой удаленной галактике удивила ученых

а именно в галактике Messier 87 - удалось сделать благодаря Телескопу горизонта событий. Первый снимок черной дыры в галактике М87 позволил измерить видимый диаметр ее кольца — 42 микросекунд дуги. Новые наблюдения галактики M87 показывают, как вокруг чудовищной черной дыры формируется мощный джет.

Опубликованы 10 лет наблюдений за первой в истории сфотографированной черной дырой M87*

Хотя в GS-9209 примерно столько же звезд, сколько в нашей родной галактике, с общей массой, равной 40 миллиардам солнц, она составляет лишь одну десятую размера Млечного Пути. По словам исследователей, это самый ранний известный пример галактики, в которой перестали формироваться звезды. Сверхмассивные черные дыры могут остановить звездообразование, потому что их рост высвобождает огромное количество высокоэнергетического излучения, которое может нагревать галактики и вытеснять газ из них. Галактикам нужны огромные облака газа и пыли, чтобы коллапсировать под действием собственной гравитации, создавая тем самым новые звезды, пишет The Guardian.

Например, в 2020 г. Лауреаты этой премии профессора Р. Генцель и А. Гез , наблюдая центр Галактики в инфракрасном диапазоне и применяя современные методы повышения углового разрешения телескопа, построили орбиту движения звезды S2 вокруг центральной сверхмассивной чёрной дыры рис. Эта звезда принадлежит звёздному скоплению, окружающему центральную чёрную дыру. Применив 3-й закон Кеплера , авторы дали наиболее надёжную и убедительную оценку массы сверхмассивной чёрной дыры в ядре нашей Галактики — около 4 млн масс Солнца. Метод разрешённой кинематики применим к наиболее близким галактикам, для которых угловое разрешение современных телескопов достаточно велико, чтобы увидеть индивидуальные «пробные тела» вблизи центральной сверхмассивной чёрной дыры. Для далёких галактик применяется метод эхокартирования, в котором расстояние «пробного тела» от чёрной дыры и его скорость оцениваются опосредованно. Если ядро галактики является активным и в его оптическом спектре наблюдаются мощные и широкие линии излучения водорода, гелия и других элементов, то измеряя время запаздывания переменности эмиссионных линий относительно переменности непрерывного спектра, можно оценить характерное расстояние от чёрной дыры газовых облаков, излучающих в линиях. Поскольку большая ширина эмиссионных линий в спектре активного ядра галактики вызвана движениями многих газовых облаков и эффектом Доплера , измеряя ширину линий, можно оценить характерную скорость движения газовых облаков вблизи центральной чёрной дыры. Зная характерное расстояние газовых облаков от чёрной дыры и их характерную скорость, можно оценить массу центральной сверхмассивной чёрной дыры.

Мало того, что части черной дыры больше, чем ранее обнаруженные наблюдения с более короткими длинами волн, но теперь можно подтвердить происхождение джета. Он родился из энергии, создаваемой магнитными полями, окружающими вращающееся ядро черной дыры, и ветрами, поднимающимися от аккреционного диска черной дыры. До этого существовало две теории о том, откуда они могут появиться», — сказал Минтер. Харшал Гупта, руководитель программы NSF обсерватории Грин-Бэнк, добавил: «Это открытие является яркой демонстрацией того, как телескопы, обладающие дополнительными возможностями, могут быть использованы для фундаментального улучшения понимания астрономических объектов и явлений. Удивительно видеть, как различные типы радиотелескопов, поддерживаемых NSF, синергетически работают как важные элементы GMVA, позволяющие получить общее представление о черной дыре и джете M87».

Хотя при построении изображений не делается никаких предположений о морфологии источника, при моделировании данные сравниваются с семейством геометрических шаблонов, в данном случае с кольцами неоднородной яркости. Затем используется статистическая структура, чтобы определить, согласуются ли данные с такими моделями, и найти наиболее подходящие параметры модели. Диаметр тени черной дыры остался в соответствии с предсказанием Общей теории относительности Эйнштейна для черной дыры с массой 6,5 миллиардов масс Солнца. Иллюстрация показывает соответствие измеренного диаметра кольца и колебания ориентации. Только данные 2017 года обладают достаточным качеством для построения изображений, в то время как для более ранних наблюдений использована кольцевая модель. Впервые ученые могут наблюдать динамическую структуру аккреционного потока так близко к горизонту событий черной дыры в условиях экстремальной гравитации. Изучение этой области является ключом к пониманию таких явлений, как запуск релятивистских джетов, и позволит ученым сформулировать новые проверки Общей теории относительности.

Астрономы получили новый взгляд на черную дыру M87

Особенности траекторий указывали, что этот газовый и звёздный материал вращается вокруг некоторого компактного космического тела с огромной массой. Оценки дают массу этого объекта в четыре миллиона масс Солнца, а за его открытие в 2020 году была присуждена Нобелевская премия по физике об этом можно прочитать в более подробном материале. Для получения изображения чёрной дыры в радиодиапазоне использовались массивы радиоантенн в разных точках планеты. Таким образом создаётся виртуальный радиотелескоп размером с Землю: обсерватории на разных континентах работают как части одной антенны-«тарелки», собирающей космическое радиоизлучение. Снимку посвящён специальный выпуск The Astrophysical Journal Letters от мая 2022 года, в котором опубликовано шесть статей коллаборации EHT о разных аспектах наблюдений и обработки данных. Радиотелескопы, составляющие Телескоп горизонта событий EHT — коллаж изображений всех обсерваторий проекта на одном снимке. Две галактики относятся к разным типам.

Млечный Путь — спиральная галактика с несколькими рукавами, а M87 — это гигантская эллиптическая галактика, одна из самых крупных в Местном сверхскоплении. Тем не менее вид аккреционных дисков двух чёрных дыр описывается выражениями, предсказанными в рамках Общей теории относительности. Люмине и его «компьютерная чёрная дыра», 1978.

Галактика GS-9209, напоминает The Guardian, была открыта в 2004 году Кариной Капути, бывшей аспиранткой Эдинбургского университета, которая в настоящее время является профессором наблюдательной космологии в Университете Гронингена в Нидерландах.

Хотя в GS-9209 примерно столько же звезд, сколько в нашей родной галактике, с общей массой, равной 40 миллиардам солнц, она составляет лишь одну десятую размера Млечного Пути. По словам исследователей, это самый ранний известный пример галактики, в которой перестали формироваться звезды. Сверхмассивные черные дыры могут остановить звездообразование, потому что их рост высвобождает огромное количество высокоэнергетического излучения, которое может нагревать галактики и вытеснять газ из них.

Перевод подписей и обозначения: БРЭ. CC BY 4.

Например, в 2020 г. Лауреаты этой премии профессора Р. Генцель и А. Гез , наблюдая центр Галактики в инфракрасном диапазоне и применяя современные методы повышения углового разрешения телескопа, построили орбиту движения звезды S2 вокруг центральной сверхмассивной чёрной дыры рис. Эта звезда принадлежит звёздному скоплению, окружающему центральную чёрную дыру.

Применив 3-й закон Кеплера , авторы дали наиболее надёжную и убедительную оценку массы сверхмассивной чёрной дыры в ядре нашей Галактики — около 4 млн масс Солнца. Метод разрешённой кинематики применим к наиболее близким галактикам, для которых угловое разрешение современных телескопов достаточно велико, чтобы увидеть индивидуальные «пробные тела» вблизи центральной сверхмассивной чёрной дыры. Для далёких галактик применяется метод эхокартирования, в котором расстояние «пробного тела» от чёрной дыры и его скорость оцениваются опосредованно. Если ядро галактики является активным и в его оптическом спектре наблюдаются мощные и широкие линии излучения водорода, гелия и других элементов, то измеряя время запаздывания переменности эмиссионных линий относительно переменности непрерывного спектра, можно оценить характерное расстояние от чёрной дыры газовых облаков, излучающих в линиях.

Как оказалось, у компании есть секретная лаборатория, где и проходит тестирование и настройка камер. Журналистам портала CNET удалось посетить её и увидеть лично, как создаются камеры «пикселей». По словам авторов разработки, они черпали вдохновение у природы, а именно у растений. Читать дальше Мошенники нашли новый способ воровства Телеграм-аккаунтов Компания F. Она напоминает некоторые уже известные методы мошенничества, но, по мнению экспертов, опасна даже для опытных пользователей. В результате ученые смогли впервые провести замеры поляризации, подтверждающей существование магнитных полей в непосредственной близости от края черной дыры.

Результаты наблюдений станут важным этапом в объяснении природы происхождения высокоэнергетических джетов — струйных выбросов из ядра галактики M87, расположенной на расстоянии в 55 миллионов световых лет от Земли. По заявлению астрономов EHT в руки ученых попал очередной факт способный пролить свет на поведение магнитных полей в непосредственной близости от черной дыры и приоткрыть завесу тайны «…формирования мощнейших джетов, выходящих далеко за пределы галактики» на 5000 световых лет от ее центра.

Похожие новости:

Оцените статью
Добавить комментарий