Легендарная советская торпеда ВА-111 "Шквал" произвела революцию в подводной гонке вооружений, развив беспрецедентную скорость в 200 узлов (370 км/ч) благодаря ракетному. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. При разработке ракеты-торпеды «Шквал» исследователи благодаря кавитации сумели избавиться от сопротивления воды, мешающего кораблям.
Эксперты NI: торпеда «Шквал» полностью меняет тактику морского сражения
Модернизация торпед включена в госпрограмму вооружений 2018-2025 годов. Алиев отметил, что в России создаются и другие самодвижущиеся боевые снаряды, например, мини-торпеды типа «черепаха» скорость изделий не превысит шести километров в час , которые почти невидимы и не слышны. Это фантастическая вещь, это качественно другая идеология, — сказал Алиев. То есть, по сути, их не смогут идентифицировать гидроакустические системы вероятного противника.
Снаряд утоплен в гильзу с пороховым зарядом на большую часть своей длины, благодаря чему общая длина патрона соответствует обычному автоматному боеприпасу калибра 5,45 миллиметра. Пуля патрона ПСП имеет на кончике плоскую площадку. При движении под водой эта площадка создает кавитационную полость вокруг снаряда.
Благодаря такой особенности эффективная дальность стрельбы АДС под водой на глубине пяти метров составляет 25 метров. Помимо специальных патронов, автомат способен вести огонь и обычными боеприпасами. АДС может быть оснащен глушителем.
Скорострельность АДС на суше составляет 800 выстрелов в минуту, а прицельная дальность — 500 метров. Оружие оснащается отъемным коробчатым магазином емкостью 30 патронов. Он изменяет работу механизма перезарядки, адаптируя его для работы на воздухе или в воде.
Без раздельных режимов механизм перезарядки в воде могло бы заедать. Обычное современное оружие также способно вести огонь под водой, но для этих целей малопригодно. Во-вторых, материалы сухопутных автоматов и пистолетов изначально не предназначены для работы в водной среде и неустойчивы к длительному ее воздействию — быстро теряют смазку, ржавеют и выходят из строя из-за гидравлических ударов.
При этом обычные пули, имеющие высокую точность на суше, в воде становятся абсолютно бесполезными. Дело в том, что аэродинамическая форма обычной пули делает траекторию ее полета в воде малопредсказуемой. Например, на границе теплого и холодного водных слоев пуля может рикошетить, отклоняясь от продольной оси выстрела.
Кроме того, из-за своей формы снаряд стрелкового оружия под водой быстро теряет свою энергию, а значит и убойность. В результате поражение цели из того же автомата Калашникова в воде становится практически невозможным даже на очень маленьком расстоянии. Наконец, обычные свинцовые пули с оболочкой из томпака латунный сплав на основе меди и никеля под водой быстро деформируются и даже могут разрушаться.
Проблему разрушающихся пуль решила норвежская компания DSG Technology. Она разработала новый тип боеприпасов CAV-X. Они имеют не классическую оживальную форму, как обычные пули, а коническую.
Кончик пули уплощен и при попадании в воду начинает выполнять роль кавитатора, благодаря чему вокруг снаряда образуется кавитационная полость. В результате пуля практически не соприкасается с водой и дольше сохраняет кинетическую энергию. Кавитирующие пули сделаны из вольфрама и запрессованы в латунную гильзу.
Сегодня они выпускаются в калибрах 5,56, 7,62 и 12,7 миллиметра. По данным DSG Technology, под водой кавитирующие пули этих калибров сохраняют убойное воздействие на дальности 14, 22 и 60 метров соответственно. При этом кавитирующими могут быть выполнены и боеприпасы других калибров вплоть до артиллерийских 155 миллиметров.
Носитель, на котором она находится, обнаружив вражеский корабль, производит обработку всех характеристик: направление и скорость движения, расстояние. Вся информация заносится в автопилот самодвижущейся мины. После пуска она начинает движение строго по заранее рассчитанной траектории. У торпеды отсутствуют система самонаведения и корректировки заданного курса. Этот факт с одной стороны является преимуществом, а с другой — недостатком. Никакие помехи, встретившиеся на пути, не помешают «Шквалу» отклониться от заданного курса. Он на громадной скорости стремительно приближается к цели, и у противника не остается ни малейших шансов на совершение маневра. Но если вдруг вражеское судно неожиданно изменит направление своего движения, то цель не будет поражена.
Описание устройства и двигателя При создании высокоскоростной ракеты использовались фундаментальные исследования российских ученых в области кавитации. Реактивный двигатель сверхзвуковой торпеды «Шквал» состоит из: Стартового ускорителя, используемого для разгона торпеды. Он работает четыре секунды, используя жидкое топливо, а потом происходит отстыковка. Маршевого двигателя, доставляющего мину к цели. В качестве топлива применяются гидрореагирующие металлы — алюминий, литий, магний, которые окисляются забортной водой. Это происходит за счет специального кавитатора, расположенного в носовой части и вырабатывающего водяные пары. Позади него находится ряд отверстий, через которые от газогенератора проходят порции газа, что позволяет пузырю охватить полностью весь корпус торпеды. Системой управления и наведения судна при обнаружении вражеского объекта обрабатывается скорость, расстояние, направление движения, после чего данные отправляются в независимую систему наблюдения.
Автоматическое наведение на цель у торпеды отсутствует, поэтому ей ничто не мешает достигнуть цели. Она строго выполняет ту программу, которую ей задал автопилот.
Таким образом, разница в скорости огромна и, следовательно, может увеличить риски для крупных надводных кораблей и подводных лодок ВМС США, стремящихся избежать обнаружения. Учитывая эту разницу, технологический скачок вперед, заложенный в суперкавитационных торпедах, действительно кажется чрезвычайно значительным. США уже пора задаваться вопросом, как этого можно достичь. Очевидно, что двигательная установка включает в себя инновации, меняющие прежнюю парадигму. Торпеда приводится в движение твердотопливной ракетой, способной развивать скорость до 370 километров в час, «создавая оболочку из суперкавитационных пузырей, которые покрывают все оружие тонким слоем газа». Благодаря этому металлическая оболочка оружия избегает контакта с водой, что значительно снижает сопротивление и трение. Угроза Дальность действия «Шквала» также вызывает беспокойство, поскольку она указана на уровне 7000 метров.
Если, конечно, подводные лодки, запускающие торпеды, не были замечены и не были уничтожены до того, как заняли позицию для ведения огня, или просто не смогли обнаружить сверх «тихие» ударные подводные лодки ВМС США и подводные лодки с баллистическими ракетами. Суперкавитация обеспечивается так называемой «газовой полостью», поддерживаемой коническим диском.
В США призвали Пентагон беспокоиться из-за скоростной российской торпеды "Шквал"
Демонстрация макета ракеты-торпеды "Шквал" на салоне в 2007 году стала настоящей сенсацией. Журналисты американского издания The National Interest сообщают, что российская торпеда ВА-111 "Шквал" совершила революцию в подводной войне. ВМС США на данный момент нечем ответить на созданную советскими специалистами торпеду «Шквал», способную двигаться со скоростью в 200 узлов. это суперкавитирующие торпеды, первоначально разработанные Советским Союзом.
Суперкавитирующая торпеда «Шквал»: эффектно, но не эффективно
Одним из самых инновационных подводных вооружений, разработанных Советским Союзом, была суперкавитирующая торпеда ВА-111 "Шквал". Американский военный аналитик Крис Осборн в статье для американского издания 19FortyFive объяснил опасность российской скоростной торпеды ВА-111 «Шквал». Российская скоростная торпеда ВА-111 «Шквал» создает угрозу для кораблей и подводных лодок Военно-морских сил (ВМС) США. Изучая предстоящую статью журнала The National Interest, в центре внимания российская торпеда ВА-111 «Шквал», символ инноваций с момента ее создания в советскую эпоху. Журналисты американского издания The National Interest сообщают, что российская торпеда ВА-111 "Шквал" совершила революцию в подводной войне.
Пуля из пузыря
Для сравнения, обычные торпеды могут развивать скорость от 30 до 70 узлов в зависимости от типа. При разработке ракеты-торпеды «Шквал» исследователи благодаря кавитации сумели избавиться от сопротивления воды, мешающего кораблям, торпедам и подводным лодкам развивать большие скорости. Любой даже обтекаемый объект под водой имеет большое лобовое сопротивление. Кроме того, при движении под водой поверхности объекта смачиваются и на них появляется тонкий ламинарный слой с большим градиентом скорости — от нуля у самой поверхности объекта до скорости потока на внешней границе. Такой ламинарный слой создает дополнительное сопротивление. Попытка преодолеть его, например мощностью двигателей, приведет к увеличению нагрузок на гребные винты и быстрому износу корпуса подводного объекта из-за деформации. Советские инженеры во время экспериментов выяснили, что кавитация позволяет существенно снизить лобовое сопротивление подводного объекта. Ракета-торпеда «Шквал» получила ракетный двигатель, топливо в котором начинает окисляться при контакте с морской водой.
Этот двигатель может разгонять ракету-торпеду до большой скорости, на которой в носовой части «Шквала» начинает образовываться кавитационный пузырь, полностью обволакивающий боеприпас. Образованию кавитационного пузыря способствует специальное устройство в носовой части ракеты-торпеды — кавитатор. Кавитатор на «Шквале» представляет собой наклоненную плоскую шайбу, в центре которой размещено отверстие для забора воды. Через это отверстие вода поступает в двигательный отсек, где происходит окисление топлива. На краях же шайбы кавитатора и образуется кавитационный пузырь. В этом пузыре ракета-торпеда буквально летит. Модернизированная версия «Шквала» может поражать корабли противника на дальности до 13 километров.
По сравнению с дальностью обычных торпед 30—140 километров это немного, и в этом заключается главный недостаток боеприпаса. Дело в том, что в полете ракета-торпеда издает сильный шум, демаскирующий позицию подлодки, запустившей ее. Ракета-торпеда, летящая в кавитационном пузыре, не может маневрировать. Это вполне понятно: в кавитационной полости боеприпас не может взаимодействовать с водой, чтобы изменить направление. Кроме того, резкая смена траектории движения приведет к частичному схлопыванию кавитационной полости, из-за чего часть ракеты-торпеды окажется в воде и на большой скорости разрушится. Изначально «Шквал» оснащался ядерной боевой частью мощностью 150 килотонн, которую позднее заменили обычной фугасной боевой частью с взрывчатым веществом массой 210 килограммов. Сегодня, помимо России, кавитирующие торпеды имеют на вооружении Германия и Иран.
В 2014 году Технологический институт Харбина представил концепцию подводной лодки, способной перемещаться под водой на около- или даже сверхзвуковой скорости. Разработчики объявили, что такая подводная лодка сможет доплывать от Шанхая до Сан-Франциско около десяти тысяч километров примерно за один час и 40 минут. Перемещаться подлодка будет внутри кавитационной полости. Новый подводный корабль получит кавитатор в носовой части, который будет начинать работать на скорости более 40 узлов. Затем подлодка сможет быстро набрать маршевую скорость.
Сенсацией покормились все газеты мира. Вдоволь пожевало ее и телевидение. Адвокат Поупа лукавил. К чести отечественных информаторов, пополняющих военные сайты, ничего лишнего они о суперторпеде не сообщили. А те сведения, которые есть, никак шпионскими не назовешь. Тактико-технические данные "Шквала" можно найти в любом справочнике вооружений, изданном в последние годы. Познакомимся поближе с Эдмундом Поупом. Паук, распуская сети, в которые ловил информационную рыбешку, не заметил, как угодил в нее сам. С морем Поуп был связан давно. За четверть века дослужился до чина капитана. Выйдя в отставку, он стал "советником по разведке и руководителем службы безопасности" в научно-исследовательском управлении министерства ВМС США. Так что приемы и методы добывания необходимой информации ему были хорошо известны. По каким-то причинам из военного ведомства он перешел в Пенсильванский университет на должность сотрудника лаборатории прикладных исследований. В конце концов он стал президентом компании "Сефр технолоджи Интернейшнл". Даже без перевода ясно, что компания Поупа занималась зарубежными технологиями. Объектом его интересов стала Россия, где бесконтрольность продажи новых технологий существует даже в наглухо закрытых институтах. Для них это соломинка в гибельном водовороте безденежья. Надо отметить, что к торпеде "Шквал" давно уже приглядываются многие "специалисты". Несколько лет назад из России были выдворены британские разведчики с дипломатическим прикрытием, которых тоже интересовала суперторпеда. Канадские и американские спецслужбы пытались купить торпеду в... Киргизии, где на одном из заводов "Шквал" производили. Подбирались "спецы" в области морских вооружений и к одному из режимных украинских НИИ, занимавшихся теми физическими проблемами, которые нашли воплощение в создании уникального подводного оружия. Нас уже давно приучили, что люди, стремящиеся побольше узнать об оружии, должны вызывать подозрение. И в Киргизии, и на Украине у спецслужб случился облом. Паук в этом направлении продвинулся дальше всех. Он будто бы даже пытался заключить контракт на испытание торпеды "Шквал" в своей фирме. Легендой прикрытия Поупа была идея использования "физики" торпеды в строительстве скоростных и сугубо мирных катеров. Но сделка не состоялась — в цене не сошлись. Наши вооруженцы затребовали слишком большую цену за торпеду. Поуп также был готов выступить в роли консультанта при подборе иностранных военных покупателей, "запавших" на "Шквал". Казалось бы, человек не скрывает своего интереса, идет напролом, хватай его за руку — и все. Но тонкость ситуации состоит в том, что торпеда "Шквал"... Она есть уже у Китая, который купил 40 единиц подводного оружия у... Американские военные специалисты считают, что "Шквал" есть имеется у Ирана, и подозревают Россию в секретной сделке.
В задней части торпеды расположены отклоняемые рули. Основную ракету-носитель окружают восемь малых ракет. Главный двигатель включается, когда оружие достигает суперкавитационной скорости», — пишут авторы упоминаемого эссе. Иранский фактор Если российские суперкавитационные торпеды сами по себе в США не вызывают достаточного беспокойства, то Пентагону пора обратить внимание на сообщения Ирана, что его военно-морской флот также имеет такое оружие. В отчете Forbes многолетней давности объясняется, как Иран испытал свою суперкавитационную торпеду Hoot в Ормузском проливе в 2017 году. Изменят ли суперкавитационные торпеды правила игры? Однако, прежде чем кто-либо бросится в преждевременную панику, есть некоторые вещи, которые следует учитывать, когда речь идет о суперкавитационных торпедах. Речь идет о сложностях, связанных с их технологией «наведения» и очень заметным «шумом». Она должна просто пройти свой первоначальный курс.
Обозреватели обратили внимание на способность снаряда развивать скорость до 200 узлов, а также ракетный двигатель и способность торпеды к суперкавитации — режиму движения в воде, при котором вокруг тела образуется заполненная паром полость. Это позволяет значительно снизить сопротивление для быстрого перемещения торпеды в воде. Ядерная боевая часть торпеды компенсировала некоторые недостатки, к которым в издании отнесли высокий шум, малую дальность и небольшую глубину погружения.
Проект ВА-111 "Шквал" - самая быстрая ядерная торпеда в мире, испаряющая воду на своём пути
Газовый пузырь и ракетный двигатель производят достаточно шума, чтобы оглушить встроенную в торпеду систему активного и пассивного гидролокатора. Между тем российские подводные лодки по-прежнему являются единственными на планете, оснащенными суперкавитирующими торпедами, модернизированными версиями "Шквала" с обычной, неядерной, боеголовкой. Промышленность РФ также предлагает экспортную версию "Шквал Э". Иран утверждает, что имеет собственную суперкавитирующую торпеду, которую он называет Hoot, и которая, как предполагается, представляет собой всё тот же "Шквал".
В 2004 году немецкий оборонный подрядчик Diehl-BGT объявил о создании Barracuda, торпедного демонстратора технологий, предназначенного для перемещения со скоростным потолком до 194 узлов. Однако проект так и не смог продемонстрировать ничего вменяемого.
Модификации М-4 — неудачный опытный образец торпеды, испытания прекращены в 1972 г. М-5 — окончательный вариант реактивной торпеды. ВА-111 «Шквал» — базовый вариант комплекса с торпедой М-5, принят на вооружение в 1977 г. ВА-111Э «Шквал-Э» — экспортный варианты комплекса, впервые представлен в 1992 г. Торпеда предположительно может оснащаться системой самонаведения и иметь массу БЧ 350 кг.
СМИ, 17. Судя по всему модернизация будет вестись заводом-изготовителем — то есть ПО «Дагдизель» г. Каспийск, генеральный конструктор — Шамиль Алиев. Технические характеристики.
Как бы то ни было, заявление Бориса Обносова воодушевило и заинтриговало военных аналитиков.
Поясняя вышесказанное, Б. Обносов сказал: «Мы в определённой степени отставали от американцев, от НАТО по торпедному вооружению, так объективно сложилось. Поэтому появление такой торпеды - это очень важный момент, один из узловых по обеспечению неуязвимости наших подводных сил. Естественно, что характеристики изделия окутаны гостайной. Если по скоростным характеристикам, по дальности хода, а главное, по глубине это оружие превосходит западные образцы, может работать на нескольких сотнях метров, то это большой прорыв.
Я так думаю, что эту торпеду ждут на флотах, ждут подводники, а если она унифицированная, то и "надводники"». Долгая дорога в дюнах Надо признать, что идея поставить торпеды на «электрический ход» возникла довольно давно. Виной тому очевидные в прямом и переносном смысле слова недостатки тепловых энергосиловых установок. Их мощность зависит от глубины хода торпеды. Всё дело в том, что по ходу движения торпеды необходимо удалять продукты сгорания во внешнее пространство, то есть в воду.
И чем больше глубина и, соответственно, забортное давление, тем больше энергии уходит на эту работу. В предельных величинах можно достичь такой глубины, на которой вся мощность двигателя будет расходоваться на удаление выхлопа, и торпеда просто остановится. Попутным недостатком тепловых энергоустановок, вытекающим из необходимости удалять продукты сгорания, является видимый на водной поверхности след от движения торпеды. Мощность электрической торпеды, напротив, практически не зависит от глубины хода. Во время движения не изменяется ни её масса, ни положение центра тяжести поскольку не расходуется ни воздух, ни топливо - следовательно, электроторпеда уверенно держит заданный курс.
Как всё начиналось В Советском Союзе первые электроторпеды появились в конце тридцатых годов прошлого века. Тогда они обладали массой недостатков. Затем по ходу развития научно-исследовательских и опытно-конструкторских работ НИОКР наши системы постепенно совершенствовались. Справка К 1942 году советские конструкторы создали электрическую торпеду ЭТ-80. Её батарея из 80 свинцово-кислотных аккумуляторов размещалась в отдельном отсеке, заменившем воздушный резервуар.
В ЭТ-80 применялся биротативный электродвигатель ПМ5-2. Дальность торпеды была 4. Необходимо отметить, что к началу Второй мировой немцы уже имели на вооружении электроторпеду G7e со скоростью 30 узлов и дальностью хода до 5 километров при массе боевой части 300 кг. Кстати, много проблем, тормозящих развитие этого оружия, было связано с аккумуляторами: конструкторы прикладывали гигантские усилия, чтобы создать компактные источники питания большой ёмкости примерно тем же самым занимаются сейчас конструкторы электромобилей. Испытывались магниево-хромовые, цинково-йодистые, сухие электролитические батареи и многие другие.
В результате пригодными для торпед оказались никелево-кадмиевые, серебряно-цинковые батареи и серебряно-магниевые источники тока, в которых электролитом служит морская вода.
Снаряд утоплен в гильзу с пороховым зарядом на большую часть своей длины, благодаря чему общая длина патрона соответствует обычному автоматному боеприпасу калибра 5,45 миллиметра. Пуля патрона ПСП имеет на кончике плоскую площадку. При движении под водой эта площадка создает кавитационную полость вокруг снаряда. Благодаря такой особенности эффективная дальность стрельбы АДС под водой на глубине пяти метров составляет 25 метров.
Помимо специальных патронов, автомат способен вести огонь и обычными боеприпасами. АДС может быть оснащен глушителем. Скорострельность АДС на суше составляет 800 выстрелов в минуту, а прицельная дальность — 500 метров. Оружие оснащается отъемным коробчатым магазином емкостью 30 патронов. Он изменяет работу механизма перезарядки, адаптируя его для работы на воздухе или в воде.
Без раздельных режимов механизм перезарядки в воде могло бы заедать. Обычное современное оружие также способно вести огонь под водой, но для этих целей малопригодно. Во-вторых, материалы сухопутных автоматов и пистолетов изначально не предназначены для работы в водной среде и неустойчивы к длительному ее воздействию — быстро теряют смазку, ржавеют и выходят из строя из-за гидравлических ударов. При этом обычные пули, имеющие высокую точность на суше, в воде становятся абсолютно бесполезными. Дело в том, что аэродинамическая форма обычной пули делает траекторию ее полета в воде малопредсказуемой.
Например, на границе теплого и холодного водных слоев пуля может рикошетить, отклоняясь от продольной оси выстрела. Кроме того, из-за своей формы снаряд стрелкового оружия под водой быстро теряет свою энергию, а значит и убойность. В результате поражение цели из того же автомата Калашникова в воде становится практически невозможным даже на очень маленьком расстоянии. Наконец, обычные свинцовые пули с оболочкой из томпака латунный сплав на основе меди и никеля под водой быстро деформируются и даже могут разрушаться. Проблему разрушающихся пуль решила норвежская компания DSG Technology.
Она разработала новый тип боеприпасов CAV-X. Они имеют не классическую оживальную форму, как обычные пули, а коническую. Кончик пули уплощен и при попадании в воду начинает выполнять роль кавитатора, благодаря чему вокруг снаряда образуется кавитационная полость. В результате пуля практически не соприкасается с водой и дольше сохраняет кинетическую энергию. Кавитирующие пули сделаны из вольфрама и запрессованы в латунную гильзу.
Сегодня они выпускаются в калибрах 5,56, 7,62 и 12,7 миллиметра. По данным DSG Technology, под водой кавитирующие пули этих калибров сохраняют убойное воздействие на дальности 14, 22 и 60 метров соответственно. При этом кавитирующими могут быть выполнены и боеприпасы других калибров вплоть до артиллерийских 155 миллиметров.
В России создадут торпеду-рыбку и торпеду-черепаху
Ракеты-торпеды «Шквал» перед пуском предварительно программируют, исходя из текущей боевой задачи так, чтобы они достигали своей цели. Эти схемы реактивной торпеды "Шквал" можно найти на военных англоязычных сайтах в Интернете. Российская ракета-торпеда ВА-111 «Шквал» устроила настоящую революцию в подводной войне, пишет The National Interest. По словам автора, американские корабли, скорее всего, просто не смогут увернуться от этой торпеды, если до момента запуска «Шквала» не будет заменена подводная лодка. ВА-111 «Шквал» — советский комплекс со скоростной подводной ракетой (ракета-торпеда) М-5[1]. Предназначена для поражения надводных[2] и подводных целей.
В США суперкавитационную торпеду «Шквал» назвали секретным оружием России
Такое мнение выразил военный аналитик и бывший сотрудник американского Минобороны Крис Осборн в статье , опубликованной в издании 19FortyFive. Корабли Приморской флотилии подключились к "операции трёх морей" "Таким образом, разница в скорости огромна, следовательно, это может увеличить риски для крупных надводных кораблей и подводных лодок ВМС США, стремящихся избежать обнаружения", — считает Осборн.
Таким образом, «Шквал» в большей степени ракета, чем торпеда. Это оружие может быть использовано с помощью обычного торпедного аппарата калибра 533 миллиметра без каких-либо переделок. Оно кажется идеальным, но все же имеет как минимум два недостатка. Первый в том, что торпедой невозможно управлять во время движения. Кроме того, нет системы самонаведения. Ракеты-торпеды «Шквал» перед пуском предварительно программируют, исходя из текущей боевой задачи так, чтобы они достигали своей цели. Также стоит учитывать, что движение такой торпеды исключительно прямолинейно. Недостатки не мешают западным экспертом считать ракету-торпеду грозным оружием. За скорость и невозможность защититься от ее удара, «Шквал» получил титул «убийцы авианосцев».
Результат достигается благодаря ракетному двигателю и уникальному явлению суперкавитации. Торпеда превращает воду в пар в передней части, создавая газовую оболочку для уменьшения сопротивления. Однако это также определяет некоторые недостатки, такие как повышенный шум, ограниченный радиус действия и небольшая глубина погружения.
Ведомство хотело проверить боевое оснащение оружия. Пуск показал, что ракету спроектировали верно. Самые важные и оперативные новости — в нашем телеграм-канале «Ямал-Медиа».
Эксперты NI: торпеда «Шквал» полностью меняет тактику морского сражения
Говоря о «Шквале», нужно пояснить, что это не совсем обычная торпеда. В ее основе лежит принцип кавитации, явления, которое можно наблюдать во время движения объектов под водой на высокой скорости. На высоких скоростях, жидкость не смыкается вокруг тела. Тело при этом окружено каверной, заполненной газом или паром. Таким образом сопротивление жидкости стремится к нул ю, а подводный аппарат соприкасается с ней только через кавитатор, устройство, смонтированное в носовой части. Он имеет особую конструкцию, помогающую быть облаку газа или пара более стабильным. Во время такого движения высвобождается значительная энергия, а скорость движения объекта также значительно возрастает. Однако, кавитация отрицательно сказывается на ресурсе основных деталей торпеды, а шум ее винтов становится более заметным для гидроакустических систем. Интересно, что при достижении кавитации, ни форма, ни физические размеры торпеды уже не имеют значения и не влияют на ее путь к цели.
По информации издания, торпеда является одной из самых инновационных типов подводного оружия, которые разработали в Советском Союзе в 1970-е годы. Главное преимущество торпеды — невероятная скорость: 100 метров в секунду. Торпеда изначально разрабатывалась для поражения атомных ракетных подводных лодок и оснащалась ядерной боеголовкой мощностью 150 килотонн в тротиловом эквиваленте. В результате она получила боеголовку с обычным взрывчатым веществом.
Маршевого двигателя, доставляющего мину к цели. В качестве топлива применяются гидрореагирующие металлы — алюминий, литий, магний, которые окисляются забортной водой. Это происходит за счет специального кавитатора, расположенного в носовой части и вырабатывающего водяные пары. Позади него находится ряд отверстий, через которые от газогенератора проходят порции газа, что позволяет пузырю охватить полностью весь корпус торпеды. Системой управления и наведения судна при обнаружении вражеского объекта обрабатывается скорость, расстояние, направление движения, после чего данные отправляются в независимую систему наблюдения. Автоматическое наведение на цель у торпеды отсутствует, поэтому ей ничто не мешает достигнуть цели. Она строго выполняет ту программу, которую ей задал автопилот. Технические характеристики Испытания и доработка уже поставленной на вооружение торпеды были продолжены и после того, как распался Советский Союз. Она достигается в результате использования реактивного двигателя. Как утверждают разработчики — это не предел. Большое сопротивление воды, превышающее в сотни раз сопротивление воздуха, уменьшили, используя суперкавитацию. Это особый режим движения корпуса длиной 8 м в водном пространстве, при котором вокруг него образуется полость с водяными парами. Создается такое состояние с помощью специального головного кавитатора. В результате скорость значительно возрастает и увеличивается дальность движения. Самая быстрая торпеда в мире не оставляет времени для маневра судам противника, хотя дальность действия всего 11 километров. Боевая часть состоит из 210 кг обычного взрывчатого вещества или 150 килотонн ядерного. Глубина погружения 6 м, а старта — до 30 м. Модификации торпед Работы по совершенствованию продолжались и после сдачи ее в эксплуатацию, и даже в сложные 90-е годы прошлого века.
Корабль начнет уходить от встречи с неприятностями. Другое дело, что из-за скорости нападающего это сделать невозможно. Поэтому "Шквал" воспринимали как последний аргумент подводного боя. Это рабочая глубина корабля. На ней он относительно скрытен, хотя кильватерный след, оставляемый винтами, можно видеть со спутников еще много часов после прохождения субмарины. Зато на этой глубине экипаж может общаться с берегом с помощью специальных буксируемых радиоантенн. Но в случае реальной боевой опасности тот же "Ясень" нырнет на все 400, а возможно, и более метров, буквально растворившись в глубине. Но самое главное, что на его борту стоит оружие, которое можно применять и в такой бездне. По словам разработчиков, это торпеда "Футляр". Возможно, именно ее имел в виду Борис Обносов, говоря о "перспективных изделиях". О "Футляре" известно немного: это преемник торпеды "Физик", которая в свою очередь заменила принятую на вооружение в 1980 году 533-мм торпеду УЭСТ-80. Последняя действительно устарела. Дальность хода — всего 18 км. Скорость движения — 45 узлов. Имела два канала наведения: акустический и по кильватерному следу. Единственное достоинство — глубина пуска до 1000 м. На этом фоне "Физик" был настоящим прорывом. Максимальная дальность — 50 км. Наводится на цель при помощи двухканальной головки самонаведения.