— Дело в том, что все эти устройства работают от аккумуляторов, — говорит один из авторов разработки — заместитель начальника отдела биотехнологий и биоэнергетики Павел Готовцев. Над созданием этой "вечной батарейки" в течении 8-ми лет работала большая команда учёных Роскосмоса и Росатома. Поскольку бесконечный аккумулятор самозаряжается, любой избыточный заряд хранится во вторичных запоминающих устройствах, таких как конденсаторы. «Вечная атомная батарейка». В 2020 году американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая потенциально может проработать.
Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет
Физики придумали «вечную» батарейку на основе алмаза | Потом их стали внедрять в электромобилях, а в перспективе «водородные батарейки» попросту вытеснят все остальные даже в быту. В Циндао придумали вечный водный аккумулятор. |
Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии | РБК Тренды | Над созданием этой "вечной батарейки" в течении 8-ми лет работала большая команда учёных Роскосмоса и Росатома. |
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку | Батарейка на изотопах плутония, прототип которой создан в НИЯУ МИФИ по заказу Госкорпорации «Росатом», способна работать без подзарядки несколько десятилетий. |
Алмазные батареи, работающие на ядерных отходах, могут прослужить тысячи лет
Плюс таких двигателей — в значительном сокращении времени полета. Но это другая история, которая пока не закончилась. Модификация одного из них обогревала измерительный инструмент, который взяли с собой участники миссии «Аполлон-11». И пока это так. Однако подобные системы практически незаменимы при отправке зондов на сверхдальние расстояния — туда, где солнечные батареи бесполезны. Первопроходцем в этом деле стала межпланетная станция «Пионер-10», отправленная в космос 3 марта 1972 года. Перед запуском они выдавали 155 Вт электроэнергии, но при подлете к Юпитеру показатель снизился до 140 Вт. Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей. До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония.
Плюс на борту имелось по девять нагревателей RHU их может быть и больше, они устанавливаются точечно в рассчитанных местах. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране. Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу. Фото: Los Alamos National Laboratory Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода потом аппарат становился мусором, который летает вокруг Земли до сих пор , и это при более высоком весе ядерного топлива. Поэтому требовались регулярные запуски, с которыми то и дело не ладилось. На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза. Однако новые системы получили лишь два спутника, и один из них был уничтожен. Фото: kerbalspaceprogram. Однако какого-то значительного шага вперед с точки зрения эффективности сделано не было.
Не требует обслуживания. Да, у такой батарейки низкая мощность, но зато высокая энергоёмкость. И тут не нужны тяжёлые радиоактивные изотопы вроде плутония. Бета-распад куда более невинен. Как получить тяжёлый никель Патент на бетавольтаику был получен ещё в 1957 году, но реализовать его удалось только сейчас. Одно дело теория, другое - реально работающий гаджет. Сначала ориентировались на сверхтяжёлый водород - тритий. Но его тяжело загнать в твёрдое состояние, а работать с радиоактивным газом как-то не хочется, - объясняет один из авторов проекта, аспирант химического факультета МГУ им.
Ломоносова Иван Харитонов. В итоге остановились на никеле-63. В природе такого изотопа не существует. Легче всего его получить из никеля-62, который образуется естественным путём. Поэтому сначала пришлось воспользоваться центрифугой, чтобы увеличить концентрацию никеля-62. Дальше ещё сложнее: целых два года бомбардировали нейтронами никель-62, чтобы часть атомов схватила дополнительную частицу и превратилась в никель-63. Об этом удалось договориться с Ленинградской АЭС. Но далеко не весь металл превратился в нужный изотоп.
Поэтому его разогрели до такого состояния, что он перешёл в газовую фазу, и снова разделили по массе, чтобы увеличить концентрацию никеля-63. Дорогой - это мягко сказано.
Она также способна работать при температуре от минус 60 до плюс 120 градусов Цельсия. Фото: Betavolt Фото: Betavolt Также в компании заявили, что атомная батарея абсолютно безопасна для здоровья человека и окружающей среды, не генерирует ионизирующего излучения и пригодна для использования в медицинских устройствах, таких как кардиостимуляторы и искусственные сердца. После распада 63 изотопа превращаются в стабильный изотоп меди, который нерадиоактивен и не представляет никакой угрозы. США и Европа также работают над созданием миниатюрных ядерных батарей Ядерные батареи или радиоизотопные генераторы — это устройство, в которых энергия распада радиоактивного изотопа преобразуется в электрическую энергию. От ядерных реакторов они отличаются тем, что в них не используется цепная реакция. Технически радиоизотопные генераторы не являются батареями, поскольку в отличие от электрохимических аккумуляторов их нельзя заряжать или перезаряжать. Фото: Betavolt Фото: Betavolt Ученые Советского Союза и США смогли разработать технологию для использования в космических кораблях, подводных системах и удаленных научных станциях, однако существующие радиоизотопные генераторы являются дорогостоящими и громоздкими.
Да, пока такие источники автономного «самопитания» обладают чрезвычайно малой мощностью, но они уже существуют и применяются, в частности, при взаимодействии с имплантатом в устройствах медицинской микроэлектроники. Иногда батарея, аккумулятор или даже ионистор в качестве элемента питания действительно не подходят, если вы проектируете устройство сверхнизкого энергопотребления. В этой связи рассмотрение технологий создания электрических батарей на основе изотопов с ядерным принципом действия представляется весьма актуальным. Используется 32-битное ядро RISC-V, специально разработанное для обеспечения супернизкого энергопотребления и встроенной функцией сбора энергии. Среди преимуществ масштабируемая, настраиваемая память с низким энергопотреблением, беспроводной интерфейс с поддержкой Bluetooth Low Energy и радиоканал в формате IEEE802. Уже несколько лет доступны саморастворяющиеся имплантаты и даже водорастворимые в горячей воде печатные платы, что удобно для безопасной и полной переработки. На фоне этих инноваций прототип радиоизотопной батареи малой и средней мощности на основе бета-распада никеля-63, плутония-238 и других изотопов , а также параллельные разработки по созданию ядерной электрической батареи в КНР представляют огромный интерес. Выбор радиоизотопа и схемы преобразования Области применения ядерных батарей разнообразны: они незаменимы на территориях, удалённых от инфраструктуры, к примеру, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяжённости, в космосе, в устройствах, обеспечивающих специальную связь, и в медицине: везде, где требуется длительный мониторинг без возможности подзарядки или замены источников энергии. Для изотопных источников применительно к кардиостимуляторам или датчикам артериального давления, электронным анализаторам крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа сужает возможности, поскольку радионуклиды при распаде должны распадаться либо переходить в состояние дочернего ядра. Кроме выбора радионуклида принципиально важным при разработке радиоизотопных источников энергии является выбор схемы преобразователя энергии ядерного распада в электрический ток. На практике преобразование осуществляется по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в тепловую, химическую, механическую, световую и другие виды энергии, а затем — в электрическую. Концепция оригинальной физической системы на основе 63Ni предложена группой учёных из Института «ЛаПлаза» под руководством Петра Борисюка [7]. Если обеспечить условия эффективной генерации вторичных электронов непосредственно внутри наноструктурированных плёнок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц, на выходе экспериментальной реализации получают относительно простую систему, но довольно результативную с точки зрения состава плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осаждённых на поверхности широкополосного диэлектрика — оксида кремния [7]. Вследствие размерной зависимости энергии Ферми наличие пространственно-неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в электропроводящей системе соприкасающихся друг с другом металлических наночастиц. Их средний размер изменяется в выделенном направлении, что приводит к возникновению разности потенциалов на полярных выходах напряжению. Объяснением этого эффекта с помощью знаний физики ядерной реакции является демонстрация формирования нанокластерных плёнок никеля-63 с градиентным распределением наночастиц. В процессе реакции достигают двух эффектов. Во-первых, формируются покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, происходит преобразование энергии бета-распада 63Ni в ток электронов электрический ток без использования дополнительных сложных для реализации полупроводниковых систем. Исследование электрофизических свойств формируемой нанокластерной плёнки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество впервые были опубликованы в журнале Applied Physics Letters коллективом авторов [7]. Поскольку наноструктурированные плёнки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределённым спектром излучения в заданном спектральном диапазоне, процесс окисления плёнки приводил к образованию оксидной оболочки поверх металлического ядра нанокластера. Затем происходило формирование совокупности металлических нанокластеров с их пространственным распределением по размерам, но в одном слое оболочке оксида. Относительно малые размеры нанокластеров 2—15 нм способствуют проявлению квантовых свойств полупроводниковых материалов с широким разбросом значений ширины запрещённой зоны, а это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и, следовательно, обеспечивает возможность коррекции спектра излучения под определённый диапазон длин волн. Это важное отличие перспективного открытия в разработке отечественных ученых, поэтому энергоэффективность и энергосбережение современных тепловых источников электроэнергии может выйти на новый уровень. Понимая конкурентное значение технологии, подобными исследованиями занимаются во всём мире. Китайские успехи Китайский стартап Betavolt из Пекина представил первую в мире миниатюрную аккумуляторную батарею с ядерной начинкой: модель BV-100. Первенство объясняют тем, что это первый случай, когда атомная энергия реализована в столь миниатюрной модели. Отсюда и название батареи — «ядерная». Миниатюризация — основной отличительный признак инновации. Батареи можно подключать параллельно и последовательно, создавая модули в электрической цепи для увеличения мощности источника питания и суммарного напряжения. Заявленная мощность одной батареи с изотопом никель-63 и алмазными полупроводниками сравнима с источником автономного питания в 100 мкВт, а напряжение составляет 3 В постоянного тока [6]. Размеры батареи меньше средней монеты. На рис. Принцип работы батареи основан на преобразовании энергии, выделяемой при распаде изотопов, в электрический ток. Соответственно, речь идёт об источнике энергии, у которого понятие саморазряда отсутствует вообще, а рабочий процесс начинается только после подключения в электрическую цепь при подключении к контактам батареи устройств нагрузки. Изотопы никеля — разновидности химического элемента никеля, имеющие разное количество нейтронов в ядре. Известны изотопы никеля с массовыми числами от 48 до 80 количество протонов 28, нейтронов от 20 до 52 и 8 ядерных изомеров. Среди искусственных изотопов самые долгоживущие — 59Ni период полураспада 76 тыс. Дочерний изотоп — стабильный 63Cu — получают облучением нейтронами в ядерном реакторе стабильного изотопа 62Ni. Используемый в новой атомной батарее 63Ni — наиболее перспективный радионуклид в бета-вольтаике: средняя энергия бета-частиц 63Ni 17,5 кэВ и максимальная энергия 67 кэВ , период полураспада 100,1 лет; к нему можно создать физическую защиту от мягкого бета-излучения источника в миниатюрном элементе питания.
Российские ученые разработали технологию "вечной" ядерной батарейки
По мнению разработчиков, такие элементы питания помогут помочь обеспечить бесперебойную работу смартфонов, приборов аэрокосмической промышленности, медицинского оборудования, имплантов, роботов, микропроцессоров. Ее радиоактивная начинка со временем превратится в стабильный изотоп меди, утверждают разработчики. Ранее исследователи из Швеции и США предложили создавать экраны смартфонов из прозрачной древесины.
Вечная батарейка в разрезе Фото: Соцсети Представители компании заявили, что в ближайшем будущем надеются обойти некие нормативные препятствия, которые мешают им запустить массовое производство этих чудо-батарей. При этом они поясняют, что ядерные мини-батарейки мало того, что работают и в экстремальном холоде, и в экстремальной жаре, но еще и совершенно безвредны для человека. Кроме того, с течением времени, материал из которого они сделаны, полностью разлагается, а следовательно не возникнет проблем с ядерными отходами.
Читайте также:.
Он добывает электричество из глюкозы, содержащейся в крови. В перспективе устройство поможет пациентам, которым имплантирован кардиостимулятор, нейростимулятор или инфузионная помпа. Новый источник энергии должен генерировать электричество внутри человека. По замыслу это даст возможность пожизненной имплантации устройства.
Такие батарейки могут быть соединены по несколько штук и использоваться для, по сути, вечного питания различных гаджетов, дронов и т. После использования набор радиоактивных элементов в батарее преобразуется в стабильный изотоп меди, в котором нет никакой угрозы для здоровья и экологии.
Разработку уже активно испытывают, скоро будет запущен ее серийный выпуск.
Самарские ученые разработали «вечную» батарейку со сроком службы 100 лет
Создана первая в мире «вечная» батарейка. Она стоит дешевле литиевых аккумуляторов. Видео | В этой статье расскажем, что придет на замену привычным аккумуляторам. |
Представлена «вечная» батарейка на радиоактивных элементах / Хабр | По их заверениям, энергоэффективность атомных батареек настолько высока, что их можно ставить в пару с литиевыми аккумуляторами – и Nano Diamond Battery будет не только питать. |
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии | Впрочем, от идеи сделать вечную батарейку наши ученые не отказались и сконцентрировали исследования на другом радиоизотопе — никеле-63, период полураспада которого 100 лет. |
Российские ученые создали батарейку из плутония, которая может работать вечно | Заново изобрели электричество: батарейка с сердечником из ядерных отходов будет работать 28 тысяч лет. |
От смартфона до ракеты. Учёные создали "вечную" атомную батарейку | Вечная батарейка для кардиостимуляторов будет работать на глюкозе. |
«Вечные» батарейки и аккумуляторы
Российские физики создали материал для "вечной" космической батарейки читайте также. Смотрите видео онлайн «Российские ученые создали батарейку из плутония, которая может работать вечно» на канале «Телеканал МИР» в хорошем качестве и бесплатно. Сотрудники НИЯУ МИФИ создали первый прототип атомной батарейки, способной работать до 80 лет без подзарядки. Новая технология позволяет создать батарейку со сроком службы более 100 лет. Тем не менее, до сих пор находятся энтузиасты, которые верят в светлое будущее батареек с радиоизотопами. Вечная батарейка для кардиостимуляторов будет работать на глюкозе.
Ученые представили «вечную» батарейку, работающую на радиоактивных элементах
GISMETEO: В КНР разработали «вечную» батарейку - Наука и космос | Новости погоды. | Специалисты МГУ вместе с коллегами из химико-технологического университета заявили, что создали батарейку, срок годности которой достигнет 100 лет. |
Российские ученые создали батарейку, работающую 100 лет - Российская газета | Для производства идеи данных атомных батареек будет использоваться радиоизотоп Никель-63. |
Представлена «вечная» ядерная батарейка | Исследователи и учёные из Технического университета Вены изобрели аккумулятор принципиально нового типа. |
Появился проект вечной квантовой батарейки
Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров. Достоинства нанопроводов как части батарейки не вызывали сомнения, но, как и многие другие прогрессивные материалы, эти элементы имеют и уязвимости. Основная особенность батарейки заключается в оригинальной микроканальной 3D – структуре, а если точнее, то главную роль в ней играет никелевой бетавольтаический элемент. Выставка «Вечная батарейка» о современном мире, переживающем пандемию, открылась в Электромузее на Ростокинской улице.
Алмазные батареи, работающие на ядерных отходах, могут прослужить тысячи лет
Американский стартап Nano Diamond Battery представил «вечную» ядерную батарейку — специальный корпус из синтетических алмазов. Российские учёные создали прототип батарейки на изотопе плутония. Стартап из Поднебесной Betavolt представил атомную батарейку, живущую без подзарядки 50 лет.
Почему ядерные батарейки так и не стали популярны? История почти забытой технологии
Они также могут быть размещены непосредственно на печатных платах, обеспечивая питание в течение всего срока службы устройства. Самое важное — стоимость такого аккумулятора, как обещают в NDB, будет сопоставима или даже дешевле литий-ионных батарей соответствующей мощности. Что делает возможным мир, где комплект пальчиковых батареек можно будет купить один раз в жизни и потом передавать их из поколения в поколение. Смартфоны и прочую электронику можно будет больше не подзаряжать, более того, смартфоны можно будет производить без батарей — владелец переставит ее из старого устройства, как и аккумулятор из старой машины в новую. А дома с такими источниками энергии можно будет вовсе не подключать к энергосетям, они будут полностью автономны.
Такой мир рисуют представители NDB. Кстати, «вечный» аккумулятор для электромобиля из ядерных отходов в силу высокого энергопотребления, будет работать на самом деле не 28 тысяч лет, а всего лет 90, как показывают расчеты NDB, то этого хватит, чтобы сменить с ним десятка два машин двум поколениям одной семьи. Насколько это все реалистично?
В качестве ловушки они использовали специально обработанный кристалл кремния, обладающего полупроводниковыми свойствами, где и генерировался электрический ток.
Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час. Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер.
Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года. Заключены два предварительных контракта на поставку батарей американским компаниям. Будущие бета-тестеры занимаются производством, обслуживанием и утилизацией продуктов ядерного топлива, а также производством аэрокосмической, оборонной и охранной продукции. Названия первых клиентов пока держат в секрете. Пока мы готовим новые материалы в блог Selectel , приходите обсуждать в комментариях.
Эти устройства будут работать в семь раз дольше любых существующих сегодня. Сотрудники Московского авиационного института разрабатывают промышленную технологию производства электрических аккумуляторов нового типа. Мы уже привыкли к смартфонам с литиевым аккумулятором. В электросамокатах и электрокарах аккумуляторы тоже литиевые. Однако у всего, что сделано с применением лития, есть один большой недостаток — самовозгорание. Литиевые аккумуляторы иногда взрываются. Бывает… Но ученые Московского авиационного института взяли за основу для создания аккумуляторов совершенно новый материал из углерода — бусофит.
Технотренды 2024: привычным литиевым аккумуляторам приходит конец
Американский стартап Nano Diamond Battery сообщил об успешном испытании «атомной» батарейки, которая может проработать 28 тысяч лет. Вечная батарейка. Автор: Александр Эйпур 25 марта в 22:58 25 марта в 23:19. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Китайская компания "Betavolt Technology" объявила о разработке компактной батарейки на основе никеля-63. Китайский стартап Betavolt представил новую «вечную» батарею, которая может генерировать электроэнергию в течение 50 лет.