Новости что такое кубит

Именно на базе кубитов такого типа сегодня чаще всего разрабатывают квантовые вычислительные устройства. Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов. Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела. Кубит может хранить намного больше информации, чем классический бит.

Что такое квантовые вычисления?

Чаще всего в заголовки новостей попадает так называемый «сверхпроводящий» кубит. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается. И делают кубиты на сверхпроводниках, которым нужны экстремально низкие температуры.

Эксперт рассказал, из чего состоит квантовый компьютер, что такое кубиты и для чего они нужны

Как работает квантовый компьютер: простыми словами о будущем - Hitecher Увеличение количества кубитов в процессоре не связано напрямую с увеличением его мощности, которая определяется так называемым квантовым объемом.
ЧТО ТАКОЕ КУБИТ Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение.
В России представлен 16-кубитный квантовый компьютер Если же взять, к примеру, десять кубитов, то будет уже 1024 классических состояния.
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира.
Что такое кубит? Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды.

Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес

Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы. Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице. Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию Как делают кубиты и в чём сложность Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью. Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система. Основная сложность — декогеренция. Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира. Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный. С декогеренцией можно бороться разными способами.

Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора. Квантовый процессор на девяти кубитах от Google Зачем нужны квантовые компьютеры Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30—40 знаков или больше на простые множители.

И почему квантовые роботы лучше обычных? Что такое квант "Мы вот-вот оставим цифровой век позади, и наступит квантовая эра, которая принесет невообразимые научные и социальные изменения. Миром станут править квантовые компьютеры", — заявил физик, популяризатор науки и футуролог Мичио Каку. Но что же такое кванты и почему ученые говорят о революции?

То есть, чтобы вы понимали, мир, который нас окружает, все, из чего он состоит, это элементарные частицы. И квант — это одна из элементарных частиц", — пояснил кандидат технических наук, доцент Московского технического университета связи и информатики Олег Колесников. И все это обеспечивает невероятную скорость работы суперкомпьютера. А квинтиллион — это цифра с 18 нулями. Сравнивать скорость работы Frontier со скоростью работы вашего ноутбука, это как сравнивать скорость улитки и сверхзвукового истребителя", — отметил профессор машиностроения и физики Массачусетского технологического института Сет Ллойд. А все потому, что в основе японского чуда — не обычные процессоры, а квантовые. Ведь большинство квантовых компьютеров могут работать только при температурах, близких к абсолютному нулю, когда все замедляется и "шум" окружающей среды минимален", — рассказал руководитель группы экспериментальных квантовых вычислений компании — производителя квантовых компьютеров Джери Чоу. Но дело не только в размерах.

В классических ЭВМ информация зашифрована в битах, то есть в нулях и единицах, а в квантовых — в кубитах. Один кубит — это атом или фотон — мельчайшая частица вещества или энергии.

Ведь, как и большинство кубитов, спиновые кубиты на основе полупроводников могут быть реализованы разными способами.

Базовая технология позволяет обнаруживать отдельные электроны в изолированных ямах и управлять их спинами, чтобы кодировать информацию в квантовом состоянии. По его словам, Intel изучает множество параметров, таких как разные размеры квантовых точек, разная геометрия, разная длина кубитов. Intel также встраивает в свой чип средства тестирования для определения производительности.

Intel объявила о сотрудничестве с лабораторией физических наук LPS университета Мэриленда, Qubit Collaboratory LQC в Колледж-Парке, национальным исследовательским центром квантовых информационных наук QIS , Sandia National Laboratories, университетом Рочестера и университетом Висконсин-Мэдисон для продвижения исследований в области квантовых вычислений. Компания планирует предоставить доступ для разработчиков и исследователей к своему набору инструментов Intel Quantum Software Development Kit SDK версии 1. Это своего рода дезагрегированный подход.

На данный момент мы сосредоточены как на программном, так и на аппаратном обеспечении, и в дальнейшем мы объединим их. Предстоит проделать огромный объем работы, чтобы охарактеризовать эти устройства, а затем написать много научных работ», — добавил Кларк. LPS Qubit Collaboratory LQC является одним из исследовательских центров министерства обороны в области квантовых информационных наук QIS , учреждённых в рамках Закона о национальной квантовой инициативе 2018 г.

Intel заявляет, что сотрудничество с LQC поможет демократизировать кремниевые спиновые кубиты, позволив исследователям получить практический опыт работы с их масштабируемыми массивами. По словам Кларка, Intel предоставит квантовые устройства, в то время как исследовательские организации будут нести ответственность за приобретение и настройку необходимой инфраструктуры, такой как системы криоконтроля. Представители научных учреждений, участвующие в программе, единодушны в том, что участие Intel является важной вехой в демократизации исследования спиновых кубитов и их перспектив для квантовой обработки информации и ведёт к объединению промышленности, научных кругов, национальных лабораторий и правительства.

По мнению учёных, устройство представляет собой гибкую платформу, позволяющую напрямую сравнивать различные кодировки кубитов и разрабатывать новые режимы работы, что позволяет внедрять новые квантовые операции и алгоритмы в многокубитном режиме и ускорять скорость обучения в квантовых системах на основе кремния. Исследователи также высоко оценивают надёжность Tunnel Falls, а возможность работать с промышленными устройствами Intel открывает, по их мнению, перспективы для технического прогресса и обучения. Intel планомерно работает над повышением производительности Tunnel Falls и интеграции его в свой полный квантовый стек с помощью комплекта Intel Quantum SDK.

Кроме того, Intel уже разрабатывает свой квантовый чип следующего поколения на базе Tunnel Falls, ожидается, что он будет выпущен в 2024 году. В будущем Intel планирует сотрудничать с дополнительными исследовательскими институтами по всему миру для создания квантовой экосистемы. Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков.

Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге.

Учёный держит квантовый чип пинцетом, перед установкой на плату. Источник изображения: QuTech Исследователи уже не раз горели желанием сочетать сверхпроводящие и спиновые явления. Кубиты на основе сверхпроводников, которые используют стабильные состояния электромагнитных полей или моды, хорошо изучены и используются на практике в составе квантовых компьютеров IBM, Google и других.

Такие кубиты хорошо взаимодействуют на больших расстояниях и легко управляются, хотя они относительно большие и имеют предел по скорости выполнения операций. Спиновые кубиты на атомах или элементарных частицах малы и могут массово выпускаться даже на полупроводниковых заводах из 80-х годов прошлого века. Но такие кубиты ограничены по дальности взаимодействия и управления.

Как взять одни свойства перспективных кубитов и отбросить другие? Эту задачу попытались решить учёные из QuTech — исследовательской организации, созданной Делфтским технологическим университетом и Нидерландской организацией прикладных научных исследований TNO. В свежей работе, опубликованной в Nature Physics, учёные рассказали о создании и успешных испытаниях гибридной спиново-сверхпровдящей платформы.

Можно сказать, что учёные улучшили так называемый «спиновый кубит Андреева», который строится на основе ряда квантовых эффектов, названных именем советского физика Александра Фёдоровича Андреева. В джозефсоновских контактах, где сверхпроводящий ток течёт без напряжения, существуют микроскопические электронные состояния — андреевские уровни, каждый из которых может рассматриваться как микроскопический источник эффекта Джозефсона.

Для практического применения и достижения конкурентного преимущества необходим квантовый процессор минимум из 100 кубитов. В феврале 2024 г. Мы его реализовали на ионной платформе. Также у нас есть 25-кубитный компьютер на атомной платформе. Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать.

Квантовые компьютеры: как они работают — и как изменят наш мир

Из-за этого создание нового лекарства занимает лет десять. А квантовый компьютер, который способен смоделировать квантовую механическую систему, радикально ускорит процесс. Или фолдинг белка сейчас пытаются сделать рентгеновскими лучами, хитрыми магнитными резонансами. А если будет квантовый компьютер, он сможет смоделировать эту систему, и мы упростим себе жизнь в создании лекарств. Ещё ускорится разработка новых материалов для космических полётов, двигателей, сверхпроводящих систем. Сделать лучше не получается, потому что мы пока плохо моделируем. За одно интервью невозможно даже перечислить все те применения квантовых компьютеров, которые можно придумать. Даже если он просто сможет ускорить считанное количество процессов важных операций типа преобразования Фурье — это уже будет серьёзным прогрессом. А это только один шаг к созданию универсального квантового компьютера.

Поэтому такой хайп. Их уже применяют для оптимизации финансовых портфелей, маршрутов, оптимизации ИИ-алгоритмов. Что может остановить прогресс? Допустим, если время жизни системы 0,001 секунда, то можно не успеть вычислить что-то важное. Надо думать, как удерживать качество вычислений и масштабировать их. Возьмем компанию IonQ — в неё проинвестировали уважаемые инвестиционные фонды со всего мира, она даже стала публичной. Они делают системы на ионах, и проблема в том, что там есть ионные ловушки, но есть предел количества ионов, который можно уловить. И надо придумать механизм связывания ловушек между собой.

С этим пока большие проблемы — это сильно мешает масштабировать систему. У других платформ есть похожие серьезные проблемы. Еще есть проблемы с оборудованием — иногда под квантовые компьютеры нужно изобретать новые устройства. Например, специальную оптику, лазеры, вакуумное оборудование, криогенные камеры. Проблем много, но это путь развития — микроэлектроника уже прошла его. Это нормально: под каждый новый процесс промышленность адаптируется и придумываются новые проводящие металлы и другие открытия. Просто вся система пока на ранней стадии зрелости. На что обратить внимание?

Например, количество кубитов — это показатель? Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение.

Квантовая криптография, которая как раз способна обеспечить концептуальную защиту от атаки квантовым вычислителем, требует создания новой инфраструктуры для передачи квантовой информации. Это может быть оптическое волокно или атмосферный лазерный канал. Не исключается использование на оптическом канале дронов и спутников. Также, помимо непосредственно программируемых квантовых компьютеров, возможно использование проблемно-специфичных квантовых устройств. С их помощью, например, на линиях квантовых коммуникаций может осуществляться коррекция ошибки без считывания квантового состояния.

Данный тип устройств не предъявляет больших требований по числу кубитов или объёму исполняемой программы и теоретически может быть реализован на имеющейся сегодня технологической базе. Из всего перечисленного выше формируется образ перспективной информационной инфраструктуры. Квантовые вычислители не повлияют существенным образом на облик имеющихся сегодня сервисов, оставив все конечные пользовательские интерфейсы привычно классическими. Может повыситься скорость обработки данных в отдельных задачах за счёт доступа пользовательских устройств к облачным квантово-вычислительным сервисам. Также появится квантовая информационная инфраструктура, в первую очередь для квантовой криптографии. Это будут стационарные, либо мобильные, но маловероятно, что карманные устройства для квантового распределения ключей. Вполне возможно, что более простые и компактные по сравнению с полноценными компьютерами квантовые вычислительные системы будут использоваться на конечных пользовательских узлах для обработки квантовой информации.

Квантовые алгоритмы и возможности квантовых вычислителей Ступень развития, на которой сегодня находятся квантовые вычислители, получила название NISQ — Noisy Intermediate-Scale Quantum — квантовые устройства среднего масштаба без коррекции ошибок. Название отражает две главные проблемы, сдерживающие развитие квантовых компьютеров — сложность создания регистра большого объёма и большая подверженность влиянию внешних шумов. Две этих проблемы неразрывно связаны. То, что под влиянием шума квантовые состояния со временем теряют заложенную в них информацию, влияет на нашу способность контролировать одновременно большое число кубитов. Экспериментальные реализации квантовых вычислителей только чуть более года назад перешагнули рубеж в 100 кубитов в регистре [11]. Теоретически, этого уже достаточно, для экспериментальной реализации некоторых алгоритмов криптоанализа. Атака полноценного AES-128 может быть выполнена при 384 доступных кубитах [13].

Однако глубина данного алгоритма такова, что к концу его исполнения полезная информация в вычислительном регистре будет почти полностью уничтожена шумами. Справиться с такими нежелательными эффектами призвана технология коррекции ошибок. Вероятность того, что несколько кубитов одновременно потеряют информацию о своём состоянии под действием шумов — ниже, чем для одного. Для коррекции ошибок вводится понятие логического кубита, состояние которого кодируется несколькими физическими кубитами. Если часть физических кубитов, кодирующих один логический, оказалась зашумлена, их состояния могут быть восстановлены с опорой на информацию, сохранённую в остальных кубитах. Таким образом, для повреждения состояния логического кубита необходимо, чтобы к моменту выполнения коррекции большая доля физических кубитов была значительно зашумлена. Такой подход в теории позволяет бороться с шумами, но кратно увеличивает требования к объёму регистра квантовых вычислителей.

Объём регистра, необходимого для выполнения атаки Гровреа на AES с применением коррекции ошибок составляет от нескольких тысяч до десятков тысяч кубитов. Объём регистра, необходимого для атаки шифра RSA алгоритмом Шора преодолевает порог в сто тысяч кубитов. Возможность реализации вычислителя с регистром такого объёма в ближайшие пять лет представляется крайне маловероятной. Однако не исключено, что первые попытки лабораторной реализации подобных алгоритмов или их элементов начнут появляться к концу десятилетия. Рост числа кубитов по годам Другим возможным подходом к борьбе с шумами является не коррекция, а подавление ошибок [14]. Наиболее распространёнными являются подходы с так называемой экстраполяцией к нулевому шуму и с применением в схеме дополнительных параметризованных гейтов, призванных статистически подавлять влияние специфических шумов. Преимуществом подхода является то, что он не требует увеличения числа физических кубитов в алгоритме.

Метод экстраполяции к нулевому шуму является наиболее простым методом подавления ошибки, и он отлично подходит для применения в вариационных квантовых алгоритмах. Данный тип алгоритмов — самый реальный кандидат на практическое использование в NISQ-устройствах. Вариационный алгоритм сочетает использование квантового вычислителя для ускоренного расчёта некоторой целевой функции с использованием классического оптимизатора. Можно сказать, что прямая реализация принципа, высказанного Ричардом Фейнманом: для расчёта состояний квантово-механической системы используется квантовый вычислитель. В зависимости от того, какая квантовая схема используется, оптимизируемая целевая функция может решать задачи квантовой химии, оптимизации или даже криптоанализа [15, 16]. Интереснее всего то, что неизвестны точные асимптотики эффективности квантовых вариационных алгоритмов. В отдельных случаях они способны демонстрировать результаты, превосходящие и классический оптимизатор, и даже квантовый алгоритм Гровера.

В совокупности со сравнительно низкими требованиями по числу кубитов вариационные алгоритмы можно оценить как потенциально одну из самых близких к практическому внедрению технологию из области квантовых вычислений. Сверхпроводники Долгое время квантовые компьютеры на основе сверхпроводящих кубитов удерживали рекорд по доступному объёму вычислительного регистра. Именно на машине такой архитектуры было продемонстрировано практическое квантовое превосходство [1]. В основе физической реализации данного типа кубитов лежит квантование уровней энергии электрического колебательного контура в условиях сверхпроводимости. Такой подход обеспечивает достаточно высокую степень точности исполнения операций, однако поддержание вычислителя в сверхпроводящем состоянии требует создания криогенных температур в значительном объёме. Это, в свою очередь, ведёт к существенной чувствительности вычислителей данного типа к внешнему воздействию, а также создаёт дополнительные препятствия для масштабирования. Тем не менее, достижением 2022 года является представленный компанией IBM вычислитель Osprey с 433 сверхпроводящими кубитами [17].

Если представленный годом ранее Eagle, обладающий 127 кубитами, теоретически позволял промоделировать отдельные элементы атаки S-AES с простейшей коррекцией ошибок, например, с девятикубитным кодом Шора, то в регистре Osprey можно проводить эксперименты со значительно более сложными и совершенными кодами коррекции. В контексте этого вызывает интерес исследование методов подавления ошибки на уровне логических кубитов. Точная оценка перспектив этих подходов требует более подробных экспериментальных данных, однако, можно утверждать, что IBM пока достаточно успешно поддерживают тренд роста числа кубитов сверхпроводниковых вычислителей. Озвученным прогнозом специалистов IBM стало получение компьютера с 4000 кубитов к 2025 году. И, несмотря на всю кажущуюся амбициозность данного заявления, фундаментальных ограничений, которые могли бы препятствовать достижению заявленных параметров, нет. Если специалисты IBM справятся с подавлением шумов и поддержанием когерентности для регистра с таким количеством кубитов — они смогут выполнить обещание. Холодные атомы Вычислители на основе холодных атомов не требуют криогенного охлаждения кубитов.

Теоретически, за счёт возможности наращивания числа оптических ловушек, удерживающих атомы, и большей устойчивости к шумам, вычислители данного типа обладают несколько большим потенциалом масштабирования, по сравнению с квантовыми компьютерами на основе сверхпроводящих цепей. В то же время возникающие при работе с атомными кубитами ошибки в значительной мере поддаются контролю за счёт методов подавления. Это было продемонстрировано в 2021 году с представлением программируемого атомного симулятора на 256 кубитов [18]. По количеству кубитов для архитектуры на основе холодных атомов рекорд прошлого года — 256 кубитов на программируемом симуляторе, остаётся актуален.

Таким образом, преждевременно говорить, что мы подошли к окончанию эпохи NISQ — Noisy Intermediate-Scale Quantum computers, шумных квантовых вычислителей среднего масштаба. Для полноценного осознания величины совершенного прорыва необходимо дождаться исчерпывающих данных о точности работы нового компьютера в реальных квантовых алгоритмах. В любом случае, 1000 кубитов — существенный шаг вперёд для индустрии.

На уровне идеи 1000-кубитный регистр даёт невероятные возможности, начиная от моделирования квантовой химии, заканчивая эффективным финансовым прогнозированием и атакой 256-битных симметричных шифров. В связи с этим очень полезно ознакомиться с очерком «Что нам делать с 1000 кубитов? Также это позволяет лучше осознать, насколько стремительно развивается индустрия квантовых вычислений. И хотя безусловно, число кубитов является главным сдерживающим фактором развития квантовых алгоритмов, получив достаточное число кубитов, мы, как и прежде, возвращаемся к вопросу точности — сколько устойчивых к ошибкам логических кубитов мы можем получить? И на этом этапе каждый инженер должен открыто и чётко характеризовать разработку, которую ему удалось создать. Этот вопрос ведёт нас к большим результатам, но требует большой работы и исследований. Пожалуйста, оцените статью: Ваша оценка: None Средняя: 4.

Ужимать скоро будет некуда, значит пора искать другие пути решения. Один из них дает квантовая физика. Квантовые компьютеры не создаются для замены привычных транзисторных.

Итак, квантовые компьютеры ориентированы на сложные расчеты. За свои открытия в 1999 году Ричард Фейнман попал в десятку лучших физиков всех времен. Фото: britannica.

Возможно, мы научимся моделировать ДНК, взломаем существующие шифры и сделаем бессмысленными современные системы шифрования. О том, насколько сильно квантовые компьютеры изменят наш мир, можно судить по термину «квантовое превосходство» — способность квантовых компьютеров решить задачи, которые обычным компьютерам либо неподвластны, либо требуют тысячи лет на просчет. Квантовые компьютеры позволят делать то, что раньше было немыслимо.

Революция в ИТ: как устроен квантовый компьютер и зачем он нужен

Обращаются с запросом много научных групп, но, к сожалению, большинству мы вынуждены отказывать, потому что стоим перед выбором: либо предоставить им компьютер, либо модернизировать его. И чаще выбираем модернизацию. Хотя бы примерно. Чтобы посчитать молекулу гидрида лития, запускается около 200 цепочек расчетов. Там довольно сложные алгоритм и постобработка. Каждую цепочку нужно запускать от 1 тыс. Кроме того, мы бы хотели провести научные исследования, чтобы масштабировать квантовые компьютеры. Для этого нужен третий компьютер, а лучше и четвертый. Мы сейчас работаем с трехмерными ловушками. А для того, чтобы делать компьютеры с числом кубитов больше 50, нужно обязательно работать с планарными, то есть плоскими ловушками на чипах. Это отдельное направление.

У нас уже изготовлены первые ловушки в сотрудничестве с Московским институтом электронной техники. Это пока не полноценный компьютер, нам нужно тестировать ловушки, смотреть, как захватываются ионы, делать новые модели. Фактически это еще одна система. Вот уже четыре системы, которые нужно иметь, чтобы проводить полноценные исследования в области квантовых вычислений. Вопрос, хватит ли времени. Когда мы только начинали, я ожидал, что к этому времени у нас будет четыре-пять установок. Но мы ждем поставок. Часть уже в России, чего-то не хватает. Тем не менее, надеюсь, к середине следующего года мы запустим вторую установку, может, даже третью. А дальше жизнь покажет.

Мировая практика — Что сейчас происходит в области разработок квантовых компьютеров?

Другой областью, которая значительно изменится с появлением квантовых компьютеров, станет криптография. Специалисты обеспокоены тем, что под ударом окажутся криптосистемы с открытыми ключами. Злоумышленники, использующие достаточно мощные квантовые компьютеры, могут совершить взлом цифровых подписей и основных интернет-протоколов HTTPS TLS , необходимых для безопасного просмотра онлайн-счетов и совершения онлайн-покупок. Квантовые вычисления также поставят под угрозу безопасность систем симметричной криптографии, которая основана на обмене закрытыми ключами. Чтобы сохранить конфиденциальность данных, обмен ключами должен оставаться безопасным. Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем. Специалисты уже работают над решением этой задачи, и NIST Национальный институт стандартов и технологий, США разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году.

В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым. Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования. Полный переход к ним может затянуться на 15-20 лет. Квантовые компьютеры изменят мир и общество Квантовые компьютеры способны привести к резкому прорыву в открытии и разработке новых лекарств, давая ученым и врачам возможность решать задачи, которые невозможно решить сейчас. Специалисты швейцарской фармацевтической компании Roche надеются, что квантовое моделирование ускорит разработку вакцин для защиты от инфекций, подобных COVID-19, лекарств от гриппа, рака и даже болезни Альцгеймера. Квантовое моделирование может заменить лабораторные эксперименты, чем снизит стоимость исследований и сведет к минимуму потребности в тестировании препаратов с участием животных и людей. Квантовые компьютеры потенциально могут ускорить создание новых катализаторов для утилизации СО2 из воздуха или отработанных газов, которые не только сократят выбросы, но и позволят получать ценные нефтехимические продукты. С помощью «квантового отжига» можно рассчитать траекторию движения каждой частицы воздушного потока над новым типом крыла, что может привести к изобретению новых технологий в аэродинамике.

Подобный принцип можно использовать для решения задач оптимизации трафика в городе или потока данных в сети. Ожидаются изменения и в финансовом секторе, где квантовые вычисления поспособствуют более глубокой аналитике и новым торговым возможностям, например, ускорению транзакций и обмена данными. Экспоненциально ускоренные вычисления могут иметь огромное значение для финансового моделирования, что изменит оценку инвестиционных проектов и повлияет на бизнес-стратегии. Компании, которые смогут позволить себе квантовый компьютер, обретут огромное конкурентное преимущество. Источником дохода для компаний, занимающихся квантовыми вычислениями, станут услуги удаленного доступа к их ресурсам. Хотя в будущем квантовые компьютеры получат широкое распространение, в настоящее время заказчики более склонны к тому, чтобы выполнять квантовые вычисления через облако, а не совершать рискованные инвестиции в дорогостоящее оборудование. Параллельно с этим будет расти предложение программных приложений для квантовых компьютеров, инструменты для разработки. Появятся специалисты, которые будут развивать инфраструктуру, используя мощь двух технологий — квантовых вычислений и искусственного интеллекта, изучение которых станет неотъемлемой частью учебной программы.

В России в рамках создания Национальной квантовой лаборатории на первом этапе планируют запустить образовательные проекты и заняться подготовкой высококвалифицированных кадров. Планируется создать устойчивую экосистему квантовых вычислений и вывести ее на международный уровень, что объединит представителей науки, бизнеса и инноваций.

Мы сейчас работаем с трехмерными ловушками. А для того, чтобы делать компьютеры с числом кубитов больше 50, нужно обязательно работать с планарными, то есть плоскими ловушками на чипах. Это отдельное направление. У нас уже изготовлены первые ловушки в сотрудничестве с Московским институтом электронной техники.

Это пока не полноценный компьютер, нам нужно тестировать ловушки, смотреть, как захватываются ионы, делать новые модели. Фактически это еще одна система. Вот уже четыре системы, которые нужно иметь, чтобы проводить полноценные исследования в области квантовых вычислений. Вопрос, хватит ли времени. Когда мы только начинали, я ожидал, что к этому времени у нас будет четыре-пять установок. Но мы ждем поставок.

Часть уже в России, чего-то не хватает. Тем не менее, надеюсь, к середине следующего года мы запустим вторую установку, может, даже третью. А дальше жизнь покажет. Мировая практика — Что сейчас происходит в области разработок квантовых компьютеров? У систем с более объемным регистром точность кубитных операций недостаточно высокая. Это частная компания, работающая на государственные деньги.

Комбинация, когда в частную компанию загружаются государственные деньги, в мире показала себя очень хорошо, она делает самую крутую науку. И я надеюсь, что у нас такие схемы тоже со временем будут внедрены. Но важно, чтобы в ней появилась коммерческая составляющая. Запросы приходят, люди заинтересованы. Да и секретных вещей в XXI веке уже нет. Наработки той же Quantinum в открытом доступе.

Кубиты следят друг за другом Алексей Федоров, руководитель научной группы Российского Квантового Центра и Университета МИСИС: - Для того, чтобы нивелировать эффект ошибок при работе классических процессоров используются коды коррекции ошибок. Они настолько быстры, что мы даже не замечаем, как эффективно работает процедура. В квантовом случае коррекция ошибок — гораздо более сложная задача. Хотя бы потому, что невозможно идеально копировать заранее неизвестные квантовые состояния. Квантовая физика запрещает такую процедуру. Ключевая «хитрость» — избыточное кодирование, в котором для создания одного «идеального» логического кубита используется множество реальных физических. Физические кубиты «подсматривают» друг за другом, чтобы обнаружить ошибку, которую потом можно исправить. Ученые из Йельского университета показали возможность коррекции ошибок в реальном времени с высокой степенью исправления. В качестве физической платформы использовали сверхпроводниковые квантовые процессоры — одну из платформ-лидеров для квантовых вычислений. Её активно развивают и в России.

Как работают квантовые процессоры. Объяснили простыми словами

Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать. Куби́т — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. Именно на базе кубитов такого типа сегодня чаще всего разрабатывают квантовые вычислительные устройства.

Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы

В России представлен 16-кубитный квантовый компьютер За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы).
Квантовый Компьютер Как устроен? Как программировать? Уже? [ДЛИННОПОСТ] | Пикабу Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности.

Квантовые вычисления – следующий большой скачок для компьютеров

Даже малейшие возмущения могут привести к ошибкам в квантовых вычислениях, искажению данных. И хотя физически кубит может быть реализован разными способами кубиты создают с использованием специально выращенных сверхпроводниковых структур, ультрахолодных атомов и ультрахолодных ионов, с помощью оптических систем и так далее , единого ответа о наиболее перспективной реализации у исследователей пока нет — сегодня эксперименты по созданию квантовых вычислителей ведутся на основе разных технологий. И этот список регулярно обновляется. Если обобщить на совсем базовом уровне: «столкновение» квантовой системы с реальным миром разрушает всю «квантовость», и способ поддержки этого состояния в достаточном масштабе пока не придуман. Тем более не придуман способ реализации такого квантового вычислителя, к примеру, в условиях обычной квартиры. Несмотря на текущие сложности, квантовые информационные системы имеют большой потенциал — по крайней мере в науке уже есть немало вычислительных задач, с которыми классические компьютеры справиться не могут.

Такие кубиты могут быть созданы с помощью существующих методов литографии, на которых основано производство микросхем. В мае 2015 года российские ученые впервые создали шесть кубитов, каждый из которых состоит из четырех джозефсоновских контактов. Сами контакты состоят из алюминиевых полосок, разделенных слоем диэлектрика оксида алюминия толщиной около двух нанометров. В качестве проводников использовался алюминий.

Кубит, находящийся в суперпозиции, при измерении коллапсирует в одно из двух детерминированных состояний 0 или 1. Вероятность состояния 1 или 0 определяется суперпозицией кубита. Если кубит находится в равной суперпозиции, то он находится наполовину в состоянии 0, наполовину в состоянии 1. Для понимания суперпозиции нужно думать о состояниях как о волнах, а не как о двух взаимоисключающих классах. Представьте себе две разные песни, одну из которых назовём песня A, другую песня B. Поскольку при измерении кубит коллапсирует в одно из двух детерминированных состояний, невозможно измерить истинное вероятностное состояние кубита. Впрочем, можно измерить его приблизительно. Суперпозиция — реальное явление: знаменитый эксперимент с двумя щелями демонстрирует, что определённые кванты, подобные электронам или фотонам, находятся в волновых состояниях и, проходя через две щели, вызывают появление интерференционной картины на экране. Источник На аппаратном уровне главная сложность в конструировании кубитов заключается в их вероятностной природе ведь они не детерминированы , что означает, что их состояние может очень легко изменяться под воздействием внешних сил. Кубиты трудно поддерживать по той же причине, по которой они так мощны — множество их возможных состояний трудно контролировать более нескольких секунд. Применение квантовых вентилей для осуществления операций зачастую может приводить к ошибкам вентиля из-за случайного неосторожного обращения с кубитом. Напомню, что кубитом может быть что угодно от фотона до электрона или определённых молекул , если они демонстрируют квантовое поведение. Многокубитные системы и запутанность Ваш компьютер далеко не продвинется с одним битом , ведь он может принимать только два значения, а компьютер работает с огромной многоразрядной системой. Как и биты, кубиты можно собрать в многокубитную систему. В 2-кубитной системе в состоянии 10 первый кубит находится в состоянии 1 и второй в состоянии 0. Однако из-за суперпозиции 2-кубитные системы не ограничены только детерминированными значениями 0 или 1. Они могут находиться в суперпозиции. Это означает, что при измерении системы она имеет равные шансы перейти в одно из четырёх детерминированных 2-кубитных состояний. Запутанность — ещё одно часто встречающееся умное слово, которое сбивает с толку. Скажем, при двух запутанных кубитах A и B в любой суперпозиции, когда Боб измеряет кубит A в состоянии 1, он мгновенно без измерения узнаёт состояние кубита B — тоже 1. Если Боб измерит кубит B, он убедится в этом. Что ещё более замечательно, это явление работает даже если A и B находятся на расстоянии триллионов световых лет друг от друга, так как расстояние не является коэффициентом запутанности. На первый взгляд запутанность выглядит как колдовство, но она реальна и не настолько сложна, если смотреть на её систему кубитов.

Сейчас эти вложения начинают приносить первые результаты, особенно заметные по прорывным статьям из Китайского университета науки и технологий в Хэфэе University of Science and Technology of China, Hefei. Пытается догнать Китай и национальная квантовая инициатива в США с бюджетом чуть более миллиарда долларов, направленных на создание новых федеральных лабораторий. Сравнимые бюджеты выделили на развитие квантовых технологий и отдельные европейские страны, а сам Евросоюз еще в 2018 году запустил миллиардную программу Quantum Flagship, направленную на поддержку совместных проектов по квантовым технологиям по всей Европе. Общий объем инвестиций в этот быстро растущий рынок оценивается в 25 миллиардов долларов, что сопоставимо с бюджетом американской лунной программы 1960-х годов. Особый путь А что в России? Несмотря на пионерские идеи Юрия Манина в 1980-х и неоценимый вклад отечественных ученых в области квантовых вычислений и квантовой информации, Россия на текущий момент несколько отстает от перечисленных выше лидеров рынка. Такое положение отчасти связано с поздним стартом, ведь первые прикладные проекты по квантовым технологиям в России были запущены лишь в 2010-х например, Российский Квантовый Центр , через 10-15 лет после создания первых квантовых процессоров. Первые одно- и двух-кубитные системы в России были созданы в 2015-2016 годах, а в этом году был представлен первый 5-кубитный квантовый процессор. Масштабирование до существующих мировых аналогов с десятками кубитов потребует еще несколько лет упорной работы российских лабораторий, при условии сравнимого с мировыми лидерами уровня инвестиций. Точечные грантовые вложения в российские квантовые технологии осуществлялись как минимум на протяжении последних десяти лет, однако их небольшой, относительно мирового уровня, объем, и слабое взаимодействия между грантополучателями затрудняло быстрое развитие этой области в России. Свою роль здесь сыграло и отсутствие современной технологической базы для создания необходимых для квантовых процессоров микроэлектронных схем центров нанофабрикации , а также сложности с поставками высокотехнологичного измерительного оборудования из-за рубежа криогеники, микроволновых и оптических систем и нехватка специалистов в области квантовых технологий. Цель этой коллаборации — представить к 2024 году работающий прототип квантового процессора на 30-100 кубитах, причем параллельно будут развиваться сразу 4 платформы: на сверхпроводниках, на нейтральных атомах, на ионах и на фотонах. Кто окажется победителем в этой квантовой гонке, покажет время, но важно помнить, что соревнование идет не только между отдельными странами, компаниями и технологическими платформами. Главный вызов брошен самой природе в попытке заставить законы квантового мира работать для решения сложнейших вычислительных задач. Преодоление этого рубежа станет значимой вехой на пути научно-технологического прогресса и откроет новые горизонты для дальнейших исследований и прикладных разработок. Кроме того, как показывает история с космической гонкой, такие состязания дают толчок к развитию множества сопряженных технологий, находящих самое разнообразное применение в повседневной жизни. К примеру, благодаря американской лунной программе было создано около 2 000 новых высокотехнологичных продуктов, включая беспроводные зарядные устройства, солнечные батареи и цифровые камеры, и многое другое. Без сомнений, в ближайшие 5-10 лет квантовая гонка даст не менее интересные плоды и преподнесет нам еще немало сюрпризов! Дефицит и конкуренция Ситуацию в России специально для Naked Science прокомментировал Михаил Насибулин, директор проекта «Развитие квантовых вычислений» Госкорпорации «Росатом»: Квантовые вычисления сегодня находятся на раннем уровне готовности технологии. В связи с этим есть технологическая неопределенность в вопросе выбора оптимальных решений для реализации многокубитных квантовых вычислителей, требующая дальнейших фундаментальных исследований физики квантовых систем и технологий их создания. Эволюция будущих решений будет определяться вектором развития наиболее перспективного квантового аппаратного обеспечения и научно-технологической конъюнктуры в России и в мире. В соответствии с Соглашением о намерениях с Правительством России Госкорпорацией «Росатом» реализуется дорожная карта развития высокотехнологичной области «Квантовые вычисления». План мероприятий дорожной карты которой сформирован с учетом лучших мировых практик и при участии научного и предпринимательского сообществ. Но конкурентным преимуществом создаваемой российской квантовой вычислительной архитектуры является наличие в ней квантовых процессоров, построенных на различных технологических платформах, в том числе четырех приоритетных на основе сверхпроводников, нейтральных атомов, ионов в ловушках и фотонных чипов и перспективных на основе магнонов, поляритонов и спинов. Эти платформы будут построены в рамках единой концепции и будут совместимы с пакетом средств для разработки квантовых приложений и решений проблем оптимизации. Выполнение предусмотренного дорожной картой «Квантовые вычисления» комплекса мероприятий, направленных на формирование необходимой материально-технической базы, обеспечит не только реализацию запланированных НИОКР, но и дальнейший переход к серийному автоматизированному производству российского оборудования и комплектующих, в том числе элементной базы квантовых процессоров, не уступающих мировым аналогам. Бурный рост популярности квантовых вычислений сопровождается глобальным дефицитом квалифицированных кадров в данной области. Требуется стремительное наращивание компетенций высочайшего класса по всему спектру применений — от ученых-физиков, непосредственно занятых над созданием и совершенствованием квантовых компьютеров, квантовых программистов, инженеров и технологов, до потенциальных потребителей и конечных пользователей технологии, для которых специализированные знания в эксплуатации и практическом применении таких систем также будут востребованы. Комплекс необходимых мероприятий, включая работу по развитию кадрового потенциала, мероприятия в сфере высшего профессионального и общего образования, разработка программ дополнительного образования, формирование и развитие профессиональных сообществ с целью усиления необходимых компетенций — предусмотрен в Дорожной карте «Квантовые вычисления». Работа в данном направлении ведется при активном участии и во взаимодействии с российскими ВУЗами и НИЦами, как уже обладающими компетенциями в области квантовой физики, квантовой механики, так и стремящимися развивать данные области. Дефицит кадров естественным путем сопровождается высочайшей конкуренцией за талантливых ученых, представляющих собой уникальный потенциал, способный обеспечить технологический переход на новый уровень. Необходимо создавать условия для работы людей в России, чтобы они не уезжали за рубеж, а реализовывали свои проекты в нашей стране. Также привлекаем ученых и экспертов из других стран — уже сегодня ряд российских ученых вернулись в Россию, получив здесь условия для реализации своих квантовых научных проектов. Что касается прогнозов по созданию и использованию квантового компьютера в России и в мире, то тут хотел бы заметить, что квантовые компьютеры, разрабатываемые в настоящее время в рамках реализации дорожной карты «Квантовые вычисления», являются экспериментальными и не предназначены для коммерческих продаж. Реализация полнофункциональных прототипов всех флагманских продуктов квантовых вычислений, которые в дальнейшем лягут в основу будущих коммерческих решений, запланирована в России к 2025 году.

Квантовый компьютер как способ движения в завтра

Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. С точки зрения физики кубит — это элементарная частица, например электрон, а значение кубита — это значение одного из физических свойств этой частицы. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Именно на базе кубитов такого типа сегодня чаще всего разрабатывают квантовые вычислительные устройства. Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира.

Похожие новости:

Оцените статью
Добавить комментарий