Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0. Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать.
В России создан первый сверхпроводящий кубит
Тогда мы воздействуем на кубиты другим лазером, и каждый кубит приобретает значение 0 либо 1. Это значение мы считываем, записываем, после чего проводим точно такое же вычисление еще раз и снова считываем результат. Проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности. Физически на экране 0 или 1 выглядят так: светится точка-ион или не светится. К нашему квантовому компьютеру можно подключиться через интернет, загрузить свою программу на платформу облачного доступа и выполнить ее у нас. Программист нажимает кнопку запуска, а мы в лаборатории следим, чтобы все работало. Алгоритмы в рамках дорожной карты по квантовому процессору создает в Российском квантовом центре научная группа Алексея Федорова, он же руководит лабораторией Московского института сталей и сплавов в рамках проекта «Квантовый интернет». Алгоритм, который запускал на нашем компьютере президент, уже не совсем простой.
Он позволяет промоделировать зависимость потенциальной энергии двух атомов от расстояния между ними, то есть посчитать потенциальную энергию молекулы. Бывают простые химические реакции, которые можно посчитать, а для этого надо знать кривую потенциальной энергии. Расчет можно выполнить и на обычном компьютере, но чем больше молекула, тем сложнее задача для расчета ее потенциальной энергии. Например, для формальдегида такую задачу на обычном компьютере решить невозможно. Мы же точно квантово-механически рассчитываем все волновые функции, то есть положения всех электронов, и вычисляем кривую. Такой компьютер в России сейчас один. По-видимому, алгоритмы квантовой химии будут одними из первых, на которых будет показано полезное квантовое превосходство, то есть квантовый компьютер будет работать быстрее классического.
Но я не очень глубоко погружен в тему алгоритмов. С помощью облачной платформы на нем был запущен алгоритм расчета простой молекулы Следующий уровень — Вы сказали, что сегодня ваша оптическая система находится в глубокой модернизации. Во всех компаниях в мире существует довольно большой зазор между началом управления регистром и запуском реальной программы. Это связано и с настройками, и с созданием такой программы. Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли. Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать.
Улучшенное распознавание образов позволит медицинским работникам быстрее диагностировать и лечить заболевания по снимкам МРТ. Некоторые специалисты считают, что сильный ИИ невозможен без квантовых компьютеров. Современные суперкомпьютеры не обладают мощностью для моделирования человеческого мозга с химическими взаимодействиями между отдельными частями нервных клеток. Даже с учетом закона Мура такие компьютеры не появятся и через миллион лет, однако полноценный квантовый компьютер поможет решить эту проблему. Другой областью, которая значительно изменится с появлением квантовых компьютеров, станет криптография. Специалисты обеспокоены тем, что под ударом окажутся криптосистемы с открытыми ключами.
Злоумышленники, использующие достаточно мощные квантовые компьютеры, могут совершить взлом цифровых подписей и основных интернет-протоколов HTTPS TLS , необходимых для безопасного просмотра онлайн-счетов и совершения онлайн-покупок. Квантовые вычисления также поставят под угрозу безопасность систем симметричной криптографии, которая основана на обмене закрытыми ключами. Чтобы сохранить конфиденциальность данных, обмен ключами должен оставаться безопасным. Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем. Специалисты уже работают над решением этой задачи, и NIST Национальный институт стандартов и технологий, США разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году. В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым.
Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования. Полный переход к ним может затянуться на 15-20 лет. Квантовые компьютеры изменят мир и общество Квантовые компьютеры способны привести к резкому прорыву в открытии и разработке новых лекарств, давая ученым и врачам возможность решать задачи, которые невозможно решить сейчас. Специалисты швейцарской фармацевтической компании Roche надеются, что квантовое моделирование ускорит разработку вакцин для защиты от инфекций, подобных COVID-19, лекарств от гриппа, рака и даже болезни Альцгеймера. Квантовое моделирование может заменить лабораторные эксперименты, чем снизит стоимость исследований и сведет к минимуму потребности в тестировании препаратов с участием животных и людей. Квантовые компьютеры потенциально могут ускорить создание новых катализаторов для утилизации СО2 из воздуха или отработанных газов, которые не только сократят выбросы, но и позволят получать ценные нефтехимические продукты.
С помощью «квантового отжига» можно рассчитать траекторию движения каждой частицы воздушного потока над новым типом крыла, что может привести к изобретению новых технологий в аэродинамике. Подобный принцип можно использовать для решения задач оптимизации трафика в городе или потока данных в сети. Ожидаются изменения и в финансовом секторе, где квантовые вычисления поспособствуют более глубокой аналитике и новым торговым возможностям, например, ускорению транзакций и обмена данными. Экспоненциально ускоренные вычисления могут иметь огромное значение для финансового моделирования, что изменит оценку инвестиционных проектов и повлияет на бизнес-стратегии. Компании, которые смогут позволить себе квантовый компьютер, обретут огромное конкурентное преимущество. Источником дохода для компаний, занимающихся квантовыми вычислениями, станут услуги удаленного доступа к их ресурсам.
Хотя в будущем квантовые компьютеры получат широкое распространение, в настоящее время заказчики более склонны к тому, чтобы выполнять квантовые вычисления через облако, а не совершать рискованные инвестиции в дорогостоящее оборудование.
Российский кубит на сверхпроводниках. Кубиты следят друг за другом Алексей Федоров, руководитель научной группы Российского Квантового Центра и Университета МИСИС: - Для того, чтобы нивелировать эффект ошибок при работе классических процессоров используются коды коррекции ошибок. Они настолько быстры, что мы даже не замечаем, как эффективно работает процедура. В квантовом случае коррекция ошибок — гораздо более сложная задача. Хотя бы потому, что невозможно идеально копировать заранее неизвестные квантовые состояния.
Квантовая физика запрещает такую процедуру. Ключевая «хитрость» — избыточное кодирование, в котором для создания одного «идеального» логического кубита используется множество реальных физических. Физические кубиты «подсматривают» друг за другом, чтобы обнаружить ошибку, которую потом можно исправить. Ученые из Йельского университета показали возможность коррекции ошибок в реальном времени с высокой степенью исправления. В качестве физической платформы использовали сверхпроводниковые квантовые процессоры — одну из платформ-лидеров для квантовых вычислений.
Суммарная жизнь нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени. Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда! И что же? Выхода нет? Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды! И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам! Глава 2. Биты и Кубиты Давайте разберемся, в чем же принципиальная разница. Мы знаем, что классический процессор состоит из транзисторов и они могут пропускать или не пропускать ток, то есть быть в состоянии 1 или 0 — это и есть БИТ информации. Кстати, рекомендую посмотреть наше видео о том как работают процессоры. Вернемся к нашему примеру с двумя такси и тремя людьми. Каждый человек может быть либо в одной, либо в другой машине — 1 или 0. Вот все состояния: Для решения процессору надо пройти через абсолютно все варианты один за одним и выбрать те, которые подходят под заданные условия. В квантовых компьютерах используются тоже биты, только квантовые и они принципиально отличаются от обычных транзисторов. Они так и называются Quantum Bits, или Кубиты. Что же такое кубиты? Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Их главное свойство — они способны находиться одновременно в 2 состояниях, то есть в особом состоянии — суперпозиции. Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. Суперпозиция — это нечто потрясающее. Считайте что кубиты — это одновременно открытая и закрытая дверь, или горящая и не горящая лампочка…. В нашем случае они одновременно 1 и 0! Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось. Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики! Квантовый компьютер внутри Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество. И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать. И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Кубит может хранить намного больше информации, чем классический бит. (1) Сформулировать, что такое кубит. Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать.
Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии
Квантовые компьютеры | аж 1,8 миллисекунды. |
В России создан первый сверхпроводящий кубит | Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). |
Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений
Ученые создали свой кубит, заморозив газообразный неон в твердое тело при очень низких температурах, распылив электроны из лампочки на твердое тело и захватив там один электрон. Хотя существует множество вариантов типов кубитов, команда выбрала самый простой — один электрон. Нагрев простой световой нити, такой как в детской игрушке, может легко выпустить безграничный запас электронов. Одним из важных качеств кубитов является их способность оставаться в состоянии 0 или 1 одновременно в течение длительного времени, что известно как «время когерентности». Это время ограничено, и этот предел определяется тем, как кубиты взаимодействуют с окружающей средой. Дефекты в системе кубитов могут значительно сократить время когерентности.
По этой причине команда исследователей решила поймать электрон на сверхчистой твердой поверхности неона в вакууме. Неон является одним из шести инертных элементов, то есть он не вступает в реакцию с другими элементами.
Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами! Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность! И это совсем не предел. Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений.
Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления! IBM предлагает облачный доступ к самым современным квантовым компьютерам. Но зачем вообще нужны квантовые компьютеры и где они будут применяться? Естественно, не для распихивания людей по автобусам. Задач множество. Главная — базы данных и поиск по ним, работа с BigData станет невероятно быстрой. Shazam, прокладывание маршрутов, нейронные сети, искусственный интеллект — все это получит невероятный толчок!
Кроме того симуляции и моделирование квантовых систем! Зачем это надо — спросите вы? Это очень важно, так как появится возможность строить модели взаимодействия сложных белковых соединений. Это станет очень важным шагом для медицины, открывающим просто умопомрачительные просторы для создания будущих лекарств, понимания того как на нас влияют разные вирусы и так далее. Простор огромен! Чтобы вы примерно понимали какая это сложная задачка, мы вернемся в примеру с монеткой. Представьте что вам надо заранее смоделировать что выпадет — орел или решка.
Надо учесть силу броска, плотность воздуха, температуру и кучу других факторов. Ну не так уж! А теперь представьте, что у вас не один человек, который кидает монетку, а миллион разных людей, в разных местах, по-разному кидают монетки. И вам надо рассчитать что выпадет у всех!
В 2022 году Intel представила свой новый квантовый процессор на 144 кубитах, который использует технологию спин-кубитов. Компания также работает над созданием квантового процессора на 1000 кубитах с использованием технологии сверхпроводящих транзисторов. В 2022 году Amazon запустила свой облачный сервис для доступа к квантовым компьютерам — Amazon Braket. Сервис позволяет пользователям экспериментировать с разными типами квантовых процессоров от разных поставщиков, таких как D-Wave, IonQ и Rigetti. В 2022 году Alibaba представила свой первый китайский коммерческий квантовый процессор на 11 кубитах, который также доступен через облачный сервис Alibaba Cloud Quantum Development Platform. Компания также разработала свой собственный язык программирования для квантовых вычислений — Aliyun Quantum Language AQL.
В 2022 году будет построен универсальный квантовый компьютер с облачным доступом 1. Квантовые компьютеры и облачное применение Квантовые компьютеры — это вычислительные устройства, которые используют явления квантовой механики для передачи и обработки данных. Они оперируют не битами, а кубитами, которые могут существовать одновременно в нескольких состояниях. Это позволяет им решать те задачи, на которые обычным компьютерам потребовалось бы очень много времени или ресурсов. Квантовые компьютеры имеют потенциал применения в разных областях, таких как химия, биология, транспорт, медицина и криптография. Однако построение полноценного универсального квантового компьютера является сложной и дорогостоящей задачей, которая требует новых открытий и достижений в физике. Поэтому некоторые компании предлагают использовать квантовые компьютеры через облако. Это означает, что пользователи могут получать доступ к квантовым вычислениям через интернет, не имея собственного квантового компьютера. Такой подход имеет ряд преимуществ: Уменьшение стоимости и сложности владения и обслуживания квантового компьютера. Увеличение доступности и масштабируемости квантовых вычислений для широкого круга пользователей и приложений.
Ускорение развития и инноваций в области квантовых технологий. Они предлагают разные платформы и сервисы для работы с квантовыми компьютерами, такие как: IBM Quantum Experience — платформа для создания и запуска квантовых алгоритмов на реальных или симулированных квантовых процессорах IBM. Google Quantum AI — платформа для разработки и тестирования квантовых приложений на квантовых процессорах Google или с помощью симулятора Cirq. D-Wave Leap — сервис для доступа к адиабатическим квантовым компьютерам D-Wave, которые специализируются на решении задач оптимизации. Для использования этих платформ и сервисов пользователи должны зарегистрироваться на сайтах компаний и следовать инструкциям для подключения к квантовым компьютерам. Также они должны знать основы квантового программирования и использовать специальные языки или фреймворков. Примеры квантовых приложений Квантовые компьютеры могут быть использованы для решения различных задач, которые трудно или невозможно выполнить на классических компьютерах. Некоторые из этих задач включают: Квантовая химия — моделирование молекулярных структур и реакций с помощью квантовых алгоритмов. Это может помочь в разработке новых лекарств, материалов и катализаторов. Квантовая оптимизация — поиск оптимальных решений для сложных задач, таких как распределение ресурсов, планирование маршрутов и расписание производства.
Это может помочь в повышении эффективности и снижении затрат в разных отраслях. Квантовая криптография — обеспечение безопасности передачи и хранения данных с помощью квантовых протоколов, таких как квантовый ключевой распределение. Это может помочь в защите от кибератак и шпионажа. Квантовое машинное обучение — применение квантовых алгоритмов для анализа и классификации больших объемов данных. Это может помочь в распознавании образов, прогнозировании и рекомендациях. Для демонстрации возможностей квантовых компьютеров некоторые компании и организации уже проводят эксперименты с квантовыми приложениями. Например: Google совместно с NASA и USRA использовал свой 53-кубитный квантовый компьютер Sycamore для моделирования химической реакции гидрогена с нитрогеназой — ферментом, который участвует в фиксации азота в почве. IBM совместно с ExxonMobil использовал свой 20-кубитный квантовый компьютер IBM Q для оптимизации распределения грузопотоков в нефтехимическом комплексе. Microsoft совместно с Case Western Reserve University использовал свою платформу Azure Quantum для обработки медицинских изображений с помощью квантового машинного обучения. D-Wave совместно с Volkswagen использовал свой 2000-кубитный адиабатический квантовый компьютер D-Wave 2000Q для планирования оптимальных маршрутов для такси в Пекине.
Так же и с битами. Внутри компьютера это устроено так: на материнской плате находится миллион транзисторов — полупроводников, которые нужны для управления электрическим током; каждый из транзисторов либо закрыт позиция 0 , либо открыт позиция 1 и пропускает ток, при этом электроны пробегают по транзистору со скоростью, близкой к скорости света; пока транзистор включается и выключается, компьютер может производить вычисления — любая информация представляется в виде чисел, благодаря переключению с позиции 0 на 1 и наоборот. Квантовый компьютер подчиняется другим законам. И тут важны два понятия: Квантовый компьютер — это вычислительное устройство, в котором используются явления квантовой механики для обработки данных. Вероятность Классическая механика основана на детерминизме: транзистор либо включен, либо нет, кран или закрыт, или открыт.
В квантовой механике во главе угла вероятность. Вопрос «Свет включен? Все знают про мысленный эксперимент физика-теоретика Эрвина Шредингера. Правда, мы слишком любим котиков, поэтому лучше покажем мем с тарелками. В ходе эксперимента Шредингера возникает суперпозиция Тарелки Шредингера одновременно находятся в двух состояниях — мы не знаем, какие из них разобьются, а какие останутся целы.
Зато можем предсказать это, основываясь на траектории их падения, циркуляции воздуха в помещении и скорости открытия дверцы. То есть можем математически подсчитать вероятность того, что они разобьются. Своеобразное математическое гадание. Суперпозиция Вместо битов квантовый компьютер использует кубиты — это частица, которая может находиться в позиции 1, 0, между ними, а также одновременно во всех возможных состояниях… с какой-то вероятностью. Нахождение в любой из комбинаций называется суперпозицией.
Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0 И вот тут-то загвоздка — значение этой частицы зависит от многих факторов, в том числе и измерения. Мы не знаем точно, в каком именно состоянии находится кубит, пока не решим его измерить. Запутано, правда? Благодаря кубитам со сложными задачами, на решение которых даже суперкомьютеру нужны недели, квантовый справится за считанные минуты. Какие задачи может решать квантовый компьютер Кубиты помогают быстро обрабатывать данные, поэтому их применение почти безгранично: Медицина Квантовые технологии уже применяют для ускоренной разработки, тестирования лекарств и диагностики некоторых заболеваний на ранней стадии.
Например, FAR Biotech исследует биоактивные молекулы и белки и новые структурные классы, которые невозможно было бы обнаружить без мощных квантовых компьютеров.
Количество кубитов в квантовых компьютерах — это обман. Вот почему
Собственно он и хранит информацию. Физически кубит делают на основе сверхпроводников, в которых за счет электрического тока удается реализовать необходимые для вычисления состояния — или О, или 1. Как и в традиционных компьютерах. Принципиальное отличие в том, что кубит может находиться еще и в так называемой суперпозиции — то есть, принимать промежуточные состояния. Понять это простым смертным не стоит и пытаться — квантовый мир полон причудами. Но именно они и позволят в будущем фантастически увеличить скорость и мощность вычислений. Однако есть препятствия. Кубиты — «создания» очень нежные, если можно так выразиться. Чувствительны к внешним возмущениям — чуть что «погибают».
То есть, утрачивают свои энергетические состояния.
Сначала они были относительно простыми и не очень точными, но со временем их точность повышалась, а сложность росла. Их изучением и развитием занимается вычислительная квантовая химия. Сейчас каждый год собираются огромные конференции, на которых тысячи учёных делятся последними достижениями в этой области. И хотя компьютеры могут уже очень многое — вплоть до предсказания эффективности действия инновационного лекарства — последнее слово, как и 100 лет назад, остаётся за экспериментами.
Все вычисления будут делать квантовые симуляторы, и будут делать их точнее и быстрее, чем мы». Чего же так боятся квантовые химики? Идея квантовых симуляторов восходит к статье знаменитого физика Ричарда Фейнмана, опубликованной в 1982 году. В ней нобелевский лауреат высказал относительно простую мысль. Если у нас будут квантовые компьютеры, то есть компьютеры, которые совершают вычисления по квантовым законам, то было бы вполне естественно в первую очередь использовать их для вычислений, связанных с квантовыми системами, — в частности, для вычислений в квантовой химии.
И действительно, как показали дальнейшие исследования, это возможно. И более того, такие вычисления смогут в полной мере задействовать уникальные возможности квантовых компьютеров, то есть они будут выполняться значительно быстрее, чем на компьютерах обычных. Это позволит решать задачи точного расчёта химических реакций за разумное время и заменить дорогостоящие прямые эксперименты на более дешёвые вычисления. Более того, одна из проблем квантовых компьютеров — разрушающее действие окружающей среды, не позволяющее подолгу сохранять квантовую суперпозицию, — в квантовых симуляторах может быть использовано для пользы дела. Ведь реальные квантовые системы тоже находятся в окружении других тел, которые точно так же разрушают квантовые эффекты в них.
Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Применение квантовых симуляторов Сейчас уже созданы первые, самые простые квантовые симуляторы. Так, в 2010 году группа экспериментаторов из Квинслендского университета в Австралии и Гарвардского университета в США сообщила, что им удалось рассчитать свойства самой простой молекулы — молекулы водорода — с достаточной для химиков точностью при помощи квантового симулятора, кубиты которого были основаны на «частицах» света — фотонах. Молекула водорода пока остаётся основным объектом, который исследуют на квантовых симуляторах, но сами симуляторы при этом с каждым годом улучшаются. Работа ведётся в нескольких направлениях.
В чем заключается достижение вашей лаборатории? Достижение здесь пока, конечно, местного значения, работа только начинается. Схема кубита, которую мы использовали, была предложена еще 13 лет назад, а первый работающий вариант появился лет 10-11 назад.
В данном случае достижением является то, что такой кубит был впервые померян в России. И трудности здесь состоят как в возможности получения низкой температуры, так и в том, что для проведения эксперимента необходимо сделать довольно большой набор непростых действий, чтобы экранировать кубит от влияния внешних паразитных магнитных полей чтобы мерить при помощи специальных микроволновых устройств. В кубите же суперпозиция состояний.
Что значит «мерить кубит»? Опять-таки, измерение кубита можно делать по-разному, точного значения у этого термина нет. Если мы теперь немного изменим внешнее магнитное поле, то одно из этих состояний станет более выгодным.
В квантовом случае индуктивность определяется током, протекающим через джозефсоновский переход, поэтому ведет себя как так называемая параметрическая индуктивность. Это изменение мы и регистрируем. Для этого на частоте порядка 10 гигагерц мы посылаем к кубиту электромагнитный сигнал.
При прохождении через образец у этого сигнала сдвигается фаза. Этот сдвиг вызывает изменение состояния кубита, которое влияет на индуктивность некоторой измерительной цепи, находящейся рядом с кубитом. Усиленный сигнал при этом по кабелю поступает в прибор, который позволяет уже при комнатной температуре мерить фазу сигнала.
В центре желтая дверь видна чистая комната. Ее монтаж пока еще не закончен. Цель эксперимента, который мы поставили, была пока самой простой из тех, которые только возможны.
Мы не манипулировали квантовым состоянием, мы фактически установили, что у объекта существуют два уровня, соответствующих состояниям ноль и один. Мы также измерили частоту перехода между этими уровнями под действием микроволновых фотонов, которая зависела от внешнего магнитного поля, то есть померили спектр нашего квантового устройства. Вообще, когда мы измеряем кубит при помощи изменяющейся индуктивности, мы фактически меряем вероятность пребывания кубита в возбужденном состоянии состояния с энергией выше минимальной.
Поскольку кубит связан со всей окружающей средой, он живет там не бесконечно. Сколько живет ваш кубит? Это не так много по современным достижениям.
Но еще несколько лет назад характерные времена были наносекунды, то есть за 13 лет произошел прогресс примерно в миллион раз. Кубиты, которые мы здесь мерили, соответствуют среднему уровню на настоящий момент.
Лебедева РАН при координации Росатома. А уже до конца текущего года в России может появиться 20-кубитный квантовый компьютер. Также, как пишет www1.
Как работают квантовые процессоры. Объяснили простыми словами
Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Начнем с понятия кубита и его отличий от бита классических компьютеров. В последние несколько лет в заголовках научных статей и новостей все чаще стали упоминаться квантовые компьютеры. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат.
Будущее квантовых компьютеров: перспективы и риски
Что такое квантовый компьютер? Разбор | | Поэтому для квантовых компьютеров придумали единицу информации кубит (от английского quantum bit). |
Количество кубитов в квантовых компьютерах — это обман. Вот почему | Что такое кубит, для чего он нужен и как физически может быть реализован? |
ЧТО ТАКОЕ КУБИТ | (1) Сформулировать, что такое кубит. |
Миллион задач в секунду: как работают квантовые компьютеры
Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. «В области производства квантовых компьютеров всё идёт в соответствии с графиком, 20 кубитов нам обещает Росатом показать в конце этого года. В качестве физического кубита используются фотоны, нейтральные атомы, ионы, квантовые точки, примеси в кристаллах.
Квантовые компьютеры: как они работают — и как изменят наш мир
Это позволило увеличить разрядность каждого кубита без увеличения их физического количества, что в свою очередь повысило производительность. В этом году система стала насчитывать уже 16 кубитов, и ученые обещают представить 20-кубитовый процессор уже в следующем году. Если будет использовано увеличение разрядности через кудиты, то план развития квантовых технологий в России не только будет выполнен, но может быть даже превышен. Проект запустили в 2019 году.
В мире существуют квантовые компьютеры на ионах, использующие для вычислений до 32 кубитов. Также по теме.
Это 2 в тысячной степени — больше, чем количество атомов в наблюдаемой Вселенной! Если у вас 53 кубита, как в «Сикоморе» от Google, то получится 2 в степени 53, или около 9 квадриллионов значений. В чем суть эксперимента по квантовому превосходству?
Цель эксперимента Google — с помощью 53 кубит «Сикомора» произвести вычисление, для симуляции которого обычному компьютеру действительно понадобилось бы 9 квадриллионов шагов. Кубиты в «Сикоморе» расположены в прямоугольной сетке, которая позволяет каждому кубиту взаимодействовать с соседними. От обычного компьютера снаружи холодильной камеры к «Сикомору» идет сигнал, сообщающий каждому кубиту, как ему себя вести, с каким из соседей взаимодействовать и когда. Иначе говоря, это программируемое устройство — именно поэтому оно и называется компьютером. В конце все кубиты измеряют, получая случайную строку из 53 битов.
Какая последовательность взаимодействий используется для получения этой строки, неважно. В эксперименте Google они были случайными. Затем можно снова выполнить ту же самую последовательность, чтобы сэмплировать другую случайную 53-битную строку точно таким же образом — и так далее, так часто, как вам нужно. По оценке Google, чтобы повторить пробное вычисление, которое заняло у «Сикомора» 3 минуты 20 секунд, понадобилось бы 10 тысяч лет и 100 тысяч традиционных компьютеров, на которых запущены самые быстрые на сегодняшний день алгоритмы. Эта задача так сложна, что с помощью обычного компьютера оказалось невозможно даже проверить результаты вычисления!
Так что для проверки работы квантового компьютера в самых сложных случаях Google полагался на аналогии с более простыми. Почему IBM говорит, что Google ничего не достиг Компания IBM, которая сконструировала свой собственный 53-кубитный процессор, тут же опубликовала опровержение. Компания заявляет, что с помощью мощнейшего суперкомпьютера на планете она сможет повторить эти вычисления за 2,5 дня, а не за 10 тысяч лет. Для этого понадобится суперкомпьютер Summit в Национальной лаборатории Ок-Риджа в штате Теннесси, площадь которого занимает пару баскетбольных полей. IBM утверждает, что может записать все 9 квадриллионов возможных состояний, используя не умещающиеся в моем воображении 250 петабайт физической памяти суперкомпьютера.
Что характерно, IBM не считает, что такое моделирование будет легким: на момент написания этой статьи компания так и не провела его. Кто и что в итоге доказал? Сегодня мощнейшие суперкомпьютеры планеты с героическим усилием всё еще могут продемонстрировать малую долю мощности квантовых компьютеров. Но сам факт того, что в компьютерной гонке обычный и квантовый компьютер сравнялись, заставляет предположить, что очень скоро кое-кто вырвется вперед. Будь у Google процессор не на 53 кубита, а на 60, для проверки результатов компании IBM понадобилось бы уже 30 суперкомпьютеров Summit.
А на проверку 70 кубитов нужен суперкомпьютер величиной с огромный город.
Строго говоря, сжатые состояния не являются кубитами. Кубит является лишь подмножеством пространства сжатых состояний. И телепортационные гейты не обеспечивают возможности произвольной трансформации сжатого состояния. Однако если специально выделить из сжатого состояния кубит, то и это ограничение удаётся преодолеть. Более того, оставшиеся степени свободы сжатого состояния можно использовать для дублирования состояний кубита, и таким образом реализовывать коррекцию ошибки.
Он обеспечивает устойчивую коррекцию ошибок, если степень сжатия состояния, то есть отношение дисперсии квадратур, достигает 15-17дБ, а в теории — 10дБ [24]. Экспериментальные же результаты сегодня демонстрируют техническую возможность достижения сжатия состояния до 15 дБ, чего может быть достаточно для экспериментальной демонстрации коррекции ошибки. Таким образом для оптической архитектуры удалось преодолеть фундаментальные ограничения реализации запутывающего гейта, технически показана возможность создания регистра до 1000000 кубитов, архитектура включает естественный механизм коррекции ошибки, а продемонстрированный уровень шумов находится на границе устойчивой коррекции. Безусловно, все эти результаты были продемонстрированы в независимых экспериментах, опубликованные значения являются пиковыми и разработка единого вычислителя, использующего все представленные технологии, представляет собой сложнейшую инженерную задачу. Но необходимо констатировать, что имеющиеся результаты позволяют перевести оптическую архитектуру из ранга потенциально перспективного кандидата для реализации масштабируемого квантового вычислителя на дальних временных горизонтах в ранг актуального игрока. Это демонстрирует канадская компания Xanadu, 1 июня 2022 года представившая в публичном доступе вычислитель на сжатых состояниях с регистром из 216 оптических мод [26].
Заключение С учётом всего вышеизложенного, можно вернуться к представлению об интеграции квантовых вычислений в индустрию информационных технологий. Отрасль в целом демонстрирует ожидаемый планомерный рост, сопряженный с последовательным решением инженерных задач. Это отражается в появлении квантовых вычислителей с большими чем раньше объёмами квантовых вычислительных регистров. Доминирующей архитектурой остаются кубиты на основе сверхпроводников. Однако малое время жизни кубитов данного типа, связанное с их большой чувствительностью к шумам и необходимостью криогенного охлаждения, ставит под вопрос величину нереализованного потенциала масштабируемости данной технологии. Можно ожидать, что в ближайшие 3-5 лет технология будет оставаться основной, но в дальнейшем может уступить более устойчивой архитектуре.
Примером более устойчивой архитектуры могут послужить кубиты на основе холодных атомов. В ближайшее время можно ожидать публикации с демонстрацией рекордной степени точности двухкубитного гейта, построенного на основе подхода с наносекундным временным масштабом. Совершенствование и масштабирование данной технологии может привести к появлению программируемого атомного вычислителя с рекордным количеством кубитов. Наиболее перспективными на дальнем временном горизонте остаются вычислители на основе оптических схем. Исследования последних лет в значительной мере конкретизировали понимание того, как должен быть устроен оптический вычислитель большого масштаба с коррекцией ошибок. То есть устройство, полностью выводящее отрасль квантовых вычислений из эпохи NISQ.
Можно со значительной степенью уверенности утверждать, что это будет система с кубитами на основе сжатых состояний с непрерывными переменными. Главными ограничениями для такого вычислителя остаётся неизбежное возникновение ошибки телепортационного гейта из-за невозможности сжать квадратуру квантового состояния до нуля, а также потери излучения в волокне. Существенными шагами в направлении к созданию масштабируемого оптического вычислителя станет экспериментальная демонстрация устойчивой коррекции ошибки и исполнение вычислителя такого типа в виде интегрально-оптической схемы. Облачные квантово-вычислительные сервисы могут начать внедряться в программные продукты для решения задач оптимизации при помощи вариационных алгоритмов уже в обозримом будущем, на горизонте 5-7 лет. Наиболее вероятно, что аппаратным обеспечением данных сервисов будут оставаться вычислители на основе сверхпроводящих схем или холодных атомов. Значительное развитие может получить инфраструктура квантовой оптической связи, призванная, в первую очередь, решать задачи обеспечения информационной безопасности.
Можно ожидать, что со временем данные сети будут усложняться, переходя на обмен состояниями более высокой размерности и обеспечивая реализацию коррекции ошибок за счёт простых интегрально-оптических устройств. В отдалённой перспективе, на горизонте 15 и более лет, это может привести к созданию разветвлённой квантово-коммуникационной сети, объединяющей, в том числе, оптические квантовые компьютеры, что позволит использовать квантово-вычислительные ресурсы более широко и эффективно. КРК квантовый компьютер квантовые вычисления Список литературы F. Arute, K. Arya, John M. Martinis et al.
Zhou, E. Stoudenmire, X. Waintal, What limits the simulation of quantum computers? Zlokapa, S. Boixo, D. Lidar, Boundaries of quantum supremacy via random circuit sampling, arxiv.
Computing 26, 1484 — 1509 1997 L. X 8, 031027 2018 M. Cerezo, A. Arrasmith, R. Babbush et al. Wang, Sh.
Hanzo Variational quantum attacks threaten advanced encryption standard based symmetric cryptography, Science China Information Sciences, 65, 200503 2022 Quantum-centric supercomputing: The next wave of computing, research. Wang, Mikhail D. Lukin et al. Fast quantum gates for neutral atoms. Chew, T. Tomita, T.
Mahesh et al. Knill, R. Laflamme, and G. Milburn, A scheme for efficient quantum computation with linear optics, Nature, 409, 46—52 2001 K. Miyata, H.
Однако, если система, хранящая информацию, изменяется сама по себе, она бесполезна для вычислений. К сожалению, кубиты чувствительны к окружающей среде и не сохраняют свое состояние очень долго. Прямо сейчас квантовые системы подвержены множеству "шумов", которые вызывают у них низкое время когерентности время, в течение которого они могут поддерживать свое состояние или приводить к ошибкам. Даже если вы сможете уменьшить этот шум, ошибки все равно будут. Чем больше кубитов у вас в игре, тем больше этих проблем умножается. Хотя самые мощные современные квантовые компьютеры имеют около 50 кубитов, вполне вероятно, что им потребуются сотни или тысячи для решения тех проблем, которые мы хотим от них. Какие бывают кубиты? Сообщество ученых и инженеров еще не пришло к единому решению в вопросе о том, какая из известных технологий кубитов является лучшей. По мнению большинства, у разных типов имеются разные области применения. Помимо вычислений, различные квантовые материалы могут быть полезны для квантового зондирования или сетевой квантовой связи. Сверхпроводящие кубиты Сверхпроводящие кубиты в настоящее время являются самой передовой технологией кубитов. Большинство существующих квантовых компьютеров используют сверхпроводящие кубиты, в том числе тот, который "побеждает" самый быстрый суперкомпьютер в мире. Они используют многослойные структуры металл-изолятор-металл, называемые джозефсоновскими переходами. Чтобы превратить эти материалы в сверхпроводники — материалы, через которые электричество может проходить без потерь, — ученые остужают их до очень низких температур. Помимо прочего, пары электронов когерентно движутся через материал, как если бы они были отдельными частицами. Это движение делает квантовые состояния более долгоживущими, чем в обычных материалах. Сейчас все усилия по разработке сосредоточены не изучении того, как улучшить джозефсоновский переход, тонкий изолирующий барьер между двумя сверхпроводниками в кубите. Влияя на то, как движутся электроны, этот барьер позволяет управлять уровнями энергии электронов. Сделав это соединение как можно более непротиворечивым и маленьким, можно увеличить время когерентности кубита. В одной статье об этих соединениях авторы предлагают рецепт создания восьмикубитного квантового процессора, дополненный экспериментальными ингредиентами и пошаговыми инструкциями. Кубиты с использованием дефектов Дефекты — это места, в которых атомы отсутствуют или неправильно размещены в структуре материала. Эти пространства меняют способ движения электронов в материалах. В некоторых квантовых материалах эти пространства захватывают электроны, позволяя исследователям получать доступ и управлять их спинами. В отличие от сверхпроводников, эти кубиты не всегда должны находиться при сверхнизких температурах. У них есть потенциал, чтобы иметь долгое время согласования и производиться в больших масштабах. Хотя алмазы обычно ценят за отсутствие недостатков, их дефекты на самом деле весьма полезны для кубитов. Добавление атома азота к месту, где обычно находится атом углерода в алмазах, создает то, что называется центром вакансий азота.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Именно на базе кубитов такого типа сегодня чаще всего разрабатывают квантовые вычислительные устройства. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. При успешной реализации планов, квантовый компьютер на базе 12 сверхпроводящих кубитов станет крупнейшим достижением российских ученых в этом направлении. За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы).
В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений
Квантовые компьютеры: как они работают — и как изменят наш мир | Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. |
Что такое кубит? | или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. |