Решение задачи наукастинга осадков, как правило, сводится к прогнозированию следующе-го кадра видеопоследовательности, а входными данными становится серия из более чем двух последовательных изображений, что позволяет более точно моделировать нелинейные. Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. это cверхкраткосрочный прогноз явлений погоды в пределах 0 – 6 ч от срока наблюдения. Наукастинг (прогноз на 2 ч).
Арбат, Москва
Цветные осадки: дождь с песком придет на Южный Урал | У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. |
Прогноз осадков на 2 часа (наукастинг) | Фото: Владимир Астапкович / РИА Новости. |
Глава Гидрометцентра: Никогда прогноз погоды не будет точным на 100% | Чаще всего говорят о наукастинге развития конвективных (кучево-дождевых) облаков и связанных с ними опасных метеорологических явлений (ОЯ) — ливневых осадков, гроз, града, шквалов, смерчей. |
Предоставление данных о погоде - ООО "ДАНИО-пресс" | Точнее, ещё точнее: прогноз погоды на 2 часа, наукастинг и карты погоды. |
12 самых точных сайтов прогноза погоды - Рейтинг 2023 | наукастинг – сроком до двух часов. |
Новая карта осадков в «Яндекс погоде» — с прогнозом на сутки вперед
Специалисты ликвидируют последствия сильных осадков с применением 290 единиц техники. Обратиться из-за скоплений воды во дворах, на дорогах и около жилых домов можно, оставив заявку на странице Мосводостока в соцсети "ВКонтакте". Читайте также.
Также с помощью сервиса можно выяснить, что осадки, например, закончатся с минуты на минуту или начнутся в течение получаса. Это особенно актуально в ситуациях, когда нужно принять решение — выбежать под проливной дождь или подождать, пока он закончится. Сервис построения прогнозов Яндекса теперь включает технологию наукастинга — краткосрочного гиперлокального прогноза осадков, тогда как раньше использовал только технологию Метеум, основанную на метеомоделировании и машинном обучении. Дословно «наукастинг» с английского переводится как «прогноз на сейчас», хотя на самом деле технология позволяет узнать о распределении осадков во временном промежутке от двух часов назад до двух часов вперед. Экстази может стать лекарством Кейсы Наукастинг работает на основе данных сети метеорологических радиолокаторов Росгидромета в этом году Яндекс получил официальный доступ к измерениям, которые на них проводятся и позволяет описывать текущую погоду с точностью до небольшого микрорайона.
Карта атмосферного давления считается одной из главных в метеорологии, на ней хорошо видны циклоны, антициклоны, барические гребни, ложбины и малоградиентные поля. На карте качества воздуха вы увидите области как с чистым воздухом, так и области загрязнения воздуха различными примесями по европейскому стандарту CAQI: 0 - воздух абсолютно чистый, 100 - воздух крайне загрязнен. На сайте «Метеосервис.
Погода в Москве и Санкт-Петербурге представлена с точностью до районов, на очереди другие крупные города России.
Это 12 кадров плюс ещё несколько про запас на случай перебоя в поставке данных с радара. Чаще всего решение такой задачи сводится либо к применению алгоритмов optical flow 1 , 2 , 3 , либо к нейросетевым методам 1 , 2 , 3 , 4 , 5 , 6. Долгое время в продакшене у нас работал алгоритм на основе optical flow, который мы смогли натюнить таким образом, что он побил по метрикам нашу предыдущую нейросетевую архитектуру. Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда. Рисунок 3. Только для изображений из будущего, которые мы пока не знаем.
В качестве функции потерь использовали ставшую классической сумму кросс-энтропии и dice: где — пример из обучающей выборки, а — предсказанное значение.
рПЗПДБ Ч НЙТЕ
Представленная выше подборка ресурсов включает в себя как наиболее популярные сайты, которыми пользуются практически все метеолюбители, так и ряд более специализированных ресурсов, находящихся в почёте у профессионалов. Спутниковые снимки Спутниковые снимки облачности позволяют оценить состояние облачного покрова на обширной территории в целом, выявить некоторые его структурные особенности, а также направление движения облачности разных ярусов. Особенно важны наблюдения за кучево-дождевой облачностью, поскольку с нею связаны такие явления, как грозы, шквалы, ливни, град, торнадо, и в ряде случаев они носят локальный характер. Кроме того, кучево-дождевая облачность может развиваться весьма стремительно , что делает наблюдения по спутниковым снимкам особенно ценными.
Поскольку при построении индекса использовалась статистика многих лет, то, в общем-то, можно говорить, что какой-то регион более, а какой-то менее благополучный. Получается, что в местах, где есть инфраструктура и промышленность, неблагоприятные явления регистрируются чаще, потому что это заметно. В малонаселенных регионах эти катаклизмы тоже случаются, но их никто не замечает? Примерно так. Тот же Центральный регион значительно плотнее населен. В нем больше всевозможных промышленных объектов, и так далее. Поэтому, когда речь идет об ущербе, вы понимаете, что если взять Крайний Север, где плотность населения меньше одного человека на квадратный километр и нет инфраструктуры, то какой бы силы ураган ни пролетел, он не причинит ущерба просто потому, что там ничего нет. А в Центральном регионе все наоборот.
Можно ли для каждого региона разработать прогноз природных катаклизмов, учитывая особенности местности? Из общих соображений можно предположить, что, например, на Дальнем Востоке, где часто происходят наводнения, засуха не будет представлять угрозы. Таким образом можно определить список неблагоприятных аномалий, которые могут возникнуть в каком-то регионе, но спрогнозировать точное время их возникновения и степень угрозы, к сожалению, сложно. Я должен добавить еще одну вещь. Ураганы, вихри, наводнения — это все же краткосрочные явления, которые длятся несколько часов, дней, недель. Однако для России существуют не только краткосрочные, но и долгосрочные угрозы. Две трети территории нашей страны расположены в зоне вечной мерзлоты, хотя это название не совсем точное, правильнее говорить многолетняя мерзлота. Вследствие повышения температуры многолетняя мерзлота деградирует, и возникают серьезные угрозы для этих территорий Чем это опасно?
Это может привести к дополнительным рискам аварийности для уже построенных объектов. Ведь когда строили [объекты на Севере], то никому не приходило в голову, что мерзлота будет себя вести так подло по отношению к человеку. Это потребует дополнительной инфраструктуры, которую, возможно, придется строить заново в районе побережья. В любом случае нам нужно быть готовыми к возможным опасностям, связанным с деградацией вечной мерзлоты и изменением климата, и быть готовыми к значительным вложениям. Кроме того, в многолетней мерзлоте содержатся парниковые газы, которые способствуют нынешнему изменению климата и глобальному потеплению. Это углекислый газ и метан. Когда мерзлота тает, содержащиеся в ней газы попадают в атмосферу. Если углекислый газ просто высвобождается из мерзлого грунта, то с метаном все сложнее.
Мало того, что он тоже перемещается в атмосферу, еще и оживают производящие метан анаэробные бактерии, работающие в условиях отсутствия или острого дефицита кислорода. Когда они находятся в мерзлоте, они спят, но при оттаивании снова начинают вырабатывать метан. Еще одна опасность связана с могильниками, которые расположены в вечной мерзлоте. При ее деградации они могут вскрыться, что приведет к высвобождению потенциальных заболеваний, которые человечество победило в прошлом. Возможно, о некоторых болезнях мы даже не знаем.
Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты. Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т. Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают. Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля. Но всё победил тот самый лазерный меч в Иваново. Когда он висит над вами как дамоклов меч и зануляет вокруг себя все вектора, то облака не могут ни пересечь его, ни двигаться в одном районе с ним. Даже какого-то физического движения на картинке не происходит. Поэтому в конечном итоге мы пришли к нейронной сети. Сейчас нейронная сеть работает и выдает предсказания, схематически ее архитектура изображена здесь. Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта. Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно. Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат.
В некоторых регионах России уже прошли оранжевые дожди. Например, вчера такие осадки выпали в Белгороде и Крыму, автомобили покрылись желтой пылью. Начальник Челябинского центра по гидрометеорологии и мониторингу окружающей среды Валерий Кочегоров пояснил, что преодолев большое расстояние африканская пыль немного рассеялась и на Южном Урале в осадках будет небольшое содержание песка.
АИИС «МетеоТрасса» для автодорог
Глава Гидрометцентра: Никогда прогноз погоды не будет точным на 100% | Опасные явления BUFR Отражаемость 1км BUFR Прогноз ICON-EU 1ч сумма осадков Высота ВГО BUFR Дифференциальная отражаемость 1км BUFR Дифференциальная отражаемость 2км BUFR Доплер скорость 1км BUFR Доплер скорость 2км BUFR Доплер скорость 3км BUFR. |
Что сейчас на улице | Наукастинг (прогноз на 2 ч). |
Прогноз наукастинга для городов запустил Казгидромет | это.> Анимация текущих данных радарных наблюдений. |
Цветные осадки: дождь с песком придет на Южный Урал
Прогноз осадков на 2 часа (наукастинг). последние новости сегодня в Москве. У динамических факторных моде-лей есть две главные характеристики, позволившие им занять доминантное положение в практике статистического наукастинга [12]: их способность опи-сать эмпирические макроэкономические данные. Точнее, ещё точнее: прогноз погоды на 2 часа, наукастинг и карты погоды. есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить.
Как менялась Яндекс.Погода: от виджета до погодных карт
АИИС «МетеоТрасса» для автодорог | В задаче наукастинга осадков необходимо минимизировать отклонение спрогнозированных мм от истинного. |
Прогнозирование ошибок при помощи нейросетей как способ увеличения точности прогноза погоды | Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг). |
Глава Гидрометцентра: Никогда прогноз погоды не будет точным на 100%
Прогноз осадков на 2 часа (наукастинг). Ведущий специалист центра погоды «Фобос» Александр Синенков спрогнозировал резкие перепады температуры воздуха в ряде регионов России. Прогноз осадков на ближайшие 2-6 часов / скриншот с сайта Гидрометцентра России. Прогноз осадков по ЕТР на 2 часа (наукастинг). Такой прогноз называется наукастинг, обычно он делается на ближайшие часы (до 2-6 часов вперед).
АИИС «МетеоТрасса» для автодорог
По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов. И снова про наукастинг Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. За полтора часа в центре Москвы выпала почти треть апрельской нормы осадков, заявила в беседе с РИА Новости ведущий сотрудник Гидрометцентра России Марина Макарова. Система наукастинга позволяет зафиксировать момент зарождения опасного явления и тогда спрогнозировать на два часа траекторию его перемещения, усиления или, наоборот, рассеивания энергии.
Росгидромет: в Москве за полтора часа выпала треть месячной нормы осадков
Подробнее 05. О погоде на 6-8 января Об особенностях погоды в регионах России в ближайшие дни рассказал Андрей Ушаков Подробнее 04. С приближением циклона с запада в пятницу пройдет небольшой снег, в субботу умеренный снег.
Исходные уравнения дискретизируются во времени и пространстве и превращаются в систему линейных уравнений, связывающую наборы физических параметров в выбранных точках узлах вычислительной сетки. Чем больше используется точек для расчета, тем выше точность модели, но и тем выше требования к вычислительным мощностям. Кстати, удобные сервисы по просмотру параметров моделей - температура на уровнях, скорость ветра, осадки, влажность и т. Как именно делают наукастинг и кто этим занимается? Вкратце - они использовали для составления прогноза оптический поток и нейронную сеть.
Результаты, судя по всему, внедрены в Яндекс. Также они приводят интересный график Согласно которому точность прогноза уменьшается тем больше, чем больше время самого прогноза. Там тема одного из докладов - Разработка нейросетевого метода прогнозирования эволюции облачных образований и осадков по данным геостационарных спутников Как я понял, там делают упор как раз только на использование спутников, потому что на Дальнем востоке радаров почти нет.
Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей. Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений.
Регион: Центральный федеральный округ. Период испытаний: июнь — сентябрь 2020 г. Рисунок 1. Содержание файлов. Предварительная обработка файлов заключает в себя следующие этапы: Преобразование данных в виде матрицы в одномерные массивы длинной в 25 элементов Имена файлов преобразуются в формат ДД. ММ Для файлов из папки output к дате прибавляется три часа Далее из папки input удаляются все файлы, имен которых нет в папке output так как некоторые прогнозы отсутствуют.
Предыдущий шаг повторяется для output После этого создаются файлы в папке error, значения которых равны input — output. Значения берутся по модулю.
Из затопленных районов эвакуировали около 100 тысяч жителей.
Наводнение стало сильнейшим за полвека. Его ущерб еще предстоит оценить, но эксперты уже бьют тревогу. Провинция Гуандун — это важный производственный центр, один из самых густонаселенных регионов, и такая чрезвычайная ситуация может сказаться на экономике всей страны.
Метеоролог и я
Например, вы выбирали одежду, ориентируясь на показатели термометра, а на самом деле на улице теплее ведь пригревает солнце или холоднее так как поднялся сильный ветер. Удобный интерфейс сайта или мобильного приложения В идеале вся интересующая информация должна находиться на главной странице, а реклама не должна сильно отвлекать или занимать большое количество места на экране. Прогноз погоды на сутки Погода — часто меняющееся явление. Поэтому, если вам важна точность, советуем выбирать сервис, который показывает почасовой прогноз на ближайшие сутки. Это позволит скорректировать ваши планы и, например, вовремя захватить зонт. Прогноз погоды для отдельных районов города Это особенно актуально для жителей мегаполисов.
Любому прогнозисту известно, что проведение атмосферных фронтов на картах погоды в значительной мере субъективно. Есть даже поговорка: «Сколько синоптиков, столько и фронтов». Чтобы уменьшить зависимость фронтологического анализа от «человеческого фактора» — личности прогнозиста, разработаны методы объективного анализа атмосферных фронтов, основанные на данных численных моделей и метеорологических спутников. Широкое внедрение этих методов в прогностическую практику стало возможным после появления автоматизированных рабочих мест АРМ прогнозиста, позволяющих быстро выполнять сложные расчёты различных параметров атмосферы.
Синоптику остаётся лишь слегка подкорректировать положение фронтов, сверившись с приземной картой погоды. После выявления циклонов, антициклонов, атмосферных фронтов, которые будут определять характер погоды в пункте прогноза, синоптик устанавливает, правильно ли в численных моделях учтена сложившаяся синоптическая ситуация. В большинстве случаев в гидродинамический прогноз нужно вносить лишь незначительные корректировки или не вносить их вовсе. Однако иногда значительные ошибки содержатся уже в исходных данных, не говоря о будущем состоянии атмосферы. Тогда прогнозист прибегает к использованию метода траекторий. Он самостоятельно определяет по приземным и высотным картам погоды, откуда в его зону ответственности придёт воздушная масса и какие изменения претерпит она на своём пути. Здесь синоптику помогает личный опыт и опыт его коллег, обобщённый в виде региональных методик прогнозирования. Метеоролог может применять климатические данные, чтобы оценить вероятность получившегося сценария развития погодных процессов. Практика показывает, что такие уточнения численного прогноза могут быть очень полезными.
Также опыт специалиста помогает ему определить, какие из множества прогностических моделей лучше всего «работают» по его региону прогнозирования. К примеру, одна модель замечательно прогнозирует ход температуры, другая с высокой точностью «видит» туманы, третья хорошо просчитывает максимальные порывы ветра и т. Прогноз текущей погоды наукастинг является особой, совершенно самостоятельной ветвью прогностической метеорологии. Заблаговременность такого прогноза, как правило, не превышает 2 часа.
Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей. Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений. Регион: Центральный федеральный округ. Период испытаний: июнь — сентябрь 2020 г.
Рисунок 1. Содержание файлов. Предварительная обработка файлов заключает в себя следующие этапы: Преобразование данных в виде матрицы в одномерные массивы длинной в 25 элементов Имена файлов преобразуются в формат ДД. ММ Для файлов из папки output к дате прибавляется три часа Далее из папки input удаляются все файлы, имен которых нет в папке output так как некоторые прогнозы отсутствуют. Предыдущий шаг повторяется для output После этого создаются файлы в папке error, значения которых равны input — output. Значения берутся по модулю.
Но тем не менее, кое-что сегодня благодаря современным технологиям построить удается... Несколько наиболее "точных" примет я собрал ниже... Кстати, обычно смотрят на ласточек...