Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз). обо всем этом читайте в нашей статье. Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду.
T-CUP: самая быстрая в мире камера снимает 10 триллионов кадров в секунду
Исследователи сообщают о том, что некоторые люди обладают способностью воспринимать мир с более высокой "частотой кадров" по сравнению с другими. Сколько кадров в секунду видит человек, теперь вам известно. Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз). Сколько кадров способен уловить человеческий глаз?
Сколько fps воспринимает человеческий глаз?
Но периферией наших глаз мы невероятно хорошо обнаруживаем движение. Когда периферийное зрение заполняет экран с частотой обновления 60 Гц или более, многие люди сообщают, что у них есть сильное ощущение, что они физически движутся. Отчасти именно поэтому VR-гарнитуры, которые могут работать с периферийным зрением, обновляются так быстро 90 Гц. Также стоит подумать о некоторых вещах, которые мы делаем, когда играем, скажем, в шутер от первого лица. Мы постоянно контролируем взаимосвязь между движением мыши и обзором в перцептивном контуре моторной обратной связи, мы ориентируемся и перемещаемся в трехмерном пространстве, а также ищем и отслеживаем врагов. Поэтому мы постоянно обновляем наше понимание игрового мира с помощью визуальной информации. Бьюзи говорит, что преимущества плавных, быстро обновляющихся изображений заключаются в нашем восприятии крупномасштабного движения, а не мелких деталей. Но как быстро мы можем воспринимать движение? После всего, что вы прочитали выше, вы, вероятно, догадывайтесь, что точного ответа на этот вопрос нет. Но есть несколько окончательных ответов, например: вы определенно можете почувствовать разницу между 30 Гц и 60 Гц.
Какую частоту кадров мы действительно видим? Итак, одно из заявлений в интернете было отменено. А поскольку мы можем воспринимать движение с большей частотой, чем мерцающий источник света с частотой 60 Гц, уровень должен быть выше, но он не будет стоять рядом с числом.
Страны, в которых частота напряжения составляла 60 Гц, такие как США и Япония, приняли решение на введение телевидения на скорости 30 кадров в секунду, а страны с частотой 50 Гц в основном, в Европе и Азии выбрали стандарт 25 кадров в секунду. Цифровая эра принесла огромные технологические изменения. Во-первых, большинство камер и дисплеев может поддерживать несколько различных скоростей записи, так что вы можете продолжать использовать все старые стандарты частоты кадров. Во-вторых, появились новые возможности. Спецификации High Definition HD и Ultra High Definition UHD или в народе 4K используют 60 кадров в секунду, что позволяет разработчикам записывать более динамичные фильмы, и даже создавать качественные иллюзии трехмерного изображения. Для чего это нужно? Практическая польза от этих исследований в следующем: увеличение скорости мелькания кадров на экране как бы сглаживает изображение, создавая эффект непрерывного движения.
Для просмотра стандартного видео самым оптимальным считается скорость 24 кадра в секунду, именно так мы смотрим кинофильмы в кинотеатрах. А вот новый широкоэкранный формат IMAX использует кадровую частоту равную 48 кадрам в секунду. Это создает эффект погружения в виртуальную реальность с максимальным приближением к реальности. Это ощущение может быть еще больше усилено применением 3D-технологий. При создании компьютерных игр разработчики используют цикл из 50 кадров в секунду. Это делается для достижения максимальной реалистичности игровой реальности. Но здесь имеет свое значение и скорость интернета, поэтому частота кадров может меняться в меньшую или большую сторону. Мы рассмотрели, сколько кадров в секунду видит человек. Читайте также: Глаза могут менять цвет с возрастом. Почему меняется цвет глаз у человека?
Фото, причины и значение Редактор PC Gamer Алекс Уилтшир Alex Wiltshire поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым. Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50. Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью. Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом. Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Как проводят исследования?
Если представить свет в виде радуги, то сначала событие будет зафиксировано красными длинами волн, затем оранжевыми, желтыми и далее по спектру до фиолетового. Поскольку событие происходит так быстро, к тому времени, когда каждый последующий «цвет» достигает его, оно выглядит по-другому, позволяя импульсу уловить все изменения за невероятно короткий период времени.
Затем этот световой импульс проходит через множество компонентов, которые фокусируют, отражают, дифрагируют и кодируют его, пока он, наконец, не достигает датчика камеры. После сигнал преобразуется в данные, которые могут быть реконструированы компьютером в окончательное изображение.
Качественное изображение Два потока основной 2 Мп и дополнительный обеспечивают высокое качество видео, на котором возможно рассмотреть мельчайшие детали и одновременно настроить передачу сжатых данных по каналам связи.
Динамический диапазон DWDR позволяет максимально настроить контрастность и четкость изображения, работают функции подавления шума 3DNR и компенсация фоновой засветки. Эффективная компрессия Для сжатия видео без потери качества данных применяются последние версии кодеков H. Основной поток позволяет задать область интереса ROI c максимальным разрешением без «утяжеления» всего кадра. Сменный объектив Камера DS-I203 D может быть оснащена двумя вариантами объектива 2,8 мм или 4 мм с креплением м12.
Удобство заключается в возможности замены оптики в видеокамере, если объектив перестал работать. Второй вариант более экономичен финансово и по времени инсталляции. Она работает в морозы до -400 и способна выдерживать эксплуатацию в воде благодаря высокой герметичности IP67. Сенсор обладает светочувствительностью 0,005 лк, обеспечивая тем самым цветное качество изображения при любом освещении.
В темное время суток камера переходит в черно-белый режим после автоматического перехода на ИК-подсветку с длиной обзора 30 метров. Достоинства камеры: Возможность хранения данных в облаке и подключение к видеокамере дистанционно на любом гаджете с помощью мобильных приложения для iOS и Android. Наличие штатного микрофона для фиксации звука на видео и мониторинга звуковых сигналов в радиусе видеонаблюдения. Набор функций для улучшения качества изображения: 3DNR шумоподавление, настройка максимальной контрастности DWDR, защита от фоновой и передней засветки.
Современная технология Starlight для съемки качественного видео при любом уровне освещенности. Возможность создать четыре зоны интереса ROI. Интеллектуальный анализ видео: обнаружение вторжения в область и пересечения линии. Отправка Push-уведомлений на мобильное устройство при срабатывании сигнализации и возможность быстрого подключения к камере для наблюдения в режиме реального времени.
Предусмотрена запись видео на карту памяти до 256 Гб с в случае перебоев связи. Электропитание по витой паре технология PoE.
T-CUP: самая быстрая в мире камера снимает 10 триллионов кадров в секунду
Это единицы измерения, которые были придуманы, чтобы отслеживать скорость возникновения изображения на экране. Каждый кадр является, по сути, неподвижным изображением, а заявление «60 кадров в секунду» означает, что каждую секунду на экране появляется 60 неподвижных изображений. Воспринимайте это как процесс перелистывания книги, где каждая страница помещается в кадр. Чем быстрее вы листаете книгу, тем больше кадров в секунду вы видите. Вот только вместо кадров человеческое зрение задействует непрерывный поток информации от глаз, который поступает в мозг человека в виде электрических сигналов. Подписывайтесь на наш Телеграм Кроме того, расширяя понятие FPS, стоит учитывать герцы Гц — это предел аппаратного обеспечения, на котором дисплей монитора может обновлять изображение на экране. Например, монитор с частотой обновления в 45 Гц может демонстрировать разрывы изображения и пропуск кадров, если на нём воспроизвести видео с частотой 60 FPS, особенно при отсутствии технологии переменной частоты обновления. Именно по этой причине геймеры нуждаются в мониторах с частотой обновления 120 Гц и выше, так как в случае использования дисплея с более низкой частотой они могут заметить размытость при движении или мерцание. Откуда взялся миф про ограничения человеческого глаза На текущий момент довольно проблематично приписать возникновения мифа о том, что вы не можете видеть больше 60 кадров в секунду, какому-то конкретному ресурсу или человеку.
Взгляните на график ниже. На нем изображена зависимость светимости пикселя от времени. Сначала он был темным. Затем пришла команда изменить цвет 40 мс. Современные игровые матрицы заточены на максимальную скорость, которая достигается усиленным сигналом. В результате цвет пикселя «перескакивает» нужное значение и выравнивается следующие 50!!! Вдумайтесь, значение достаточно большое, ведь при FPS 60 на 1 кадр приходится всего 16 мс. Потому что им нужно 50 мс что бы попасть точно в заданное значение, а кадр сменится уже через 16. Иными словами формально мы можем получить 60 кадров в секунду. Но физические это не «чистые» и «четкие» 60 кадров, а кадры со «шлейфом» «промахами» и артефактами. Что происходит на 120 Гц мониторе Представим, что мы наблюдаем за движущимся слева направо прямоугольником. На 2 разных мониторах: 60 и 120 Гц соответственно. Кадры сняты с периодом 8,3 мс что соответствует 120 Гц. Естественно на 120 Гц он перемещается более плавно. А это значит, что физический размер каждого «перемещения» будет в 2 раза меньше. А ведь именно эта зона содержит артефакты, представляющие собой своеобразный шлейф, который очень негативно сказывается на восприятии картинки.
По крайней мере на это указывает новое исследование. Работа под названием "Скорость зрения: индивидуальные различия в пороговых значениях критического мерцания", опубликованная в журнале Plos One , описывает эксперимент, в котором участникам было сказано наблюдать за быстро мигающим источником света и определять, когда он переходит в непрекращающийся сигнал. Некоторые воспринимали свет как устойчивый луч, когда он мигал около 35 раз в секунду, в то время как другие все еще могли определить, что свет мерцает с частотой 60 раз в секунду или выше. Исследование повторялось несколько раз с теми же участниками, и исследователи обнаружили, что, хотя между отдельными людьми наблюдались значительные различия, испытуемые, которые могли воспринимать мигание света на более высоких частотах, были способны делать это неоднократно.
Как так? Дело в том, что подобные сравнения некорректны. Гц и FPS это совершенно разные величины и они не тождественны, как подразумевают многие пользователи. FPS это кадры в секунду которые отображаются матрицей монитора. Гц это количество сигналов поступающих на матрицу. Казалось бы а ни «одна ли фигня»? Нет, ни одна. Артефакты матриц Человеческий глаз воспринимает 60 FPS. Но мы забываем, что изображение, которое выводится на монитор не является «идеальным»: оно содержит артефакты. Взгляните на график ниже. На нем изображена зависимость светимости пикселя от времени. Сначала он был темным. Затем пришла команда изменить цвет 40 мс. Современные игровые матрицы заточены на максимальную скорость, которая достигается усиленным сигналом. В результате цвет пикселя «перескакивает» нужное значение и выравнивается следующие 50!!! Вдумайтесь, значение достаточно большое, ведь при FPS 60 на 1 кадр приходится всего 16 мс.
Сколько человеческий глаз видит кадров в секунду?
Новые исследования показывают, что некоторые люди способны видеть больше “изображений в секунду”, чем другие, а это означает, что они от природы лучше замечают или отслеживают быстро движущиеся объекты, такие как теннисные мячи. Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз). Глаз человека это не камеру, у него нет усредненного значения фпс, которое стабильно всегда. Максимально можно видеть 77 кадров в секунду.
Плавнее, еще плавнее: о 24 кадрах в секунду и выше
Не забывайте, что наше восприятие уникально, и каждый из нас может видеть и интерпретировать иллюзии по-своему. Интерпретация движения Человеческий глаз способен воспринимать движение благодаря особому механизму, называемому интерпретацией движения. Этот механизм позволяет нам ощущать плавность движения, даже если мы видим только отдельные кадры или изображения. При просмотре быстрых движущихся объектов, глаз захватывает несколько кадров и производит их анализ. Затем мозг объединяет эти отдельные кадры в одно непрерывное движение. Интерпретация движения позволяет нам видеть объекты, перемещающиеся с натуральной плавностью, даже при ограниченной частоте кадров. Этот механизм восприятия движения объясняет, почему фильмы, которые состоят из отдельных кадров, создают иллюзию движения. Кадры фильма отображаются с частотой около 24 кадров в секунду, что близко к ощущению плавного движения для человеческого глаза. Кроме того, интерпретация движения может быть использована в других сферах, таких как компьютерные игры и анимация. Создатели видеоигр и анимационных фильмов используют этот механизм, чтобы создать иллюзию реалистичного движения, используя меньшее количество кадров. Таким образом, интерпретация движения играет важную роль в нашем восприятии окружающего мира.
Благодаря этому механизму мы можем видеть и ощущать движение, даже в условиях ограниченных кадров. Естественные ограничения Восприятие времени и скорость мышления у всех людей различается. Некоторые люди способны воспринимать и обрабатывать информацию значительно быстрее, чем другие. Каждый из нас воспринимает окружающий мир со своей индивидуальной скоростью. Однако даже самые быстрые люди имеют свои естественные ограничения, связанные с работой нашего мозга. К примеру, рефлекторное время реакции по определению является минимальным временным интервалом, за который мозг может организовать определенное действие в ответ на внешний стимул.
Есть много исследований, которые подтверждают, что у геймеров зрение и восприятие намного выше среднего, поскольку мы потратили годы на «тренировку» своих глаз. Игры уникальны, они являются одним из немногих способов значительно улучшить почти все аспекты зрения, поэтому контрастная чувствительность, навыки внимания и одновременное отслеживание нескольких объектов намного лучше. Этот метод настолько хорош, что, по сути, для зрительной терапии используются игры. Итак, прежде чем кто-то рассердится на исследователей, которые говорят о скорости FPS, которую может видеть человеческий глаз, мы должны иметь в виду, что исследования показывают, что у геймеров есть зрение, уровень внимания и способность отслеживать движущиеся объекты намного лучше, чем « человек, не являющийся геймером. Восприятие движения Теперь перейдем к некоторым числам. Первое, о чем следует подумать, - это частота мерцания изображений: большинство людей воспринимают мерцающий источник света как постоянное освещение со скоростью от 50 до 60 раз в секунду, или герц. Вот почему почти все люди воспринимают монитор 60 Гц как постоянное изображение, а не как мерцающий свет , что и есть на самом деле. Но это лишь часть головоломки, когда дело доходит до восприятия плавных образов в игре. Это потому, что игры генерируют движущиеся изображения и, следовательно, вызывают различные визуальные системы, которые просто обрабатывают свет. Пример можно найти в так называемом законе Блоха. Этот закон гласит, что существует компромисс между интенсивностью и продолжительностью вспышки света, которая длится менее 100 мс. Он может иметь невероятно яркую наносекунду света и будет выглядеть так же, как десятая часть секунды тусклого света. Как правило, люди не могут различить слабые, короткие, яркие и длинные раздражители в течение десятых долей секунды.
В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая. Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков. Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения. По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали. Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора. Откуда взялся миф про 24 кадра Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Увеличить показатели FPS именно до 24 решили тоже не просто так. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. А вот в США, где вместо привычных нам 220-230 вольт 50 Гц используется 110-120 вольт 60 Гц, телевизионный стандарт NTSC работает с частотой 30 29,97 кадров в секунду Итак, сколько кадров в секунду может увидеть человеческий глаз? Вы можете задаться вопросом, что происходит, если вы смотрите что-то с действительно высоким значением кадров в секунду. Вы действительно увидите все те кадры, которые мелькают? В конце концов, ваш глаз не движется со скоростью 30 изображений в секунду. Короткий ответ заключается в том, что вы, возможно, не сможете сознательно регистрировать эти кадры, но ваши глаза и мозг могут их осознавать. Например, возьмем скорость 60 кадров в секунду, которую многие приняли за верхний предел. Некоторые исследования показывают, что ваш мозг на самом деле может распознавать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты. Например, авторы из Массачусетского технологического института обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд — это очень высокая скорость обработки.
Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. Однако эксперименты показывают, что человек обрабатывает и видит в среднем до 150 кадров за обозначенный промежуток времени. Известны редкие случаи, когда при регулярных тренировках достигался уровень восприятия около 250 FPS. Но некоторые исследователи полагают, что человеческий глаз может воспринять даже 1000 и более кадров в секунду. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Однако демонстрация видеоизображения в таком ритме дискомфортна для человека. Еще во времена немого кино частота кадров доходила до 16 в секунду. При сравнении кадров немого кино и современных фильмов остается ощущение, что в начале 20-го века снимали в замедленном темпе. При просмотре так и хочется немного поторопить экранных героев.
Сколько fps воспринимает человеческий глаз?
Основной вывод: частота кадров в секунду не может быть выше, чем число выдержки в секунду. 24 кадра в секунду — это именно то, чего ждет человек, включивший фильм. Восприятие частоты кадров у разных людей может различаться. Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду. Человек воспринимает около 24 кадров в секунду. Это означает, что при просмотре видео с частотой кадров 24 кадра в секунду, изображение будет восприниматься как непрерывное движение.
С каким разрешением лучше снимать видео и важна ли частота кадров
История про 24 кадра берёт начало в кинематографе, где видео с частотой 24 FPS считается эталоном, при котором картинка воспринимается максимально естественно. Впрочем, в современном кино экшн-сцены уже давно показывают с частотой 60 кадров в секунду и выше. Однако к возможностям человеческого глаза это не имеет никакого отношения — в отдельных ситуациях наш глаз способен видеть 400 и более кадров в секунду.
Вот объяснение того, что происходит, если краткосрочный кадр полученный за короткое время задерживается на экране дольше, чем ожидалось. Она удивительно точна и актуальна для статьи 15-летней давности: При адресации пикселя он загружается с определённым значением и остаётся с этим значением светового выхода до следующей адресации. С точки зрения рисования изображения это неправильно. Конкретный экземпляр оригинальной сцены действителен только в конкретное мгновение.
После этого мгновения объекты сцены должны быть перемещены в другие места. Некорректно удерживать изображения объектов в неподвижных позициях, пока не придёт следующий образец. Иначе выходит, что объект как будто внезапно перепрыгивает в совершенно другое место. И его вывод: Ваш взгляд будет пытаться плавно следовать за передвижениями интересующего объекта, а дисплей будет удерживать его в неподвижном состоянии весь кадр. Результатом неизбежно станет размытое изображение движущегося объекта. Вот как!
Получается, что нам нужно сделать — так это засветить изображение на сетчатку, а затем позволить глазу вместе с мозгом выполнить интерполяцию движения. Дополнительно: так в какой степени наш мозг выполняет интерполяцию, на самом деле? Никто не знает точно, но определённо есть много ситуаций, где мозг помогает создать финальное изображение того, что ему показывают. Взять хотя бы для примера этот тест на слепое пятно : оказывается, существует слепое пятно в том месте, где оптический нерв присоединяется к сетчатке. По идее, пятно должно быть чёрным, но на самом деле мозг заполняет его интерполированным изображением с окружающего пространства. Кадры и обновления экрана не смешиваются и не совпадают!
Как было упомянуто ранее, существуют проблемы, если фреймрейт и частота обновления экрана не синхронизированы, то есть когда частота обновления не делится без остатка на фреймрейт. Проблема: разрыв экрана Что происходит, когда ваша игра или приложение начинают рисовать новый кадр на экране, а дисплей находится посередине цикла обновления? Это буквально разрывает кадр на части: Вот что происходит за сценой. Затем монитор считывает этот фрейм и начинает его отображать здесь вам нужна двойная буферизация, чтобы всегда одно изображение отдавалось, а одно составлялось. Разрыв происходит, когда буфер, который в данный момент выводится на экран сверху вниз, заменяется следующим кадром, который выдаёт видеокарта. В результате получается, что верхняя часть вашего экрана получена из одного кадра, а нижняя часть — из другого.
Примечание: если быть точным, разрыв экрана может произойти, даже если частота обновления и фреймрейт совпадают! У них должна совпадать и фаза, и частота. Разрыв экрана в действии. Из Википедии Это явно не то, что нам нужно. К счастью, есть решение! Решение: Vsync Разрыв экрана можно устранить с помощью Vsync, сокращённо от «вертикальная синхронизация».
Это аппаратная или программная функция, которая гарантирует, что разрыва не произойдёт — что ваше программное обеспечение может отрисовать новый кадр только тогда, когда закончено предыдущее обновление экрана. Vsync изменяет частоту изъятия кадров из буфера вышеупомянутого процесса, чтобы изображение никогда не изменялось посередине экрана. Следовательно, если новый кадр ещё не готов для отрисовки на следующем обновлении экрана, то экран просто возьмёт предыдущий кадр и заново отрисует его. К сожалению, это ведёт к следующей проблеме. Новая проблема: джиттер Хотя наши кадры больше не разрываются, воспроизведение всё равно далеко не плавное. На этот раз причина в проблеме, которая настолько серьёзна, что каждая индустрия даёт ей свои названия: джаддер, джиттер , статтер, джанк или хитчинг, дрожание и сцепка.
Давайте остановимся на термине «джиттер». Джиттер происходит, когда анимация воспроизводитеся на другой частоте кадров по сравнению с той, на которой её снимали или предполагали воспроизводить. К сожалению, именно это происходит при попытке отобразить, например, контент 24 FPS на экране, который обновляется 60 раз в секунду. Время от времени, поскольку 60 не делится на 24 без остатка, приходится один кадр показывать дважды если не использовать более продвинутые преобразования , что портит плавные эффекты, такие как панорамирование камеры. В играх и на веб-сайтах с большим количеством анимации это даже более заметно. Многие не могут воспроизводить анимацию на постоянном, делящемся без остатка фреймрейте.
Вместо этого частота смены кадров у них сильно изменяется по разным причинам, таким как независимая друг от друга работа отдельных графических слоёв, обработка ввода пользовательских данных и так далее. Вас это может шокировать, но анимация с максимальной частотой 30 FPS выглядит гораздо, гораздо лучше, чем та же анимация с частотой, которая изменяется от 40 до 50 FPS. Необязательно мне верить на слово; посмотрите своими глазами. Вот эффектная демонстрация микроджиттера микростаттера.
Устройство способно запечатлевать такие моменты, как сверхбыстрое размагничивание металлического сплава, механика ударных волн в живых клетках или материи и многое другое. Новая технология пригодится в физике, биологии, химии, материаловедении и разработке эффективных фармацевтических препаратов.
Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Сколько кадров в секунду в действительности видит глаз Человеческое зрение — это не дискретная система, возможности которой можно описать простыми цифрами.
Выявлена суперспособность некоторых людей видеть больше изображений каждую секунду
Просто задаётся вопрос: "Если люди не видят больше 35 кадров в секунду, то как мы тогда смотрим ролики на Youtube при 60 кадрах?". Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Частота кадров – это количество кадров (снимков), отснятых видеокамерой за секунду. Сколько кадров в секунду видит человек, интересно многим.
Сколько FPS видит человеческий глаз?
А сколько кадров в секунду видите вы? Удивительно, но нет конкретного количества кадров в секунду, которое может видеть человеческий глаз, тем не менее, FPS воспринимаемое глазом не безгранично, и есть определенное ограничение в количестве кадров, которое видит человек. Смотрите видео онлайн «Сколько FPS видит человек? Узнайте больше о том, сколько кадров может видеть человеческий глаз в секунду, можно ли протестировать человеческий FPS и многое другое. Восприятие частоты кадров у разных людей может различаться. 30 кадров в секунду — на шесть кадров больше, чем 24 кадра в секунду, что означает, что за тот же промежуток времени устройству нужно обработать на 25% больше изображений.