Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. “Таймырский Телеграф” – Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой. Красноярские ученые объяснили успешное применение магнитных наночастиц из оксида железа в лечении злокачественной опухоли карциномы Эрлиха. По сообщению пресс-службы ФИЦ «Красноярский научный центр СО РАН», новый композиционный материал состоит из нановолокон оксида алюминия и детонационных наноалмазов.
Красноярские ученые создали новый нанокомпозитный 2D-материал
Полученные результаты исследования опубликованы в журнале Physics of the Solid State. Источник: ТАСС.
Уменьшение количества заместителей снижает токсичность и увеличивает антиоксидантную активность фуллеренола. К примеру, они рассмотрели модифицированную молекулу фуллеренола с внедрённым внутрь атомом гадолиния и большим количеством кислородосодержащих заместителей. Препараты гадолиния перспективны для диагностики онкологических заболеваний благодаря особым парамагнитным свойствам этого металла. Однако токсичность таких лекарств является проблемой для их использования. По оценке ученых, чтобы снизить токсичность фуллеренола, содержащего гадолиний, во время синтеза следует уменьшить количество кислородных заместителей. Выяснилось, что фуллеренолы с меньшим количеством кислородосодержащих заместителей не так токсичны, как фуллеренолы с большим количеством кислородосодержащих заместителей. Чтобы снизить токсичность мы рекомендуем уменьшить количество кислородсодержащих групп, присоединенных к углеродному каркасу. Наша работа показывает, что биолюминесцентные тесты можно использовать для сравнения и выбора углеродных наночастиц с определенными токсическими и антиоксидантными характеристиками», -- рассказала Екатерина Ковель, одна из участниц исследования, аспирант Красноярского научного центра СО РАН.
Таким образом, биолюминесцентные методы, используемые красноярскими биофизиками, позволяют изучать токсичные и антиоксидантные эффекты нанормазмерных материалов.
Главный редактор: Лепухов Д. Электронная почта редакции сетевого издания: web kgtrk. Телефон редакции сетевого издания: 391 243-19-61.
Красноярские ученые использовали наноалмазы для выявления фенола в воде 14 марта 2018 441 Красноярские ученые использовали наноалмазы для выявления фенола в воде Сегодня, 14 марта, Красноярский научный центр Сибирского отделения Российской Академии наук ФИЦ КНЦ СО РАН сообщил об открытии местных ученых. Экспериментально доказано, что детонационные наноалмазы можно использовать для выявления фенолов в воде.
Открытие позволит проводить оперативный мониторинг загрязнения окружающей среды.
Красноярские ученые создали новый нанокомпозитный 2D-материал
Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. Ученые «Енисейской Сибири» с коллегами-исследователями Красноярского научного центра СО РАН и Красноярского государственного медицинского университета разработали магнитный наноскальпель для адресной и малоинвазивной микрохирургии трудноизлечимых опухолей. В лечении переломов ученые используют доработанные специалистами наночастицы и слабые магнитные поля, приводит ТАСС слова руководителя «Биомета», доктора биологических наук Анны Кичкайло. Специалисты Красноярского научного центра СО РАН разработали на основе нановолокон и наноалмазов материал, способный легко обнаруживать загрязняющие вещества в сточных водах промышленных предприятий. Наночастицы золота с единственными в своем роде спектральными характеристиками в ближней инфракрасной области разработали красноярские ученые. Коллектив красноярских ученых разработал именно такой метод обнаружения фенола в промышленных сточных водах. Он основан на использовании композитного материал, состоящего из нановолокон оксида алюминия и детонационных наноалмазов.
Красноярские ученые предлагают проверять воду на яд наноалмазами
Главная Новости Наука Красноярские ученые научились находить яды в воде с помощью наноалмазов. Сейчас ученые подбирают и культивируют наиболее подходящие к условиям среды и живущие в смеси измельченных руд с водой штаммы. Красноярские ученые придумали новый способ лечения онкологических заболеваний с использованием наночастиц золота, сообщает ТАСС. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде.
Ученые из Сибири создали светящийся материал на основе наноалмазов
Чтобы представить это — для сравнеиния — человеческий эритроцит, красная клетка крови, имеет размер примерно 6-7 тысяч нанометров. Подробности в видеоинтервью ниже и программе «Популярная наука». Нашли ошибку в новости? Сообщите свою новость.
Ученые Сибирского федерального университета СФУ и Красноярского научного центра СО РАН разработали технологию получения магнитных наночастиц ферригидрита для использования в биомедицине. Об этом сообщили в пятницу в пресс-службе СФУ.
В сообщении говорится, что ферригидрит образуется в процессе жизнедеятельности бактерий и располагается на поверхности клеток в виде скоплений нанозерен.
Когда они добираются до нужных клеток тела, исследователи включают магнитное поле, и рецепторы клетки принимают сигнал о начале регенерации — процесса восстановления тканей. Наночастицы вводятся пациенту шприцом — это обычный укол, добавила Анна Кичкайло.
Когда доработанные наночастицы достигают нужных клеток, включается слабое переменное магнитное поле, и рецепторы клетки начинают принимать сигнал о начале регенерации от наночастиц.
Как пояснила ученый, пациенту просто надо будет делать укол с лекарством, в котором доработанные наночастицы. Таким образом, они и будут заниматься всей работой как доктора.
Сибирские учёные разработали новый композит из нановолокон и наноалмазов
Использование таких тестов делает оценку токсичности и антиоксидантной активности крайне простой и быстрой. Если свечение в эксперименте уменьшается, то образец токсичен, так как он подавляет клеточные процессы и замедляет биохимические реакции, отвечающие за него. Если после помещения наноматериала в растворы токсикантов окислительной природы, происходит активизация биолюминесценции, это говорит о проявления антиоксидантных свойств и детоксикации среды. Используя биолюминесцентные тесты, учёные выяснили, что токсичность и антиоксидантная активность фуллеренолов зависит от количества присутствующих в них кислородсодержащих заместителей. Если в структуре фуллеренола имеется много таких заместителей, то он проявляет большую токсичность и слабую антиоксидантную активность. Уменьшение количества заместителей снижает токсичность и увеличивает антиоксидантную активность фуллеренола. К примеру, они рассмотрели модифицированную молекулу фуллеренола с внедрённым внутрь атомом гадолиния и большим количеством кислородосодержащих заместителей. Препараты гадолиния перспективны для диагностики онкологических заболеваний благодаря особым парамагнитным свойствам этого металла. Однако токсичность таких лекарств является проблемой для их использования.
При полной или частичной перепечатке текстовых материалов в Интернете гиперссылка на www. Для лиц старше 16 лет. Учредитель — Федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания».
Доставку терапевтических наночастиц к опухоли осуществляют специальные молекулы. Под воздействием лазерного облучения частицы нагреваются и разрушают злокачественную ткань опухоли, оставляя здоровые ткани нетронутыми. Метод подходит для случаев, когда хирургическое удаление опухоли является сложной задачей", - сообщили в Красноярском научном центре.
Сразу после его появления материал окрестили «искусственной кожей». В состав «Коллахита» входит коллаген — его получают из кожи крупного рогатого скота — и хитозан, один из самых распространенных биополимеров в мире. Его, в частности, синтезируют членистоногие и пчелы. Сейчас группа ученых под руководством профессора Большакова сосредоточена на исследовании в области биоинженерии — восстановление поврежденного спинного мозга с помощью биополимерных матриц. В чем суть разработки? Ученые создали технологию тканевой инженерии спинного мозга, в которой искусственно полученные матрицы соединяются с готовыми каналами для роста нервных клеток и самими клетками, получившими программу формирования нервной ткани. Как именно это работает, можно увидеть: Каковы перспективы практического применения? Пока технология прошла испытания только на крысах — исследования подтвердили, что вживление биополимерной матрицы в спинной мозг животного действительно позволяет вернуть конечностям чувствительность и способность к движению. Для начала клинических исследований нейрональный продукт должен пройти экспериментальную и доклиническую экспертизу на предмет эффективности и безопасности использования индуцированных стволовых клеток человека. Только в этом случае проект получит средства для дальнейшей работы — для этого требуется около 800 млн. Светящийся белок в противоопухолевой терапии Лаборатория фотобиологии Института биофизики СО РАН является одной из ведущих в мире по исследованиям в области биолюминесценции способности живых организмов светиться. Старт этому направлению дал красноярский академик Иосиф Гительзон. Красноярские ученые впервые обнаружили и клонировали гены ряда светящихся белков морских беспозвоночных и создали эффективные конструкции, позволяющие получать эти белки в неограниченных количествах с помощью бактерий и клеток насекомых. Применение биолюминесцентного белка в диагностике дает возможность наблюдать, как помеченные белком клетки взаимодействуют с другими тканями подопытного животного.
Биолюминесцентные тесты откроют дорогу наноматериалам в медицину
Ученые из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов. Красноярские ученые придумали новый способ лечения онкологических заболеваний с использованием наночастиц золота, сообщает ТАСС. Красноярские ученые создали технологию переработки рыбных костей, внутренностей и чешуи, способную стать одним из звеньев замкнутой системы жизнеобеспечения человека во время пребывания в космосе. Красноярские ученые разработали способ разрушения раковых клеток с помощью наночастиц золота, сообщили в понедельник в пресс-службе Красноярского научного центра Сибирского отделения Российской а. и электро- катализе, а также использовать в литиевых, магниевых, алюминиевых. Красноярские ученые разработали безопасный для окружающей среды метод переработки древесины березы в наноцеллюлозу и другие ценные химические продукты.
Покрытые крахмалом магнитные наночастицы помогут в очистке биомедицинских молекул
Красноярские ученые научились выращивать нанокристаллы с заданной формой | Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов. |
Красноярские ученые предложили использовать наноскальпели в борьбе с раком | Наука Вещества 29.10.2021, 19:35 Многоразовый композит из нановолокон и наноалмазов поможет выявить токсины в воде Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов. |
Ученые из Красноярска разработали способ разрушения раковых клеток наночастицами золота | Учёные из Красноярского научного центра и Сибирского государственного университета создали новый вид биоразлагаемого пластика, который разлагается в лесной почве всего за семь месяцев. |
Красноярские учёные разработали уникальный способ анализа воды - Столица 24 | Красноярские ученые создали технологию переработки рыбных костей, внутренностей и чешуи, способную стать одним из звеньев замкнутой системы жизнеобеспечения человека во время пребывания в космосе. |
Наноалмазы «в шубе»
В микроэлектронике можно покрывать детали на микросхемах, защищать их от различных воздействий. Пленка может стать и основой гибких гаджетов. Физики отмечают, потенциал нового материала раскрыт не до конца. Исследователи планируют продолжить изучать свойства графена со встроенными в него наноалмазами, но технологию уже можно масштабировать и внедрять в производство.
Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой.
Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров. Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН. Новости по теме Все новости 22.
Об этом сообщает журнале Scientific Reports издательства Nature. Для того, чтобы заставить наноалмазы испускать свет, необходимо мощное магнитное поле, которое проблематично создать в обычных условиях. Углеродные нанотрубоки обладают свойством многократного усиления магнитного поля на микроуровне — и это свойство используется в полученном композите. Новый материал способен светиться в слабом электрическом поле голубым светом, что предполагает его использование в качестве источника освещения. Например, светодиоды не умеют излучать голубой цвет, и нужного оттенка приходится добиваться с помощью покрытия люминофором трех светодиодов RGB. И хотя Нобелевская премия 2014 года была присуждена именно за создание светодиода с голубым излучением, до промышленного применения технологии еще далеко.
Ученые отмечают, что адресная доставка по сравнению с традиционными методами введения лекарств позволит снизить дозу вводимого вещества и минимизировать его побочное действие на организм. Полученные результаты исследования опубликованы в журнале Physics of the Solid State. Источник: ТАСС.