Нейросети онлайн – каталог нейронный сетей. В Сети стала доступна для широкого круга пользователей новая нейросеть BratGPT, которую уже называют злым «близнецом» ChatGPT. Pixverse AI — это нейронная сеть, разработанная компанией Pixverse, которая используется для создания цифрового контента.
«Скоро кино будут снимать лично для вас…» Что ожидает нас с развитием нейросети
Обучающие материалы: каналы предоставляют обучающие видеоролики, курсы и советы по работе с нейросетями и алгоритмами машинного обучения. Примеры применения: вы узнаете, как нейросети используются в разных областях, включая медицину, автономные автомобили, финансы и другие. Обсуждение и взаимодействие: каналы способствуют обмену мнениями, обсуждению тем и задаванию вопросов специалистам. Зачем следить за телеграм-каналами про нейросети? Актуальная информация: вы будете в курсе последних тенденций и новых разработок в области нейросетей.
Образование и развитие: каналы предоставляют обучающие материалы, которые помогут вам углубиться в тему и повысить свои знания.
Но почему же нейросеть галлюцинирует? В «Яндексе» называют две причины. Первая заключается в самом принципе работы: модель, лежащая в основе ChatGPT, «читает» последовательность слов и предсказывать на её основе следующее. Затем процесс повторяется, нейросеть предсказывает второе слово и так происходит до тех пор, пока не получится законченный текст.
Хотя выпуск чипа Intel Gaudi 3 AI воодушевлен, «мы обеспокоены тем, что компания продолжит уступать долю кошельков на общем рынке вычислений для центров обработки данных таким компаниям, как Nvidia и Arm», — заявили аналитики Goldman Sachs.
Например, Dall-E и Midjourney создают уникальные изображения на основе текстовых запросов, облегчая работу дизайнеров и художников. ChatGPT в формате диалога может генерировать уникальные тексты, учитывая контекст. А поисковый сервис Bing с помощью ИИ может выполнять за вас поиск и обобщать найденную информацию.
Please wait while your request is being verified...
Журнал Popular Mechanics разобрался в вопросе. Когда нейросети станут умнее человека и почему этого стоит бояться. Раздел форума "Новости о нейросетях" предназначен для обсуждения последних событий и достижений в мире нейронных сетей. В мире есть много успешных примеров использования алгоритмов в журналистике — например, в некоторых региональных изданиях США нейросети пишут новости про землетрясения, а.
«Скоро кино будут снимать лично для вас…» Что ожидает нас с развитием нейросети
Все про нейросеть, новости, сервисы, способы заработка, подборки картинок, созданных ИИ. Почему бы не поручить генерировать тематические изображения к новостям или постам нейросетью? Сервисы с искусственным интеллектом для получения новостей, генерации новостных лент, создания новостных рекомендаций. Самые свежие новости и события в мире нейросетей. Узнайте о последних разработках, технологических трендах и применении искусственного интеллекта. Промты для ChatGPT Новости нейросетей. Нейросеть, которая анализирует тексты новостей и статей и выделяет их главные недостатки.
Нейронные сети
Сейчас слово «нейросеть» встречается в запросах примерно так же часто, как «караоке», «рыбалка» или «помидоры». Текстовые нейросети Генерируют текст по запросу пользователя: могут писать посты, письма и другие виды текстов; отвечать на вопросы; пересказывать и переписывать уже готовые тексты; находить в них нужную информацию и так далее. Показатели знания и использования текстовых нейросетей у мужчин немного выше, чем у женщин. Лучше всего осведомлены молодые люди 18—24 лет: три четверти из них слышали о текстовых нейросетях.
Среди людей старше 45 лет таких около половины. Картиночные нейросети Такие нейросети создают или редактируют изображения по текстовому запросу. Пользователь описывает, что хочет получить, а нейросеть генерирует картинку по этому описанию.
Так, в Бельгии мужчина покончил с собой после двух месяцев общения с чат-ботом по имени Элиза на основе открытой языковой модели GPT-J. Эта история показывает, что для пользования нейросетями нужно определенное понимание принципов их работы, говорит Денис Кузнецов. Общество, по его словам, еще не привыкло к таким инструментам. На непредсказуемость результатов работы с нейросетями обратил внимание и руководитель образовательной программы «Киберфизические системы» кафедра «СМАРТ-технологии» Московского политеха Тимур Идиатуллов.
Он считает, что пока нейронным сетям нельзя доверять решение важных задач, поскольку современные языковые модели запредельно сложны с точки зрения числа параметров. Тимур Идиатуллов: «Например, сеть ChatGPT содержит 175 миллиардов параметров, которые определяют ее работу, и не существует инструмента, который позволил бы нам отследить, как сеть пришла к тому или иному решению». Могут ли нейросети оставить людей без работы? В этом вопросе среди экспертов нет единого мнения.
Сергей Смирнов полагает, что от моделей уровня GPT-4 пострадают только распространители фейков. А те, кто реально занят созданием чего-то нового, получат хороший инструмент для проверки идей и проведения расчетов на доступном сервере. Нейросетям во многих случаях нужен человек-контроллер , отметил специалист. По мнению Евгения Бурнаева, на нейросети можно переложить ряд обязанностей сотрудников производственной сферы, включая распознавание образов, классификацию данных и выявление сбоев в работе оборудования.
Но человеческий интеллект, креативность и способность адаптироваться к новым ситуациям они пока заменить не могут. Евгений Бурнаев: «Что касается потери рабочих мест из-за нейросетей и других технологий автоматизации, то она неминуема, но одновременно создаются новые рабочие места, связанные с разработкой, установкой, техподдержкой и программированием всех этих систем. Кроме того, автоматизируя производственные процессы, компании расширяются и создают новые рабочие места как у себя, так и в смежных отраслях». Нейросетям пока можно доверить творческие решения, качество которых не критично, заметил, в свою очередь, Денис Кузнецов.
Так мужчина сходу заработал почти 8 тысяч долларов. Нейросеть также способна создавать классические игры, такие как змейка, и писать коды для создания сайтов. Даже руководство компании-разработчика не знает до конца пределов возможностей своего продукта. Я полагаю, что невозможно контролировать ситуацию только в лаборатории. Этот продукт попадет в широкое употребление и столкнется с реальностью. Мы должны совершать ошибки, пока ставки невысоки», - заявил генеральный директор Open AI Сэм Альтман. Нейросеть уже заявила о себе на мировом уровне и дала интервью ведущей на телеканале Arab News.
Ведущая задала «Джи-Пи-Ти» каверзный вопрос, но нейросеть оказалась еще и политкорректной. Моя роль состоит в том, чтобы предоставлять информацию и отвечать на вопросы в меру своих возможностей», - так нейросеть ответила на вопрос ведущей о том, кто виноват в палестино-израильском конфликте.
Ранее в этом году компания также представила новый чип искусственного интеллекта, чтобы не отставать от конкурентов. Пятничное падение должно было стереть почти 19 миллиардов долларов с рыночной стоимости компании, которая на момент закрытия торгов в четверг составляла 149,4 миллиарда долларов.
НЕЙРО АЛЬМАНАХ
Звучит жутковато, правда? Кажется, что искусственный интеллект вот-вот выйдет из-под контроля и захватит мир — как в известных кинофильмах. Но до полноценного искусственного интеллекта существующим нейросетям еще очень далеко — как минимум потому, что они пока еще не умеют программировать и создавать сами себя, а также представляют собой множество различных программ, никак не связанных между собой. Зачем нам нужны нейросети Основные принципы работы нейронных сетей были сформированы в 1943 году американцами Уорреном Маккаллоком и Уолтером Питтсом — нейролингвистами и нейрофизиологами, стоявшими у основ кибернетики и заложившими революционную идею о том, что человеческий мозг — это компьютер. В 1958 году американский нейрофизиолог Фрэнк Розенблатт разработал первую нейронную сеть, хоть это и слишком громкое название для первой математической модели восприятия информации человеческим мозгом. На протяжении почти 50 лет математические модели усложнялись и совершенствовались, но только после 2007 года большие объемы данных открыли возможность использовать нейронные сети для машинного обучения. Так зачем же нам нужны нейросети? Сегодня их чаще всего используют для анализа больших объемов данных, прогнозирования, сопоставления, классификации и распознавания образов в самых широких сферах научных и социально-экономических исследований — от управления предприятиями и распознавания изображений до прогнозирования международных конфликтов и поиска следов жизни на других планетах. Ранее мы рассказывали: По какому принципу работают нейросети Современные нейросети работают по нескольким основным принципам.
Если описывать их максимально простым языком, то получится примерно следующее: В нейросеть загружается некоторое количество конкретных, необходимых для эксперимента или исследования, данных. Информация передается с помощью искусственных синапсов от искусственного нейрона к нейрону, от слоя к слою, каждый нейрон может иметь несколько входящих синапсов с данными. Данные, полученные каждым нейроном, представляют собой сумму всех данных, умноженных на коэффициент веса каждого искусственного синапса. Полученные значения формируют выходные сигналы, которые передаются до тех пор, пока информация не достигнет конечного выхода. Все равно звучит сложно? Тогда попробуем упростить еще больше. В нейросеть, то есть в заранее созданную сложную математическую модель, как в пустую емкость, загружается массив данных. Это могут быть научные работы, литературные произведения, коллекции изображений и так далее.
Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать. Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных. Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях.
Думаю, это будет важным направлением работы — как сделать так, чтобы нейронки говорили только правду, при этом не теряя в мощности своей работы. В ближайшем будущем использование нейросетей будет не просто возможной частью работы, она станет просто обязательной как «уверенное владение ПК».
Я доживу до времени, когда нейронки будут ходить на встречи с людьми и другими нейронками , добывая для своих хозяев конспекты разговоров. Нейронка станет цифровым оруженосцем. Ну, мы это уже сегодня видим, даже далеко в будушее идти не нужно. Вырастет спрос на аналоговое фото и видео — как то, что очень трудно сгенерировать и подделать. Конституцию прекрасной России будущего сфотографируют на «Полароид», и будут хранить по снимку в каждой мэрии.
Будет вообще все приватно и ничего не будет не приватного вообще. В смартфоне будущего на фотографиях будут автоматически блюриться изображения людей, которые не давали на это согласие. А ваш собственный снимок Эйфелевой башни будет дополняться деталями с миллионов других снимков миллионов других людей — чтобы вы могли порадоваться хайрезу. Уже сейчас смартфоны «Самсунга» прифотошопливают Луну на снимки ночного неба. А в будущем вся фотография будет вычислительной.
Через 10 лет людям будет непросто узнать, как они выглядят на снимках на самом деле — разве что в жестокое обычное зеркало смотреть. Совсем скоро ваш контент будет полностью персонализированным. Больше не нужно делить фильмы на «хорошие» и «плохие». Будут просто фильмы, которые нравятся вам, потому что нейронки создали их именно для вас.
Ну, мы это уже сегодня видим, даже далеко в будушее идти не нужно. Вырастет спрос на аналоговое фото и видео — как то, что очень трудно сгенерировать и подделать. Конституцию прекрасной России будущего сфотографируют на «Полароид», и будут хранить по снимку в каждой мэрии.
Будет вообще все приватно и ничего не будет не приватного вообще. В смартфоне будущего на фотографиях будут автоматически блюриться изображения людей, которые не давали на это согласие. А ваш собственный снимок Эйфелевой башни будет дополняться деталями с миллионов других снимков миллионов других людей — чтобы вы могли порадоваться хайрезу. Уже сейчас смартфоны «Самсунга» прифотошопливают Луну на снимки ночного неба. А в будущем вся фотография будет вычислительной. Через 10 лет людям будет непросто узнать, как они выглядят на снимках на самом деле — разве что в жестокое обычное зеркало смотреть. Совсем скоро ваш контент будет полностью персонализированным.
Больше не нужно делить фильмы на «хорошие» и «плохие». Будут просто фильмы, которые нравятся вам, потому что нейронки создали их именно для вас. Гей-драма с Олегом Басилашвили и Томом Харди? А еще скорее фильмы, музыка, книги и что-то новое, неизвестное сегодня, созданное искусственными личностями. Будет целая индустрия таких цифровых друзей и компаньонов. Будет расти важность сообществ, харизмы.
Кнопка будет располагаться Новости 31. Это приложение интегрирует технологию чат-помощника.
Нейросети против человечества: возможности искусственного интеллекта уже не удивляют, а пугают
Читайте самые свежие новости и статьи о событиях на тему Нейросеть во всем мире на сайте LinDeal! Основные рассматриваемые темы: искусственный интеллект, нейронные сети (нейросети), машинное обучение, большие данные (big data), квантовые компьютеры. Последние новости: Постепенное отключение CDN и Google Global Cache в России: последствия ухода Google. Теперь же мы специально ищем новости нейросетей, чтобы узнать, насколько удалось продвинуться исследователям ИИ.
«Скоро кино будут снимать лично для вас…» Что ожидает нас с развитием нейросети
С помощью Stable Diffusion 3. Хотя Stable Diffusion 3. В последние месяцы Stability AI также создаст нейросети для создания 3D-изображений и видео. Компания утверждает, что Sora «может создавать реалистичные и фантазийные сцены по текстовым инструкциям». Источник изображения: OpenAI Sora способна создавать «сложные сцены с несколькими персонажами, определенными типами движения и точной детализацией объекта и фона», говорится в блоге OpenAI. Компания также отмечает, что нейросеть может понимать, как объекты «существуют в физическом мире», а также «точно интерпретировать реквизит и генерировать убедительных персонажей, выражающих яркие эмоции». Модель может генерировать видео на основе неподвижного изображения, заполнять недостающие кадры в существующем видео или расширять его. Среди демонстрационных роликов, созданных с помощью Sora и показанных в блоге OpenAI, сцена Калифорнии времен золотой лихорадки, видео, снятое как будто изнутри токийского поезда, и другие. Многие из них имеют некоторые артефакты, указывающие на работу искусственного интеллекта.
Например, подозрительно движущийся пол в видеоролике о музее. Сама OpenAI говорит, что модель «может испытывать трудности с точным моделированием физики сложной сцены», но в целом результаты довольно впечатляющие. Пару лет назад именно генераторы текста в изображение, такие как Midjourney, лучше всего демонстрировали способности ИИ превращать слова в изображения. Но в последнее время генеративное видео стало улучшаться заметными темпами: такие компании, как Runway и Pika, продемонстрировали впечатляющие модели преобразования текста в видео, а Lumiere от Google , похоже, станет одним из главных конкурентов OpenAI в этой области. Как и Sora, Lumiere предоставляет пользователям инструменты для преобразования текста в видео, а также позволяет создавать видео из неподвижного изображения. В настоящее время Sora доступна только отдельным тестировщикам, которые оценивают модель на предмет потенциального вреда и рисков. OpenAI также предлагает доступ по запросу отдельным художникам, дизайнерам и кинематографистам, чтобы получить обратную связь. Компания отмечает, что существующая модель может неточно имитировать физику сложной сцены и неправильно интерпретировать некоторые случаи причинно-следственных связей.
Ранее в этом месяце OpenAI объявила, что добавляет маркировку в свой инструмент преобразования текста в изображение DALL-E 3, но отмечает, что их можно легко удалить. Как и в случае с другими продуктами на базе ИИ, компании OpenAI придется бороться с последствиями того, что поддельные фотореалистичные видео, созданные ИИ, будут выдавать за настоящие. Больше видео, сгенерированных Sora, можно найти здесь. Сегодня была представлена большая языковая модель Gemini 1. Google ясно дала понять, что хочет использовать Gemini в качестве бизнес-инструмента, персонального помощника и не только. В Gemini 1. Модель Gemini 1. При создании новой модели используется набирающий популярность подход «смесь экспертов» Mixture of Experts — MoE , который подразумевает, что при отправке запроса запускается только часть общей модели, а не вся.
Такой подход должен сделать модель более быстрой для пользователя и более эффективной для Google. Но в Gemini 1. Новая версия нейросети имеет огромное контекстное окно, что означает, что она может обрабатывать гораздо более объёмные запросы и просматривать гораздо больше информации одновременно. Ещё он добавил, что исследователи Google тестируют контекстное окно на 10 миллионов токенов — это, например, вся серия «Игры престолов» в одном запросе. В качестве примера Пичаи говорит, что в это контекстное окно можно вместить всю трилогию «Властелин колец». Это кажется слишком специфичным, но, возможно, кто-то в Google проверит, не обнаружит ли Gemini ошибок в преемственности, пытается разобраться в сложной родословной Средиземья. Или ИИ, возможно, сможет понять Тома Бомбадила. Пичаи также считает, что увеличенное контекстное окно будет очень полезно для бизнеса.
Глава Google представляет себе, что кинематографисты могут загрузить весь свой фильм и спросить у Gemini, что скажут рецензенты, а компании смогут использовать Gemini для обработки массы финансовых документов. Пока что Gemini 1. Со временем она заменит Gemini 1. Чтобы получить миллион, придется доплатить. Google также тестирует безопасность и этические границы модели, особенно в отношении нового увеличенного контекстного окна. Сейчас Google находится в бешеной гонке за создание лучшего инструмента ИИ, в то время как компании по всему миру пытаются определить свою собственную стратегию ИИ и сотрудничать с OpenAI, Google или кем-то ещё. Пока Gemini выглядит впечатляюще, особенно для тех, кто уже работает в экосистеме Google, компании предстоит еще много работы. В конце концов, говорит Пичаи, все эти 1.
Но на данный момент, по его словам, мы всё еще находимся на стадии, когда каждый знает, какой чип находится внутри его телефона, потому что это имеет значение. Функция памяти работает двумя способами. Пользователь может прямо указать на свои предпочтения или иную информацию, которую ChatGPT должен запомнить. Если этого не делать, то чат-бот будет сам получать нужную информацию в процессе взаимодействия с пользователем. Цель разработчиков состоит в том, чтобы сделать ChatGPT более персонализированным и удобным.
Жду ваших вопросов! Испытайте нейросеть онлайн — бесплатно и без регистрации Удобство сервиса заключается в массовости — с помощью искусственного интеллекта можно быстро и в больших количествах создавать тексты описаний для товаров на маркетплейсах или для любых страниц сайта, интернет-магазина. В настоящий момент для генерации текстов используются языковые модели ChatGPT 3. Какие задачи можно решить с помощью ИИ? Импорт-экспорт присутствует почти в любой CMS-системе или маркетплейсе, поэтому не составит труда сгенерировать с помощью нейросети тексты описаний товаров, SEO-теги, для ваших продуктов или услуг.
Генерация мета-тегов и текстов на сайте с учетом ключевых слов важна для SEO-продвижения. Во-первых, это позволяет оптимизировать сайт для поисковых систем, улучшая его видимость и рейтинг в результатах поиска. Во-вторых, использование ключевых слов в мета-тегах и текстах помогает привлечь целевую аудиторию, увеличивая вероятность привлечения потенциальных клиентов и повышения конверсии. Используйте ключевые слова, корректно формулируйте запрос для получения качественных, уникальных Title, Description и текстовых описаний от чат-бота для вашего сайта.
Однородные и гибридные сети — в зависимости от типов нейронов, обучаемые и самообучающиеся — в зависимости от метода обучения, а также аналоговые, двоичные или образные — в зависимости от типа входных сигналов. На самом деле, классификаций еще больше, но это уже материал для еще одной огромной статьи. Задачи и сферы применения нейросетей Помимо уже описанных выше задач по сопоставлению образов, прогнозированию, кластеризации информации или генерации текстов и изображений в стиле различных писателей и художников исключительно в целях развлечения , нейросети также решают и другие задачи, о которых вы, возможно, и не догадывались. Практически в каждом современном флагманском смартфоне сейчас имеется нейрочип, помогающий анализировать и классифицировать множество входящих данных. Камеры телефонов научились применять автоматические настройки и фильтры во время съемки самых разных объектов, понимая, что вы снимаете еду, природу или архитектуру. Поиск по картинкам, по словам или по названиям каких-либо объектов также может использовать простенькую нейросеть. Например, в iOS вы можете найти все фотографии кошек из галереи изображений, просто написав в поиске слово «кошка». Или распознать и скопировать текст с фотографии в смартфонах Google Pixel. Прогресс дошел до такого уровня, что появились нейросетевые чат-боты, способные имитировать общение с некогда живущим или недавно умершим человеком. Они создаются на основе ранее загруженных в нейросеть переписок, заметок или дневников. Кроме того, нейросети активно используются в финансовом секторе, принимая решение о выдаче кредитов потенциальным клиентам банков. Голосовые помощники та же Алиса от «Яндекса» или Siri от Apple используют нейросети для распознавания голосовых команд и обработки запросов. С каждым днем сфера применения нейросетей расширяется, упрощая наше взаимодействие с цифровым миром. Ранее мы рассказывали: Как технологии меняют нашу еду? Преимущества и недостатки нейросетей Очевидно, что само изобретение нейросетей было направлено на то, чтобы приносить как можно больше пользы человечеству. Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи. При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд.
Получив ответ на интересующий вопрос, пользователь может продолжить взаимодействие с «Нейро» посредством отправки дополнительных вопросов или уточнения информации в режиме диалога. При этом сервис отвечает на запросы с учётом контекста беседы. Отмечается, что «Нейро» понимает запросы на естественном языке. Для начала взаимодействия с сервисом не требуется подбирать какие-то определённые формулировки. Пользователь может формировать запросы буквально так, как они приходят ему в голову. Текстовые запросы можно дополнять картинками, например, сделать снимок настольной игры и попросить «Нейро» объяснить её правила. Особенность алгоритма в том, что он берёт факты не из памяти большой языковой модели, а из источников в интернете. Такой подход гарантирует, что в ответах «Нейро» предоставляет свежую и актуальную информацию. Сервис дополняет свои ответы ссылками на источники, которые располагаются отдельным блоком над текстом. Это позволяет пользователям в случае необходимости проверить факты или же более углублённо изучить интересующую тему. В настоящий момент пользователи могут взаимодействовать с сервисом «Нейро» в приложении «Яндекс с Алисой» и в «Яндекс Браузере». Для использования сервиса потребуется авторизоваться с учётной записью «Яндекса» и переключить соответствующий тумблер, расположенный рядом с поисковой строкой. Компания хочет сформировать партнёрские отношения с представителями индустрии развлечений и предложить кинематографистам использовать в своей работе новый ИИ-сервис для генерации видео Sora, пишет Bloomberg со ссылкой на источники. Источник изображения: Andrew Neel До этого, в конце февраля главный операционный директор OpenAI Брэд Лайткеп Brad Lightcap вместе с коллегами демонстрировал в Голливуде возможности Sora, позволяющего генерировать реалистичные видеоролики продолжительностью до минуты на основе текстовых подсказок пользователей. Несколько дней спустя гендиректор OpenAI Сэм Альтман Sam Altman посетил мероприятия в Лос-Анджелесе, посвящённые церемонии вручения премии Оскар, на которых, по всей видимости тоже информировал представителей медиабизнеса о возможностях Sora. OpenAI представила ИИ-генератор видео Sora в середине февраля, и его возможности сразу привлекли внимание Голливуда и Кремниевой долины. Хотя нейросеть Sora пока недоступна для широкой публики, ею уже могут воспользоваться некоторые известные актёры и режиссёры. Лидирующая в этом сегменте Runway ранее сообщила Bloomberg, что её сервис преобразования текста в видео Runway Gen-2 уже используют миллионы людей, включая профессионалов производственных и анимационных студий, которые полагаются на него при предварительной визуализации и раскадровке. Монтажёры фильмов с помощью сервиса создают видеоролики, сочетая их с другим отснятым контентом для создания рекламных роликов или визуальных эффектов. Источник изображения: Pixabay По данным источника, Google активировала функцию ИИ-поиска для «небольшого процента поискового трафика в США», в связи с чем пользователи на территории страны могут увидеть сгенерированный нейросетью раздел, даже если они не активировали соответствующую опцию. К ноябрю прошлого года эта функция была развёрнута в 120 странах и могла обрабатывать запросы на множестве языков, но по-прежнему оставалась отключённой по умолчанию. Источник изображения: Google На данном этапе Google будет показывать пользователям сгенерированный ИИ блок при обработке сложных запросов или в случаях, когда поисковик посчитает, что пользователю будет полезно получить информацию по интересующему его вопросу из нескольких источников. Также отмечается, что сгенерированный нейросетью блок будет выводиться только в случаях, когда алгоритм определит, что результат работы ИИ предоставляет более качественную информацию, чем обычная поисковая выдача. Вероятно, Google проводит тестирование функции ИИ-поиска, чтобы получить больше отзывов от пользователей с целью дальнейшей интеграции нейросетей в свой поисковик. Тем временем разработчики могут опробовать Gemini 1. Источник изображения: Google Gemini 1. За один раз Gemini 1. В ходе исследования Google также успешно протестировала обработку до 10 млн токенов. Gemini 1. Нейросеть способна не только анализировать большие блоки данных, но и быстро находить определённый фрагмент текста внутри них. Также Gemini 1. В интерфейсе AI Studio нейросеть сейчас доступна с ограничением в 20 запросов в день. Источник изображения: nasa. Авторы проекта попытались заменить стандартные алгоритмы анализа данных TIRA нейросетями семейства YOLO, которые применяются для поиска движущихся объектов на снимках. Версии нейросетей YOLOv5 и YOLOv8 обучили при помощи массива из 3000 снимков околоземного пространства и проверили их эффективность на примере 600 изображений с радаров, на которых были от одного до трёх частиц космического мусора. Результат оказался выше того, что демонстрирует стандартный алгоритм TIRA. Учёные сделали вывод, что системы машинного зрения могут успешно применяться для поиска космического мусора в околоземном пространстве и для его отслеживания в реальном времени. Это поможет снизить число инцидентов, связанных с попаданием частиц космического мусора в работающие орбитальные аппараты. По оценкам экспертов, на орбите Земли могут находиться более 170 млн частиц космического мусора. Stable Diffusion 3. Источник изображений: Stable Diffusion 3. Выпуск SDXL в июле значительно улучшил базовую модель Stable Diffusion, и теперь компания собирается пойти значительно дальше. Новая модель Stable Diffusion 3. Новая нейросеть обеспечит значительно лучшую типографику, чем предыдущие версии Stable Diffusion, обеспечивая более точное написание текста внутри сгенерированных изображений. В прошлом типографика была слабой стороной Stable Diffusion, собственно, как и многих других ИИ-художников. Stability AI экспериментирует с несколькими типами подходов к созданию изображений.
Когда нейросети станут умнее человека и почему этого стоит бояться
В России создали нейросеть, которая определит устойчивость мошенникам по фото. Раздел форума "Новости о нейросетях" предназначен для обсуждения последних событий и достижений в мире нейронных сетей. Новости в мире нейросетей А теперь предлагаем дайджест самых интересных новостей в мире нейросетей: Нейронные сети научились обнаруживать редкие заболевания. мы находим и публикуем самые свежие и интересные новости со всего мира - Aimatics. Новости в мире нейросетей А теперь предлагаем дайджест самых интересных новостей в мире нейросетей: Нейронные сети научились обнаруживать редкие заболевания.