Новости формула водородной бомбы

Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки». Водородная, или термоядерная бомба, стала краеугольным камнем гонки вооружений между США и СССР. Испытание первой водородной бомбы было проведено советскими учеными.

Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США - Российская газета Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании.
ВОДОРОДНАЯ БОМБА | Энциклопедия Кругосвет Принцип действия водородной бомбы состоит в следующем: сначала взрывается внутри оболочки HB заряд, который является инициатором термоядерной реакции, как результат возникает нейтронная вспышка.
ФИАН - 17.12.2022 RTVI. Мирный термояд для военных. В чем смысл ливерморского прорыва На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду.
Ученые придумали, из чего можно было бы создать бомбу мощнее водородной В водородной бомбе используется уран-238, который под действием быстрых нейтронов распадается и даёт радиоактивные осколки.

Принцип водородной бомбы

Водородная бомба, также известная как термоядерная, использует ядерную реакцию слияния, которая основана на ядерном расщеплении. Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки». Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. Рассекреченные кадры взрыва водородной бомбы мощностью 50 млн тонн. Водородная «Царь-бомба» Мощнейшая в истории человечества водородная бомба была взорвана.

Другие материалы рубрики

  • Формула водородной бомбы. Водородная бомба
  • Содержание
  • Формула водородной бомбы. Водородная бомба
  • Первая водородная бомба / Основные достижения // Эволюция отрасли /// История Росатома

Ученые придумали, из чего можно было бы создать бомбу мощнее водородной

Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.

Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия.

При распаде плутоний выделяет больше свободных нейтронов, чем уран, что крайне важно, например, при изготовлении термоядерных боеприпасов. К тому же обогащённый уран очень дорог в производстве, плутоний же добывается из отработанного топлива для атомных электростанций. Но на практике выбор не так прост, поскольку плутоний — металл радиоактивный. Если период полураспада урана-235 — 713 миллионов лет, то у плутония-239 он составляет всего 24 тысячи лет. К тому же извлекаемый из АЭС плутоний на самом деле представляет собой смесь изотопов, излучение которых выводит из строя электронные компоненты боеприпаса и на молекулярном уровне «разъедает» химическое взрывчатое вещество. Как следствие, в военном деле обычно используется специальный «оружейный» плутоний, который провёл в активной зоне ядерного реактора всего 1—2 месяца. Но такой плутоний уже очень недёшев и всё равно радиоактивен. Большая часть обогащённого урана производится в России «Грязная» бомба В романе Дмитрия Глуховского признан в России СМИ, исполняющим функции иностранного агента «Метро 2033» даже спустя 20 лет после ядерной бомбардировки радиация не позволяет выжившим покинуть убежища. Такое видение постапокалиптического мира в фантастической литературе стало каноническим.

Хотя на практике всё иначе — Хиросиму и Нагасаки быстро отстроили на прежнем месте, и жители их не оставляли. Чтобы увеличить радиационное воздействие ядерного боеприпаса особенно в глобальном масштабе и долгосрочной перспективе , в 1950 году американский физик Лео Сциллард предложил заменить в шаровом заряде урановый и алюминиевый тамперы на оболочку из кобальта. Взрыв, конечно, будет слабее, но, захватывая нейтроны, безвредный кобальт-59 превращается в очень опасный радиоактивный изотоп кобальт-60, широко применяющийся при производстве промышленных источников гамма-излучения. Если таких бомб сделать достаточно много и разом взорвать даже на своей территории, полагал учёный, то кобальт рассеется по всей планете с потоками воздуха… и вот тогда точно конец! Одна из особенностей ядерных зарядов пушечного типа — непредсказуемые колебания мощности взрыва в пределах 2—2. Она зависит от того, на каком именно этапе вхождения плутониевого стержня в цилиндр вспыхивала цепная реакция фото: National Nuclear Security Administration, 1953 Фантастов идея вдохновила. Однако военные и политики отнеслись к идее без особого энтузиазма. В реальности «грязные» бомбы действительно разрабатывались, по крайней мере в СССР, но никогда не принимались на вооружение и не производились. Даже испытания проводились только имитационные — с использованием нерадиоактивных изотопов. В результате испытаний от идеи быстро отказались.

Вопреки прогнозам, загрязнённая площадь была невелика — как средство массового поражения кобальтовый заряд уступал по эффективности даже многим химическим боеприпасам. Предсказать точное расположение, размер и форму смертоносного пятна оказалось невозможно. Калифорниевая бомба Калифорний часто называют самым дорогим веществом в мире. Это не совсем так, но среди изотопов, которые производят промышленно, он чемпион Фантасты уже много лет обдумывают идеи ядерной взрывчатки на основе экзотических веществ. Во вселенной Великорасы Александра Зорича, например, применяются сверхмощные калифорниевые боеприпасы. Почему калифорниевые? Вероятно, автор заглянул в справочник и узнал, что данный металл обладает критической массой впятеро меньшей, чем у плутония… Но из этого же не следует, что взрыв калифорниевой бомбы будет впятеро сильнее при том же весе! Напротив, безопасный — подкритический — шаровой заряд из калифорния окажется не только в 3000 раз дороже и в 30 раз радиоактивнее, но и впятеро слабее плутониевого. Но, может быть, использование синтетических изотопов с минимальной критической массой позволит создать миниатюрное взрывное устройство? Теоретически это возможно, но зачем военным безумно дорогая, зато слабенькая атомная бомба, умещающаяся в кейс, знают только фантасты.

Советский «ядерный ранец» РЯ-6 мощностью в одну килотонну с зарядом на основе плутония весил всего 25 кг, и военные не считали, что им нужно что-то ещё легче. Нейтронная бомба: миф и реальность Противоположностью «грязной» кобальтовой бомбе можно считать нейтронную: она не заражает территорию, поражает только живую силу и оставляет невредимыми материальные ценности. Во всяком случае, такого мнения придерживалась как американская, так и советская пресса в 70—80-х годах. Последняя также утверждала, что нейтронные боеприпасы есть только у США, прозрачно намекая на тягу вероятного противника к чужим материальным ценностям. Приближая источник радиации к бериллиевой мишени, нейтроны можно испускать направленно. На марсоходе Curiosity установлена нейтронная пушка российского производства. Поговаривают, что мощность этого устройства слишком высока для исследовательских целей фото: NASA Как и в случае кобальтовой бомбы, все утверждения о свойствах нейтронных боеприпасов оказались вымыслом.

Также известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путем сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества, но они не увенчались успехом, так как не удалось получить необходимых температур и давления. Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии. Именно эта реакция протекает в недрах звезд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжелые ядра гелия. Полученного количества энергии достаточно для того, чтобы запустить цепную реакцию, вовлекая в нее весь возможный водород. Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой. Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название "водородная бомба". В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более "чистым", чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались "слойками". Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу.

Впервые пришлось прибегнуть к помощи математического моделирования. Отставание от США в области компьютеров за океаном уже были в ходу аппараты фон Неймана наши ученые компенсировали остроумными вычислительными методами на примитивных арифмометрах. Первая водородная бомба послужила причиной бурного развития советской космонавтики. После ядерных испытаний ОКБ Королева получило задание разработать межконтинентальную баллистическую ракету для этого заряда. Эта ракета, названная "семеркой", вывела в космос первый искусственный спутник Земли , на ней стартовал первый космонавт планеты Юрий Гагарин.

Академик РАН Михаил Федонкин: водород стал предтечей всего в космосе и на Земле

Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия. Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива. Поэтому, если вы хотите создать крупную ядерную бомбу с большой мощностью и оснастить ею боеголовку управляемой ракеты, вы должны овладеть технологией водородной бомбы. Водородная бомба более сложная для изготовления. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез.

Отсюда у водородных бомб есть альтернативное название — термоядерное оружие. По сути, внутри термоядерной бомбы содержится небольшая атомная бомба, которая взрывается во время детонации, а высвобождаемая при этом энергия используется в качестве своеобразного термоядерного «детонатора». Топливо для ядерного синтеза нагревается до невероятно огромной температуры. Но этого мало для запуска термоядерного синтеза. Создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием.

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва.

Все остальные узлы газотурбинного двигателя 5 образуют статор 21, в который входят воздухозаборник 6, статор компрессора 8, камера сгорания 10 и реактивное сопло 19. Термоядерный заряд 3 содержит конвенторный взрыватель 22, плутоний или уран 23 и резервуар бериллиевой смеси 24, который предпочтительно установить по центру вдоль оси бомбы, внутри газовода 18. Контейнер с дейтерием 25 установлен внутри резервуара бериллиевой смеси 24. Система управления содержит бортовой компьютер 26, соединенный с контроллером двигателя 27, который соединен с приводом насоса 14. В систему управления входят поворотные лопасти 28, установленные внутри цилиндрического обтекателя 29 хвостового стабилизатора 2 с приводами 30. Система управления также содержит датчик датчики инициирования взрыва 31.

Система управления содержит акселерометр 32 и магнетометр 33 для измерения углов ориентации снаряда в полете, которые соединены с бортовым компьютером 26. К бортовому компьютеру 26 может быть подсоединено приемно-передающее устройство 34 фиг. Антенна 35 имеет кольцевую форму, а участок корпуса 1 в районе расположения антенны 35 выполнен радиопрозрачным. Внутри корпуса 1 фиг. Все соединения выполнены проводными связями 37. В глобальную систему позиционирования Глонас или GPS входят спутники 38, связанные с антенной 35 по радиоканалам 39. Возможна установка в передней части корпуса видеокамеры 40, которая соединена с бортовым компьютером 26 фиг.

При применении водородной бомбы в оперативную память бортового компьютера 26 вводят исходные данные полета. Водородную бомбу сбрасывают с самолета с высоты 20…30 км.

Теллер разработал схему прямолинейной реализации «зажигалки» — атомной бомбы в толще жидкого дейтерия. Для реализации проекта нужно было много трития. Пришлось построить ряд реакторов. Термоядерное устройство его назвали Mike начали разрабатывать лишь полгода спустя. Американцы справились быстро. Её мощность составляла 10,4 мегатонны, что приблизительно в тысячу раз больше, чем Little Boy — атомной бомбы, сброшенной на Хиросиму.

Сотрудники центра по борьбе с правонарушениями в сфере потребительского рынка УВД по Калужской области изъяли купальники с символикой сочинской олимпиады на территории калужского рынка товаров. Как сообщил корреспонденту ИА REGNUM Новости заместитель начальника отдела информации и общественных связей областного УВД подполковник милиции Алексей Горюнов, изъятые товары будут направлены в оргкомитет по подготовке сочинской олимпиады с целью установления правомочности нанесения олимпийской символики на товар и его продажи данным предпринимателем.

Водородная бомба

Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Водородная бомба химическая формула. Термоядерная реакция в водородной бомбе. «взрывает» реакция неуправляемого термоядерного синтеза. В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе идет термоядерная реакция, подобная той, которая происходит на Солнце.

Модель Силарда. Кобальт-60 и аналогичные изотопы

  • 10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский
  • Объективные проблемы
  • 50 лет назад была испытана водородная бомба - CNews
  • Как Сахаров и Теллер чуть не взорвали мир

Формула водородной бомбы. Почему предпочтительнее слияние ядер? Опасность ядерной войны

Водород, состоящий из протона и электрона, обеспечивает энергетику жизни: протонные градиенты как одну из форм накопления энергии в живой клетке, перенос электрона вдоль транспортных цепей ее макромолекул, мягкие водородные связи и многое другое. Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве. Водородная «Царь-бомба» Мощнейшая в истории человечества водородная бомба была взорвана.

Как устроена водородная бомба

После Второй мировой войны говорить о фактическом наступлении мира было еще нельзя — две крупные мировые державы вступили в гонку вооружений. В 1945 году США, первыми негласно вступившие в гонку, сбросили ядерные бомбы на печально известные города Хиросима и Нагасаки. В Советском Союзе тоже велись работы по созданию ядерного оружия, и в 1949 году испытали первую атомную бомбу, рабочим веществом в которой был плутоний. Еще во время ее разработки советская разведка выяснила, что США переключились на разработку более мощной бомбы. Это подтолкнуло СССР заняться изготовлением термоядерного оружия. Выяснить, каких результатов достигли американцы, разведчики не смогли, да и попытки советских ядерщиков не увенчались успехом. Поэтому было решено создать бомбу, взрыв которой происходил бы за счет синтеза легких ядер, а не деления тяжелых, как в атомной бомбе. Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с.

Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч.

В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает.

Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров.

Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты.

Попытавшись изготовить кустарным способом из небольших плутониевых слитков детали взрывного устройства, самоделкин умрёт от лучевой болезни, от отравления или в результате вспыхнувшего в гараже пожара, но ничего не достигнет. Советский 420-мм миномёт 2Б1 «Ока» предназначался для стрельбы ядерными боеприпасами 2С7 «Пион». В 1970-х годах в СССР появились миниатюрные шаровые заряды, которые помещались в снаряд 203-мм пушки, но мощность их обычно составляла 5—15 килотонн, и «тактическими» такие боеприпасы можно было назвать лишь условно Уран или плутоний? На первый взгляд преимущества плутония над ураном, критическая масса которого впятеро выше, очевидны. Заряд получается миниатюрным. При распаде плутоний выделяет больше свободных нейтронов, чем уран, что крайне важно, например, при изготовлении термоядерных боеприпасов. К тому же обогащённый уран очень дорог в производстве, плутоний же добывается из отработанного топлива для атомных электростанций. Но на практике выбор не так прост, поскольку плутоний — металл радиоактивный. Если период полураспада урана-235 — 713 миллионов лет, то у плутония-239 он составляет всего 24 тысячи лет. К тому же извлекаемый из АЭС плутоний на самом деле представляет собой смесь изотопов, излучение которых выводит из строя электронные компоненты боеприпаса и на молекулярном уровне «разъедает» химическое взрывчатое вещество. Как следствие, в военном деле обычно используется специальный «оружейный» плутоний, который провёл в активной зоне ядерного реактора всего 1—2 месяца. Но такой плутоний уже очень недёшев и всё равно радиоактивен. Большая часть обогащённого урана производится в России «Грязная» бомба В романе Дмитрия Глуховского признан в России СМИ, исполняющим функции иностранного агента «Метро 2033» даже спустя 20 лет после ядерной бомбардировки радиация не позволяет выжившим покинуть убежища. Такое видение постапокалиптического мира в фантастической литературе стало каноническим. Хотя на практике всё иначе — Хиросиму и Нагасаки быстро отстроили на прежнем месте, и жители их не оставляли. Чтобы увеличить радиационное воздействие ядерного боеприпаса особенно в глобальном масштабе и долгосрочной перспективе , в 1950 году американский физик Лео Сциллард предложил заменить в шаровом заряде урановый и алюминиевый тамперы на оболочку из кобальта. Взрыв, конечно, будет слабее, но, захватывая нейтроны, безвредный кобальт-59 превращается в очень опасный радиоактивный изотоп кобальт-60, широко применяющийся при производстве промышленных источников гамма-излучения. Если таких бомб сделать достаточно много и разом взорвать даже на своей территории, полагал учёный, то кобальт рассеется по всей планете с потоками воздуха… и вот тогда точно конец! Одна из особенностей ядерных зарядов пушечного типа — непредсказуемые колебания мощности взрыва в пределах 2—2. Она зависит от того, на каком именно этапе вхождения плутониевого стержня в цилиндр вспыхивала цепная реакция фото: National Nuclear Security Administration, 1953 Фантастов идея вдохновила. Однако военные и политики отнеслись к идее без особого энтузиазма. В реальности «грязные» бомбы действительно разрабатывались, по крайней мере в СССР, но никогда не принимались на вооружение и не производились. Даже испытания проводились только имитационные — с использованием нерадиоактивных изотопов. В результате испытаний от идеи быстро отказались. Вопреки прогнозам, загрязнённая площадь была невелика — как средство массового поражения кобальтовый заряд уступал по эффективности даже многим химическим боеприпасам. Предсказать точное расположение, размер и форму смертоносного пятна оказалось невозможно. Калифорниевая бомба Калифорний часто называют самым дорогим веществом в мире. Это не совсем так, но среди изотопов, которые производят промышленно, он чемпион Фантасты уже много лет обдумывают идеи ядерной взрывчатки на основе экзотических веществ. Во вселенной Великорасы Александра Зорича, например, применяются сверхмощные калифорниевые боеприпасы. Почему калифорниевые? Вероятно, автор заглянул в справочник и узнал, что данный металл обладает критической массой впятеро меньшей, чем у плутония… Но из этого же не следует, что взрыв калифорниевой бомбы будет впятеро сильнее при том же весе! Напротив, безопасный — подкритический — шаровой заряд из калифорния окажется не только в 3000 раз дороже и в 30 раз радиоактивнее, но и впятеро слабее плутониевого. Но, может быть, использование синтетических изотопов с минимальной критической массой позволит создать миниатюрное взрывное устройство? Теоретически это возможно, но зачем военным безумно дорогая, зато слабенькая атомная бомба, умещающаяся в кейс, знают только фантасты. Советский «ядерный ранец» РЯ-6 мощностью в одну килотонну с зарядом на основе плутония весил всего 25 кг, и военные не считали, что им нужно что-то ещё легче. Нейтронная бомба: миф и реальность Противоположностью «грязной» кобальтовой бомбе можно считать нейтронную: она не заражает территорию, поражает только живую силу и оставляет невредимыми материальные ценности.

Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний. Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально. Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же — это дейтерид легкого изотопа лития. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было. Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы — это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог. Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов — милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности. Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора. Реактор Конструкция будущего реактора в 1950 году виделась его автору довольно простой. В рабочую камеру помешается два концентрических один в другом электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5—1 мегавольт, причем внутренний электрод сетка является отрицательным полюсом, а внешний — положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы преимущественно, продукты реакции , двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно. Энергия, затраченная ими на преодоление поля, — это и есть наш выигрыш, который относительно несложно «снять» с установки. В качестве основного процесса опять предлагается реакция лития с водородом, которая опять не подходит по тем же причинам, но примечательно не это. Олег Лаврентьев оказался первым человеком, придумавшим изолировать плазму при помощи какого-нибудь поля. Даже то, что в его предложении эта роль, вообще говоря, второстепенна — главная функция электрического поля в том, чтобы получить энергию вылетающих из зоны реакции частиц, — ничуть не меняет значения этого факта. Схема термоядерной реакции. Рисунок О. Лаврентьева, 1950 г. Правда, Сахаров и его коллеги предпочли использовать другое поле — магнитное.

Принцип работы водородной бомбы

Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой. Американская водородная бомба была громоздкой — с трехэтажный дом — а наша, превосходя все ожидания, могла доставляться на бомбардировщиках в любую точку планеты. «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему.

Самое популярное

  • 1. Чем атомная бомба отличается от обычной?
  • Как действует водородная бомба и каковы последствия взрыва? Инфографика
  • Термоядерные реакции.
  • Спецработа
  • Калифорниевая бомба

Похожие новости:

Оцените статью
Добавить комментарий