Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими.
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот. Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема.
Доказательство суперсимметрии полностью изменит наше понимание Вселенной
Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений.
Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.
Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон.
Вопрос в том, что если какой-то аспект нашего мира не такой грубый, как Земля, но какой-нибудь незаметный, вроде поля Хиггса прячет от нашего взора суперсимметрию по всей Вселенной? Что тогда?
Оказывается, что довольно легко получить такой же мир, как наш, где суперпартнёры известных части существуют, просто стали тяжелее — слишком тяжёлыми для того, чтобы мы обнаружили их в экспериментах. Вы видите, что нарушение суперсимметрии то, что она прячется и её нелегко обнаружить увеличило масштаб масс всех суперпартнёров так, что вся массовая шкала находится выше массы верхнего кварка. И это не так искусственно или глупо, как кажется — математика с готовностью принимает этот эффект. Существует множество точных примеров того, как это может произойти — но их слишком много для того, чтобы мы догадались, какой из них наиболее вероятен.
И это не единственная схема, способная возникнуть при нарушении суперсимметрии! Существует большое количество других возможностей, которые я буду называть вариантами суперсимметрии. Но представленный мною вариант — наиболее популярный среди теоретиков и экспериментаторов, особенно в Европе в США он менее популярен, про другие места я не знаю. Этой популярности есть веские причины; оказывается, что существует несколько независимых способов получить схему, сходную с этой.
Однако популярность всегда порождает предвзятость, а нам необходимо рассматривать все возможности, не делая предположений касательно этих аргументов. Но если суперпартнёры очень массивные, не может ли получиться так, что мы не сможем произвести ни одного из них в ближайшие десятилетия или даже столетия? Не занимаемся ли мы подсчётом количества ангелов, способных уместиться на кончике иглы? Из всего вышеизложенного пока действительно следует, что такой риск существует.
Однако есть и более тонкий аргумент в пользу наличия суперсимметрии, благодаря которому у многих физиков есть надежда на то, что все эти суперпартнёры находятся в пределах досягаемости Большого адронного коллайдера. Это следует из того факта, что суперсимметрия решила бы проблему иерархии — одну из величайших загадок нашего мира. Проблема иерархии Важным свойством природы, ставящим в тупик учёных, а в их числе и меня, является свойство иерархии — огромной разницы между свойствами слабого ядерного взаимодействия и гравитации. Эту иерархию можно описать несколькими разными способами, каждый из которых упирает на одно из её свойств.
Например: Масса мельчайшей возможной чёрной дыры определяет то, что известно, как планковская масса. В связи с этим существует огромная иерархия масштабов массы между слабым ядерным взаимодействием и гравитацией. Сталкиваясь с таким огромным числом, как 10 000 000 000 000 000, десять квадриллионов, физики естественным образом задают вопрос: откуда оно взялось? И у него может быть довольно интересное объяснение.
Но пытаясь найти это объяснение в 1970-х, физики увидели существование серьёзной проблемы, даже парадокса, скрывающегося за этим числом. Эта проблема, известная сейчас, как проблема иерархии, связана с размером ненулевого поля Хиггса, которое в свою очередь определяет массу частиц W и Z. Но оказывается, что из квантовой механики следует, что такой размер поля Хиггса нестабилен, это нечто вроде аналогия неполная! Из известной нам физики, из квантового дрожания, вроде бы следует, что для поля Хиггса должно существовать два естественных значения — по аналогии с двумя естественными местами для вазы, либо твёрдо стоящей на столе, либо валяющейся разбитой на полу.
И получается, что поле Хиггса вроде бы должно быть либо нулевым, или оно должно быть сопоставимым по размеру с планковской энергией, в 10 000 000 000 000 000 больше наблюдаемого значения.
Это глобальная симметрия — она не зависит от координат пространства-времени. Киральная симметрия скомбинирована из двух различных симметрий, одна из которых — симметрия взаимодействия адронов относительно преобразований в группе частиц с очень похожими свойствами в так называемом изотопическом пространстве , другая — так называемая внутренняя чётность, которая характеризует поведение волновой функции частицы при инверсии пространственных координат. Нарушение киральной симметрии приводит к появлению связанных фермионов, подобно куперовским парам в сверхпроводниках. Когерентность — согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов. Мезоны от греч. Существует множество мезонов с самой разной массой, временем жизни, квантовыми характеристиками, заряженных и нейтральных. Все мезоны состоят из кварка и антикварка.
Фермионы — частицы, подчиняющиеся принципу Паули: два фермиона не могут одновременно находиться в одном квантовом состоянии. К фермионам относятся нуклоны, нейтрино, кварки и другие частицы с полуцелым спином. Названы в честь Э. Ферми, который одновременно с П. Дираком исследовал их свойства. Бозоны — частицы с нулевым или целым спином. В отличие от фермионов в одном квантовом состоянии может находиться любое количество бозонов. Названы в честь Д.
Бозе и А. Эйнштейна, рассмотревших их свойства. Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны. Глюоны от англ. В отличие от нейтральных фотонов — переносчиков электромагнитного взаимодействия — глюоны несут цветовой заряд и поэтому непосредственно взаимодействуют между собой. Барионы от греч. Барионы участвуют во всех фундаментальных взаимодействиях — сильном, слабом, электромагнитном и гравитационном. Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, —1 у антибарионов и 0 у всех остальных частиц.
Читайте в любое время о — они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы. Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково. Но оказалось, что первый распад происходит примерно на 10 процентов чаще. Источник Доказательство суперсимметрии полностью изменит наше понимание Вселенной Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам.
На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть.
Несколько лет назад я уже писал в статье " Суперсимметрии не существует " про то, что группа физиков из Йельского университета изучила форму распределения заряда электрона с беспрецедентной точностью, чтобы показать, что его форма представляет собой идеальную сферу. Однако отказаться и лишить смысла десятилетия работ и развития ведущих современных теорий, которые оказались ошибочными не так-то просто и в этот раз физики увеличили точность измерений ещё в 2.
Это космологический парадокс, поскольку, согласно исследованиям, в первые мгновения своего существования Вселенная должна была содержать примерно равное количество материи и антиматерии, которые должны были взаимно аннигилировать. Одно из возможных объяснений того, почему Вселенная до сих пор существует и в ней почти нет антиматерии — гипотеза, что свойства частиц материи и антиматерии не являются полностью симметричными". Эта гипотеза очередной раз не подтвердилась, что влечёт за собой отказ от теории Большого Взрыва. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. А это, согласитесь, огромный и практически основной пласт современной астрофизики. Но и это ещё не всё. Виртуальные частицы вакуума - электроны и позитроны, на которые тот должен постоянно распадаться и схлопываться назад, должны были бы вносить изменения в форму зарядов исследуемых электронов. Но этого не обнаружено, как и самих виртуальных частиц вакуума. А на этой гипотезе тоже уже успели понастроить различных теорий и предположений.
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Суперсимметрия, казалось бы, объясняет многое в физике элементарных частиц. Но проблема в том, что ничего из того, что предсказали теоретики, в эксперименте не обнаружилось. Поэтому сейчас мы наблюдаем «кризис суперсимметрии». Несмотря на большое количество идей и публикаций, никто не знает, существует ли суперсимметрия и если да, то где ее искать.
Может быть, необходима энергия в 10 раз большая, чем на LHC, а может быть — в 100 раз, а может быть, суперсимметрии вообще не существует. В конце 1990-х выяснилось, что у разных типов нейтрино разные массы. В действительности это высказывание не очень аккуратно.
Более аккуратно физики говорят, что каждый тип нейтрино электронное, мюонное и тау представлен квантово-механической смесью трех массовых состояний — или, упрощая, смесью трех частиц. Мы пытаемся разобраться, как реально все устроено. Сначала мы производим нейтрино — хорошо сфокусированный протонный сгусток сбрасывается на мишень, из мишени вылетают пи-мезоны, которые при распаде рождают мюоны и нейтрино.
После выхода из распадного тоннеля мюоны останавливаются, а нейтрино пролетают 800 км под землей, и маленькая часть из них регистрируется детектором. Поскольку каждое нейтрино состоит из «частиц» с разными массами, которые двигаются с разными скоростями, то после пролета большого расстояния квантовомеханическое смешивание приводит к изменению типа нейтрино, осциллирующему с расстоянием. Это называется нейтринными осцилляциями.
Цель нашего эксперимента — посмотреть, какое количество разных типов нейтрино мы реально регистрируем, разобраться с их массовыми состояниями и выяснить, как они смешиваются. Они же «бесплатные». Сейчас мы используем уже очень большой детектор — 14 килотонн, но поскольку взаимодействие нейтрино с веществом очень слабое, только очень маленький процент частиц регистрируется даже в таком большом детекторе.
Его стоимость оценивается примерно в 3 млрд долларов. Сейчас мы находимся на этапе разработки проекта. LBNЕ подразумевает создание и установку детектора в 40 кт на глубине по 1,5 км и увеличение мощности пучка, с помощью которого производятся нейтрино, с 700 кВт до 1,2—2 МВт.
Это огромная мощность! И вся эта мощность сконцентрирована в мишени для производства нейтрино, которая представляет собой маленький цилиндр длиной порядка метра и диаметром сантиметр. При этом пучок сфокусирован в еще меньший размер, то есть плотность энергии еще выше.
Параметры пучка и мишени выбраны так, что мишень находится на грани взрыва. Чем больше энергия, тем больше «открывательная» способность. Но максимальная энергия ограничена размерами ускорителя.
Хотя intensity frontier эксперименты не могут доставить такую же детальную картину, как energy frontier, они могут видеть эффекты, которые недоступны экспериментам в energy frontier, проводя измерения редких процессов с очень высокой точностью. LHC успешно работает, и сейчас обсуждается возможность строительства установки еще большего размера. На данном этапе определенности нет, все упирается в стоимость.
Решение может быть принято как через 5 лет, так и через 50. Для понимания: мы говорим про установки, стоимость которых колеблется в пределах от 5 до 20 млрд долларов и которые потребляют 0,5—1ГВт. Даже по меркам физики высоких энергий — это огромные затраты.
Если мы делаем машину на порядок больше по энергии, то потребляемая мощность и стоимость будут в три-четыре раза выше. Гигаватт энергии расходует солидный город. А стоимость также зависит от того, что учитывать.
В американской системе подсчета, которая учитывает все, стоимость будет раза в два больше, чем в европейской. В CERN финансирование фиксировано правительствами европейских стран. На этот бюджет они ничего заметно большего, чем LHC, построить не могут.
Наш лучший кандидат сегодня носит имя M-теории. Революция струн Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн энергетических трубочек. Новый способ осмысления фундаментальных составляющих природы привел к решению многих теоретических проблем. Прежде всего, отдельное колебание струны можно интерпретировать как гравитон. И в отличие от стандартной теории гравитации, теория струн может описывать его взаимодействия математически и не получать странных бесконечностей.
Значит, гравитацию можно будет включить в объединенную структуру. После этого волнительного открытия физики-теоретики приложили много усилий, чтобы осознать его последствия. Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений. Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн.
Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион. Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений.
Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования.
Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает.
Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия.
Нужно разделять теорию — феноменологию частиц и теорию струн, чье отношение к "реальной физике" пока не до конца определено. Есть огромное число моделей, которые никак с ней не связаны, и многие практические вопросы тоже ее не затрагивают и не зависят от нее.
Ожидает ли нас такая же революция, сопоставимая по масштабам с созданием квантовой физики? В каком-то смысле современная ситуация и то, что происходило в конце 19 века, очень похожи друг на друга. В то время мы достигли пределов классической физики, но еще не начали замечать квантовых эффектов. Всем казалось, что фундаментальная наука закончилась, и что остались лишь различные мелочи и прикладная физика. Но потом появился Планк и его открытия, и ситуация резко изменилась. Можно ли ожидать какого-то эпохального открытия в экспериментальной физике или, что не менее важно и возможно, в космологии? Не стоит забывать, что космос — это гигантская лаборатория по изучению физики частиц на самых высоких энергиях.
Вполне возможно, что гравитационные волны помогут нам заглянуть в самые ранние эпохи жизни Вселенной, когда она еще не была прозрачной для света. Может быть, наши коллеги найдут там что-то, что перевернет не только космологию, но и выведет физику частиц на новый уровень. Как показывают примеры темной материи и темной энергии, проблемы макро- и микромира неразрывно связаны между собой. Есть, конечно, и более пессимистический сценарий — не исключено и то, что мы просто достигли пределов человеческого знания и способности познавать мир. Кто-то из великих физиков, кажется, Леонард Сасскинд, любит говорить, что коту можно объяснять квантовую механику до посинения, но он никогда не поймет, как решать уравнение Шредингера. Мне вот кажется, что котик просто отлично понимает, что его покормят колбаской и без всякого уравнения Шредингера. Лично я, как простой советский человек, усердно конспектировавший "Материализм и эмпириокритицизм", верю в бесконечность познания и неисчерпаемость наших возможностей расширять пределы науки.
К сожалению, этого не произошло и не понятно, произойдет ли в будущем. Вероятность этого, на мой взгляд, крайне мала, но экспериментаторы скрипят зубами, но продолжают эти поиски. Что касается гравитационных волн от астрофизических черных дыр, ситуация тут сложнее, так как эти волны больше касаются классической физики, нежели квантовой гравитации. Могут ли они дать нам что-то принципиально новое в смысле обобщений теории гравитации, я не знаю. Их изучение было бы интересным, однако тут мы столкнемся с теми же ограничениями и проблемами, которые накладываются теорией струн и отсутствием надежных предсказаний. Схема ускорительного комплекса проекта NICA К примеру, если попытаться оценить космологическую постоянную Эйнштейна из соображений размерности — она обратно пропорциональна квадрату планковской длины, то у нас получится значение, на 120 порядков превышающее то, что мы наблюдаем в реальности. Это, как часто говорят, худшее предсказание теоретической физики за всю ее историю.
Почему это так, и почему космологическая постоянная так мала, но не равна нулю, мы не знаем, и это еще одна из демонстраций того, что теоретическая физика высоких энергий находится в кризисе. Кстати, в этом году Кумрун Вафа, знаменитый физик-теоретик из Гарвардского университета, и его коллеги опубликовали работу, из которой вроде бы следует, что теория струн не совместима с существованием космологической модели с положительной космологической постоянной.
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией
Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает. особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация.
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией
Однако в соответствии с квантовой механикой это попросту означает, что среднее время жизни протона таково. Раз протоны вообще могут распадаться, значит, это может происходить и быстро — просто быстрые распады будут событиями редкими. В каждой молекуле воды 10 протонов, а в каждом литре воды около 1025 молекул воды. Поэтому вместо того, чтобы ждать 1031 лет, дабы увидеть распад одного протона, мы можем следить за огромным объемом воды, ожидая, пока распадется один из тамошних протонов. Подобные эксперименты проводятся с середины 1980-х годов, но еще никто не засек распада протона. Текущие наблюдения а точнее, отсутствие оных намекают на то, что среднее время жизни протона больше 1033 лет.
Так что SU 5 -модель Великого объединения исключается. Следующей была предложена группа побольше — SO 10 , в этой модели объединения верхняя граница для времени жизни протона проходит повыше. С тех пор опробованы были еще несколько групп симметрии, и в некоторых моделях верхняя граница для времени жизни протона сдвинута аж до 1036 лет, что на порядки превышает даже возможности будущих экспериментов. Помимо распада протона теории Великого объединения также предсказывают существование новых частиц, поскольку крупные группы содержат больше, чем есть в Стандартной модели. Предполагается, как обычно, что эти новые частицы слишком тяжелые, поэтому пока и не могли быть замечены.
Таким образом, сейчас у физиков-теоретиков есть широкий ассортимент теорий объединения, застрахованных от опровержения на основании экспериментов в обозримом будущем. Само по себе Великое объединение между тем не решает проблемы с массой бозона Хиггса. Физикам приходится еще и суперсимметризовать Великое объединение. Мы знаем, что суперсимметрия — если это суперсимметрия природы — должна нарушаться при энергиях выше тех, что нами пока достигнуты, ведь мы еще не засекли суперсимметричных частиц. Но мы так пока и не знаем, при какой энергии симметрия восстанавливается — и происходит ли это вообще.
Аргумент, согласно которому суперсимметрия должна придать массе бозона Хиггса естественность, подразумевает, что энергия, при которой суперсимметрия нарушается, на Большом адронном коллайдере должна быть уже достигнута. Добавление суперсимметрии к Великому объединению не только еще больше увеличивает число симметрий — дополнительное преимущество в том, что это приводит к небольшому продлению времени жизни протона. Так, некоторые варианты суперсимметричной SU 5 -модели и поныне держатся на грани жизнеспособности. Тем не менее основная причина для добавления суперсимметрии заключается в числовом совпадении, которое мы обсуждали в четвертой главе, — в объединении констант взаимодействий см. Кроме того, теории Великого объединения имеют более строгую структуру, чем Стандартная модель, что добавляет им привлекательности.
Скажем, теория электрослабого взаимодействия — это объединение неудовлетворительное, потому что в ней все еще есть две разные группы симметрии, U 1 и SU 2 , и две соответствующие константы взаимодействий. Две эти константы связаны параметром, который носит название «слабый угол смешивания», и в Стандартной модели его значение должно определяться экспериментально. При экстраполяции в область низких энергий это согласуется с экспериментальными данными. Многие физики думают, что эти числа не могут быть случайностью. Мне так часто говорили, что они просто обязаны что-то означать, что я и сама иногда верю, будто это так.
Есть, правда, несколько «но», о которых вам следует знать. Что самое важное: насколько точно константы взаимодействий сходятся к одному значению, зависит от энергии, при которой нарушается суперсимметрия. Если эта энергия выше примерно 2 ТэВ, схождение в одну точку начинает ухудшаться.
Суперсимметрия — это сопряженная симметрия пространства и времени. Ее можно интегрировать с теорией относительности Эйнштейна для предоставления полной информации о законах природы. Теория струн гласит, что вместо частиц, Вселенная состоит из микроскопических струн. Такая точка зрения может заменить нынешнее объяснение об устройстве Вселенной, Стандартной модели, разработанной в 1970-х годах, но в ней есть пробелы, которые включают гравитацию.
Эксперимент заключался в беспрецедентно детальном изучении распада Б-мезонов, возможном сегодня только на LHC. По данным команды "Теватрона" и еще нескольких других ускорительных лабораторий, на ход наблюдаемого ими распада Б-мезонов, возможно, влияло присутствие суперсимметричных частиц. Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил. Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде. Один из участников команды LHC профессор Джордан Нэш из Имперского Лондонского колледжа, комментируя результаты "Красотки LHC", заявил: "Это означает, что либо мы не полностью понимаем происходящее, либо суперчастицы неамножко другие, чем мы о них думаем, либо их нет вообще".
Основная теорема показывает, что для каждого собственного состояния одного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией. Этот факт можно использовать для вывода многих свойств спектра собственных значений. Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам. Можно представить «бозонный гамильтониан», собственными состояниями которого являются различные бозоны нашей теории. А SUSY-партнер этого гамильтониана будет «фермионным», а его собственными состояниями будут фермионы теории.
У каждого бозона будет фермионный партнер с равной энергией. Суперсимметрия в физике конденсированного состояния[ править править код ] Концепции SUSY оказалась полезной для некоторых применений квазиклассических приближений. Кроме того, SUSY применяется к системам с усредненным беспорядком, как квантовым, так и неквантовым посредством статистической механики , уравнение Фоккера — Планка — это пример неквантовой теории. Использование метода суперсимметрии обеспечивает математически строгую альтернативу методу реплик , но только в невзаимодействующих системах, который пытается решить так называемую «проблему знаменателя» при усреднении по беспорядку.
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии
Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.
Откройте свой Мир!
На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее.
Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее.
Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса.
Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.
Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн.
Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года.
К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя.
Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия. Ждем запуска.
В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория. Однако Тара Шиарс отказалась полностью отвергнуть теорию Суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение.
На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит к последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение недостатка энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц.
По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.
Теория суперсимметрии SUSY предполагает, что у всех известных элементарных частиц существуют «двойники» - суперсимметричные частицы, которые «родились» вместе с «обычными» частицами в момент Большого взрыва. Затем суперсимметричные частицы стали намного тяжелее обычного вещества и распались, а их «остатки» образовали «темную материю», из которой почти на четверть состоит Вселенная.
Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. В экспериментах на коллайдере ученые рассчитывают увидеть рождение суперсимметричных частиц, которые пока не были обнаружены ни в одном эксперименте. Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов.
Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными.
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер.
Суперсимметрия и суперкоординаты
Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения.