В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле.
Gini Coefficient
Коэффициент Джини. Формула. Что показывает | Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле. |
Доверительный интервал коэффициента Джини. Что это? | Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. |
В России зафиксирован рост доходного неравенства | В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини". |
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца | Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. |
Неравенство и бедность
Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире.
Коэффициент Джини: все ли равны?
Но заработная плата — это не все виды доходов. По другим видам доходов у нас либо нет налогов — на пенсии, стипендии, пособия, либо другие ставки налогообложения, например, на предпринимательские доходы или от финансовых операций. Ещё один инструмент выравнивания — социальные трансферты: пособия, пенсии, компенсационные выплаты и льготы. Возвращаясь к идее разделения доходов богатых среди бедных, хотелось бы напомнить пример зимних Олимпийских игр — 2014 в Сочи. Перед их проведением некоторые тоже высчитывали, во сколько организация Олимпиады обошлась каждому россиянину.
Разделили 50 миллиардов долларов на 143 миллиона жителей, оказалось, по 350 долларов на человека. Если делить только на бедных, получается более 3200 долларов на каждого. Но теперь мы так гордимся результатами Олимпиады, что вопрос, стоило ли тратить на неё деньги, снят с повестки дня. Величина коэффициента может варьироваться от ноля до единицы, при этом чем выше значение показателя, тем более неравномерно распределены доходы.
Гораздо полезнее ставить свои цели и добиваться их. Коэффициент Джини в России.
Вторую - под доли в сумме доходов, которые получает каждая такая доля населения. Если доходы каждой доли абсолютно одинаковы, получим вот такой график с прямой линией. А теперь изменим доходы. Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.
Для сравнения: самый низкий децильный коэффициент в скандинавских странах — Дании, Финляндии и Швеции — три-четыре. Недавно в официальной статистике появился ещё один ряд показателей — индексы риска бедности, которые отвечают на вопрос, какие категории населения рискуют стать бедными по источникам доходам, характеристикам домашних хозяйств, уровню образования, месту жительства и так далее. Так, в мегаполисах жить легче, чем в маленьких городках. Рост уровня образования снижает риск бедности, а наличие детей — повышает. Да, на трудовые доходы у нас единая ставка налога — 13 процентов. Но заработная плата — это не все виды доходов. По другим видам доходов у нас либо нет налогов — на пенсии, стипендии, пособия, либо другие ставки налогообложения, например, на предпринимательские доходы или от финансовых операций. Ещё один инструмент выравнивания — социальные трансферты: пособия, пенсии, компенсационные выплаты и льготы.
Возвращаясь к идее разделения доходов богатых среди бедных, хотелось бы напомнить пример зимних Олимпийских игр — 2014 в Сочи. Перед их проведением некоторые тоже высчитывали, во сколько организация Олимпиады обошлась каждому россиянину. Разделили 50 миллиардов долларов на 143 миллиона жителей, оказалось, по 350 долларов на человека.
Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать.
Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях.
Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни.
Социальная поддержка сократила уровень неравенства в России
Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
Доверительный интервал коэффициента Джини. Что это? | Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. |
Коэффициент джини в России | Коэффициент Джини может использоваться для выявления уровня неравенства по накопленному богатству. |
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению.
Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца.
Иным способом расчета коэффициента является геометрический метод. А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2].
И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов.
Индекс Джини это процентный аналог коэффициента Джини. Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство».
Неформальная экономическая деятельность, как правило, составляет большую часть реального экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ офшорных зон. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается разделить двумерную область разрыв между кривой Лоренца и линией равенства до одного числа, он скрывает информацию о «форме» неравенства. В повседневных терминах это было бы похоже на описание содержимого фотографии только по ее длине вдоль одного края или простому среднему значению яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами внутри распределения, например распределение доходов по возрасту, расе или социальным группам. В этом ключе понимание демографии может быть важным для понимания того, что представляет данный коэффициент Джини. Например, большая часть пенсионеров повышает индекс Джини.
Резюме Индекс Джини - это показатель распределения доходов населения. Более высокий индекс Джини указывает на большее неравенство, когда люди с высоким доходом получают гораздо больший процент от общего дохода населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и может скрывать важную информацию о распределении доходов. А на этом сегодня все про коэффициент индекс Джини. Надеюсь статья оказалась для вас полезной.
Коэффициент Джини (распределение дохода)
Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон.
Индекс Джини и неравенство доходов
вы делаете те новости, которые происходят вокруг нас. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%).
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем меньше равноправия в обществе. В приведенном выше примере Гаити более неравное, чем Боливия. Коэффициент Джини в мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка, коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году. Однако цифры значительно различаются. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Книга Лакнера и Милановича показывает снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов.
В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло. Коэффициент Джини для стран мира Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , в то время как многие из самых богатых Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и эта взаимосвязь менялась с течением времени. Михаил Моатсос из Утрехтского университета и Джоэри Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию к снижению, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения , а затем резко сократилось.
Три графика, показывающие поведение ВВП в три разных момента времени.
Опыт развитых стран свидетельствует, что неравенство в распределении доходов со временем сокращается. В нашей стране дифференциация доходов населения представлена в таблице в сравнении с США. Дифференциация доходов населения России и США, 1996 г.
Источник: Getty Images В 2015 году Греция, Таиланд, Израиль и Великобритания оказались неравны в равной степени, то есть все четыре страны имели одинаковый коэффициент Джини — общий показатель неравенства доходов. Коэффициент Джини, равный 1 единице , означает, что в обществе наблюдается абсолютное неравенство, в то время как 0 ноль означает полное равенство. В действительности население любой страны или региона в каждый конкретный момент находится где-то между этими показателями.
Он имеет ряд преимуществ, которые стоит отметить: позволяет сравнивать распределение признака в совокупностях с различным числом единиц например, регионы с разной численностью населения ; дополняет данные о ВВП и среднедушевом доходе. Служит своеобразной поправкой этих показателей; может использоваться для сравнения распределения признака между различными совокупностями например, разными странами , при этом нет зависимости от масштаба экономики сравниваемых стран; может использоваться для сравнения распределения признака по разным группам населения например, для сельского населения и городского населения ; позволяет отследить динамику неравномерности распределения признака в совокупности на разных этапах; анонимность, то есть нет необходимости знать, кто имеет какие доходы персонально [3]. Методы расчета коэффициента Джини. Существует несколько способов расчета коэффициента: алгебраический и геометрический. Рассмотрим каждый подробнее.
Коэффициент концентрации Джини G используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]: где — накопленная частость доля численности единиц совокупности; — накопленная доля значений признака i-ой группы, приходящихся на все единицы совокупности. Иным способом расчета коэффициента является геометрический метод.
Индекс Джини
Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Индекс Джини или коэффициент Джини — это статистическая мера распределения, разработанная итальянским статистиком Коррадо Джини в 1912 году. В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395.
Что бы сделал Робин Гуд?
Коэффициент Джини. Из экономики в машинное обучение | В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf). |
Коэффициент Джини. Большая российская энциклопедия | Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. |
Индекс Джини | Коэффициент Джини. |
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1.
Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление.
Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале.
Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться.
Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство.
Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5.
Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.
В России используется метод деления на 20-процентные группы [2]. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам.
Тогда, как выглядит кривая абсолютного неравенства и что это такое? Это, когда доходы распределены абсолютно неравномерно. А это как? Это когда один человек забирает все доходы, а остальные питаются воздухом. И кривая абсолютного неравенства тогда будет выглядеть как красная кривая на графике слева. Также, как и кривая абсолютного равенства, кривая абсолютного неравенства имеет сугубо теоретический смысл, пока что история не знает реальных примеров стран, где было бы абсолютное равенство или абсолютное неравенство.
Эти линии мы построили только для того, чтобы ориентироваться, к какой из этих крайностей ближе кривая Лоренца для страны Казыстан.