Согласно современным представлениям, размер Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7миллиардовсветовыхлет (или 14,6 гигапарсек). На ней изображены более 256 тысяч галактик, которые зародились в промежутке от 13,3 млрд до 500 млн световых лет после большого взрыва. Хотя размер всей Вселенной неизвестен, можно измерить размер наблюдаемой ее части — примерно 93 миллиарда световых лет в диаметре.
37 поразительных фотографий, показывающих наше место во Вселенной
Десятки, сотни, тысячи млрд. Галактики удаляются, но вселенная не расширяется, возраст вселенной значительно больше. Знаем только размер. Ответить Аноним19 августа 2016 в 08:17 Все это сплошная чушь. Возраст Вселенной 291,6 миллиардов лет. Если кому нужны точные данные по всем параметрам Вселенной, могу предоставить бесплатно и без СМС. Ответить Евгений27 октября 2016 в 22:57 Согласен. Если размеры нашей Вселенной 13,8 млрд. Не может же Вселенная расширяться со скоростью света!
Ученые либо что-то не учли, либо это просто фейк!
Но как насчет абсолютного края Вселенной? Как ученые рассчитывают расстояния до объектов, которые так далеко? Вот где все становится действительно сложно. Помните: чем дальше объект от Земли, тем дольше свет от этого объекта достигает нас. Представьте, что некоторые из этих объектов находятся так далеко, что их свету потребовались миллионы или даже миллиарды лет, чтобы добраться до нас. Теперь представьте, что свету некоторых объектов необходимо столько времени, чтобы совершить это путешествие, что за все миллиарды лет существования Вселенной он все еще не достиг Земли. А что за ней?
Мы действительно не знаем», — сказала Кинни. Но, рассчитав размер этого маленькой части, ученые могут предположить, что находится за ее пределами. Ученые знают, что Вселенной 13,8 миллиарда лет. Это означает, что объект, свет которого потратил 13,8 миллиардов лет, должен быть самым дальним объектом, который мы можем видеть.
Таким образом, структурные уровни мегамира — звезды и звездные скопления, галактики, скопления галактик. Это структуры огромных размеров, масс и энергий, их движение определяется гравитационным взаимодействием и описывается законами общей теории относительности. Рассмотрим теперь объекты микромира.
Если уменьшить сферу радиусом 10 см в миллиард раз, то получим размер, соответствующий 10-8 см 10-10 м. Такие размеры соответствуют молекулам и атомам. Увидеть объекты такого размера с помощью микроскопа невозможно, т. О структуре атомов и молекул судят по косвенным данным, на основании которых и создаются модельные образы. Приведем численные значения радиусов некоторых атомов. Размеры атома определяются размером его электронной оболочки. Волновая природа электрона проявляется в способности к дифракции и интерференции.
Энергия электрона в атоме изменяется дискретно. Волновая природа электрона не позволяет говорить о траектории его движения. Состояние электронов в атоме описывается законами квантовой механики. Нахождение электрона в атоме описывают как электронное облако определенной формы. Электронные облака изображают с помощью моделей — атомных орбиталей различной формы. Электронная конфигурация атомов распределение электронов по орбиталям определяет его химические свойства. Атомы могут соединяться, образуя большое разнообразие более сложных структур, существование которых обусловлено химической связью, имеющей электростатическую природу.
Оценить размеры молекул можно по длинам связей расстояние между центрами атомов, связанных химической связью. В молекуле воды Н2О расстояние между центрами атомов кислорода и водорода составляет около 10-10 м. Атомы могут соединяться в еще более крупные молекулы и образовывать длинные цепочки полимеров. Размеры таких молекул могут достигать нескольких сотен нанометров. Например, длина молекулы мышечного белка миозина составляет около 200 нм. С помощью электронного микроскопа была установлена форма молекул миозина, а рентгенограмма показала его вторичную структуру. Самые небольшие молекулы нуклеиновых кислот вирусов, состоящие всего из нескольких тысяч нуклеотидов, могут достигать в длину несколько сотен нанометров.
Последние десятилетия активно развиваются прикладные исследования структур, размеры которых находятся в интервале 1 — 100 нанометров. Результаты изучения фуллеренов, фуллеритов, углеродных нанотрубок, молекул белков, нанокристаллов, кластеров, тонких пленок и других структур размером от 10-9 до 10-6 м лежат в основе современных нанотехнологий. Мир объектов таких масштабов стали называть наномиром Вернемся к строению атома. Ядро атома имеет размеры порядка 10-15 м и состоит из нуклонов, протонов и нейтронов. Существование протонов и нейтронов в ядре определяется сильным взаимодействием, которое может проявляться только на таких малых расстояниях.
Электронная конфигурация атомов распределение электронов по орбиталям определяет его химические свойства. Атомы могут соединяться, образуя большое разнообразие более сложных структур, существование которых обусловлено химической связью, имеющей электростатическую природу.
Оценить размеры молекул можно по длинам связей расстояние между центрами атомов, связанных химической связью. В молекуле воды Н2О расстояние между центрами атомов кислорода и водорода составляет около 10-10 м. Атомы могут соединяться в еще более крупные молекулы и образовывать длинные цепочки полимеров. Размеры таких молекул могут достигать нескольких сотен нанометров. Например, длина молекулы мышечного белка миозина составляет около 200 нм. С помощью электронного микроскопа была установлена форма молекул миозина, а рентгенограмма показала его вторичную структуру. Самые небольшие молекулы нуклеиновых кислот вирусов, состоящие всего из нескольких тысяч нуклеотидов, могут достигать в длину несколько сотен нанометров.
Последние десятилетия активно развиваются прикладные исследования структур, размеры которых находятся в интервале 1 — 100 нанометров. Результаты изучения фуллеренов, фуллеритов, углеродных нанотрубок, молекул белков, нанокристаллов, кластеров, тонких пленок и других структур размером от 10-9 до 10-6 м лежат в основе современных нанотехнологий. Мир объектов таких масштабов стали называть наномиром Вернемся к строению атома. Ядро атома имеет размеры порядка 10-15 м и состоит из нуклонов, протонов и нейтронов. Существование протонов и нейтронов в ядре определяется сильным взаимодействием, которое может проявляться только на таких малых расстояниях. Протоны и нейтроны, как и другие объекты микромира, обладают двойственной корпускулярно-волновой природой. Нейтроны и протоны не являются элементарными частицами и в своем составе имеют еще более мелкие частицы — кварки, размер которых оценивается уже в 10-18 м.
Размеры такого порядка соответствуют масштабам электрона. Проникнуть еще глубже в микромир ученые еще не могут. Современные способы изучения структур микромира основаны на наблюдениях за столкновениями между различными частицами. Чем меньше частица, тем больше энергии ей нужно сообщить. Эта энергия сообщается частицам при разгоне на ускорителях. Причем, чем больше энергии требуется, тем больше должен быть размер ускорителя. Современные ускорители имеют размеры в несколько километров например, Большой адронный коллайдер , однако даже этих размеров недостаточно для проникновения в структуры объектов порядка 10-18 — 10-19 м, размер необходимых для этого ускорителей сопоставим с размерами земного шара.
Все современные методы исследования объектов различного масштаба основываются на использовании сложнейших приборов. Современные электронные микроскопы, использующие вместо света пучок электронов, позволяют получить изображения, где различимы отдельные атомы. Для изучения объектов мегамира используются, например, различные телескопы оптические, радиотелескопы, космические телескопы и межпланетные станции. В современных оптических телескопах размер зеркала может достигать 10 м. Главное зеркало космического телескопа Хаббла имеет диаметр 2,4 м. Резюме теоретической части: Под Вселенной понимается всё многообразие окружающего материального мира.
ВИДИМ ЛИ МЫ ВСЕЛЕННУЮ?
Путешествие к краю Вселенной: сколько световых лет от нас до самой далекой из известных галактик. Наблюда́емая Вселе́нная — понятие в космологии Большого взрыва, описывающее часть Вселенной, являющуюся абсолютным прошлым относительно наблюдателя. Текущая оценка диаметра Вселенной составляет около 93 миллиардов световых лет. Большое Кольцо расположено близко к 0 по оси X и охватывает примерно от -650 до +650 по оси X (что эквивалентно 1,3 миллиардам световых лет). Гигантские размеры Вселенной, её тайны страшат и притягивают одновременно, словно магнит. Согласно современным представлениям, размер Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек).
Каков размер наблюдаемой Вселенной в световых годах?
Скорость расширения Вселенной не постоянна, сегодня она увеличивается. При этом ограничение скорости света на него не действует, так как это ограничение лишь говорит о том, что сигналы о разных событиях не могут распространяться быстрее света, а в принципе сверхсветовые скорости в физике возможны. В итоге считается, что вся наблюдаемая нами Вселенная представляет собой сферу с центром в Земле и радиусом 46 млрд св. Увидеть более отдаленные области не позволяет как раз то самое ограничение скорости света. Оценить же размеры всей Вселенной, а не только ее наблюдаемой части, не представляется возможным. Лишь самые общие соображения позволяют предполагать, что она всё же конечна.
Вселенная одинока? Или есть больше, чем одна? Один из многих оставшихся без ответа космологических вопросов заключается в том, существует ли более одной вселенной. Точно так же, как мы не знаем ее точную форму и край, мы также не можем узнать, существует мультивселенная или нет. Но у космологов и физиков есть свои теории. Одна из теорий предполагает, что наша Вселенная — всего лишь одна из множества вселенных-пузырей. Говорят, что после Большого взрыва космическая инфляция произошла в нескольких местах, в результате чего образовались различные пузыри или карманы. Инфляция повлияла на эти пузыри по-разному. Из-за этого физические правила в одной вселенной отличаются от правил в других. В физике квантовая механика имеет дело с поведением крошечных частиц. Например, если вы выстрелите крошечной частицей в другой объект, есть шанс, что она отскочит назад, пройдет через другой объект или, возможно, упадет. Короче говоря, она имеет дело с различными вероятностями. В нашей Вселенной мы видим только один результат наших действий. Если мы ударим по мячу, он может полететь так или иначе, но не в обе стороны. Однако в мультивселенной, вдохновленной квантовой механикой, мяч, который мы пнули, мог одновременно пойти разными путями в параллельных вселенных. Хотя идея других вселенных действительно интересна, мы все еще не можем узнать, существуют они или нет. Что мы знаем на данный момент, так это то, что лучше сначала понять нашу известную вселенную, прежде чем мы будем искать повсюду другие вселенные. Больше фактов Слово Вселенная происходит от латинского «universus». Слово «темный» не имеет ничего общего с их окраской. Темная материя и темная энергия называются так потому, что остаются одной из самых больших загадок астрофизики; Самые большие структуры во Вселенной называются сверхскоплениями и филаментами. Это большие группы галактик, простирающиеся на сотни миллионов световых лет в поперечнике. Большие пустые пространства между нитями называются «космическими пустотами»; Вселенной около 13,8 миллиардов лет. Она примерно в три раза старше Земли, которой 4,5 миллиарда лет. Между тем, Млечному Пути 13,6 миллиарда лет, что всего на несколько миллионов лет моложе Вселенной; Вселенная не только расширяется, но и ускоряется.
На приведённых рисунках видно, что время после инфляционного расширения T14 составляет порядка 1017 секунд или общепризнанные 13,8 млрд. За время жизни Вселенная увеличивается по разным оценкам до размеров 108 - 1030 метров. Рисунки из работ слева направо [6, 11, 7] Радиус Вселенной на сегодняшний день на приведённых рисунках показан порядка 108 - 1030 метров. На последнем правом из представленных рисунков нынешний радиус Вселенной равен примерно 1014 световых лет. В соответствии со стандартной моделью Большого Взрыва начальный радиус Вселенной должен был быть порядка нескольких сантиметров, а дальнейшее расширение было линейным. Инфляция позволяла устранить некоторые проблемы, возникающие в стандартной модели Большого Взрыва. Однако, первые инфляционные сценарии также не были лишены недостатков, что привело к дальнейшему их развитию и появлению новых инфляционных моделей, в которых на стадии инфляции Вселенная расширилась существенно сильнее.
Линде: «Главное отличие инфляционной теории от старой космологии становится очевидным, если посчитать размер типичной инфляционной области в конце инфляции. Рисунки из работ слева направо [12, 9] Такой разброс размеров Вселенной, очевидно, должен привести к различным итоговым параметрам Вселенной. Исследуем некоторые группы этих сценариев инфляционного расширения Вселенной. В дальнейших расчетах удобно использовать в качестве основных единиц измерения световой год расстояния и год время вместо традиционных мегапарсека и секунды, поскольку в приведённые ниже уравнения мы будем подставлять числовые значения и возраста Вселенной в годах , и размера Вселенной в световых годах и постоянную Хаббла километры, секунды, мегапарсеки. Для сопоставимости единиц измерения разных величин сразу же переведём значение постоянной Хаббла в новые единицы измерения. Длительность года равна приблизительно 30 млн. Таким образом, используя приблизительные значения величин, найдём значение постоянной Хаббла в этих новых единицах измерения:.
Наблюдаемая вселенная - Observable universe
Визуальное в виде сферы представление трёхмерной структуры наблюдаемой Вселенной, видимой с нашей позиции центр круга. Белыми линиями обозначены границы наблюдаемой Вселенной. Пятнышки света — это скопления скоплений галактик — суперкластеры supercluster — самые большие известные структуры в космосе. Масштабная линейка: одно деление сверху - 1 миллиард световых лет, снизу — 1 миллиард парсек. Наш дом в центре здесь обозначен как Сверхскопление Девы Virgo Supercluster — это система, включающая десятки тысяч галактик, в том числе нашу собственную — Млечный Путь Milky Way.
Более наглядное представление о масштабах обозримой Вселенной даёт следующее изображение: Схема расположения Земли в наблюдаемой Вселенной — серия из восьми карт слева направо верхний ряд: Земля — Солнечная система — Ближайшие звезды — Галактика Млечный Путь, нижний ряд: Местная группа галактик — Скопление Девы — Местное Сверхскопление — Обозримая наблюдаемая Вселенная. Чтобы лучше прочувствовать и осознать, о каких колоссальных, не сопоставимых с нашими земными представлениями, масштабах идет речь, стоит посмотреть увеличенное изображение этой схемы в медиа просмотрщике. А что можно сказать о всей Вселенной?
Некоторая часть этой массы может объясняться тёмной материей, но даже в этом случае маловероятно, что массы звёзд хватит, чтобы объяснить остальную массу галактики. Ранее уже были обнаружены галактики такого же возраста и с такой же плотностью, что говорит о том, что у этих древних звёздных фабрик есть что-то общее, что делает их такими массивными. Одно объяснение заключается в том, что эти галактики содержат гораздо больше тёмной материи, чем ожидалось, а другая теория предполагает, что в них может находиться больше звёзд малой массы, чем в молодых галактиках. Но для выяснения истинной причины учёным требуются дополнительные наблюдения и работа над ними. До сих пор, самым дальним обнаруженным объектом было кольцо на расстоянии около 14,7 миллиардов световых лет.
Фабио Пакуччи, ведущий автор статьи, опубликованной в MNRASL, заявил, что «ответить на вопросы о природе источника, находящегося так далеко, может быть непросто». Исследователи добавили, что данные с чрезвычайно большого телескопа Джеймса Уэбба и других будут иметь решающее значение для ответа на вопросы, которые остаются открытыми в этих исследованиях.
Исследователи добавили, что данные с чрезвычайно большого телескопа Джеймса Уэбба и других будут иметь решающее значение для ответа на вопросы, которые остаются открытыми в этих исследованиях.
Наблюдаемая Вселенная
Это «космологический принцип» подкрепляется наблюдениями ранней Вселенной и ее реликтовым излучением, найденный спутниками WMAP и Планка. Но он переоценил размеры Галактики (современная оценка диаметра — 100 тыс. световых лет) и был не прав относительно спиральных туманностей. 2. Вселенная Предположительный размер – 156 миллиардов световых лет Картинка стоит тысячи слов, поэтому посмотрите на этот простер и постарайтесь представить/понять, насколько велика наша Вселенная.
Насколько велика Вселенная?
До недавних пор считалось, что предельные размеры осцилляций — около полумиллиарда световых лет. Однако теперь астрономы объявили об обнаружении структур намного большего размера, но идентифицируемых как след барионной акустической осцилляции. Работа об этом опубликована в The Astrophysical Journal. Центр этого образования находится в 820 миллионах световых лет от нас. По структуре это что-то вроде кольца из галактик, расположенного вокруг войда Волопаса — огромной пустоты диаметром в сотни миллионов световых лет. До сих пор полной и детальной трехмерной карты этого региона не было, что и не позволяло астрономам заметить само существование такой структуры.
Поскольку Вселенная расширяется, а скорость света определена и конечна, мы видим объекты такими, какими они были, а не такими, какие они есть. Галактика, которая находится, скажем, в миллиарде световых лет от нас, на самом деле теперь находится на гораздо большем расстоянии из-за расширения пространства. Мы просто видим галактику такой, какой она была миллиард лет назад, но с тех пор она преодолела огромное расстояние.
Когда астрономы учитывают расширение пространства, они приходят к выводу, что предполагаемый размер Вселенной составляет около 93 миллиарда световых лет. Чтобы упростить вещи, лучший способ думать о расстоянии — рассматривать его как то, как далеко назад во времени мы можем заглянуть. Другими словами, насколько близко мы можем увидеть Большой Взрыв? Хотя «Хаббл» меньше, чем некоторые наземные обсерватории, он может видеть Вселенную гораздо более детально благодаря тому, что находится в космосе, где ему не приходится иметь дело с какими-либо атмосферными искажениями. И хотя он уже не самый мощный телескоп, Хаббл все еще может видеть Вселенную такой, какой она была всего через 500 миллионов лет после Большого взрыва.
Обычно, когда говорят о размерах Вселенной, подразумевают локальный фрагмент Вселенной Мироздания , который доступен нашему наблюдению. Это так называемая наблюдаемая Вселенная — область пространства, видимая для нас с Земли. А так как возраст Вселенной около 13 800 000 000 лет, то независимо от того в каком мы направлении смотрим, мы видим свет, который достиг нас за 13,8 миллиарда лет. Но это не так! Потому что с течением времени космос расширяется.
И те далекие объекты, которые испустили свет 13,8 млрд. Сегодня они уже более чем в 46,5 миллиардах световых лет от нас. Удвоив это, получаем 93 миллиарда световых лет.
В результате удалось получить весьма впечатляющий снимок далёкой галактики, который до запуска «Джеймса Уэбба» казался невозможным, ведь спиральная галактика NGC 6872 находится на расстоянии в 212 миллионов световых лет от Земли. Также учёные объяснили, почему данная галактика выглядит именно так. Всё дело в гравитационном взаимодействии спиральной галактики NGC 6872 с соседней дисковой галактикой IC4970, масса которой в пять раз меньше своего «большого» соседа. Обычно подобные гравитационные взаимодействия приводят к галактическому слиянию, когда большая галактика «пожирает» менее крупного соседа, но в данном случае привычный сценарий был нарушен.
Каков размер наблюдаемой Вселенной в световых годах?
Для представления и осознания космического пространства приведены сравнения в световых годах. Парадокса в этом нет: хотя Большой Взрыв произошел около 13 млрд лет назад, Вселенная все это время расширяется, накопив действительно впечатляющие размеры. Размер Вселенной составляет минимум 156 миллиардов световых лет. К такому выводу пришли ученые, проведя новые расчеты движения световых частиц в космосе. На ней изображены более 256 тысяч галактик, которые зародились в промежутке от 13,3 млрд до 500 млн световых лет после большого взрыва.
Что находится за пределами нашей Вселенной: 5 теорий
Если представить, что Солнечная система, а именно Земля — центр Вселенной, то наблюдаемая Вселенная будет представлять собой шар с радиусом около 46,5 миллиарда световых лет и увидеть галактику на расстоянии 20 миллиардов световых лет — норма. — когда вселенной исполнилось примерно три года, диаметр Млечного Пути составлял сто тысяч световых лет. Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7миллиардовсветовыхлет (или 14,6 гигапарсек). Предположительно возраст Вселенной составляет 13,75 миллиардов лет, а диаметр наблюдаемой Вселенной составляет 28 миллиардов парсек (93 миллиарда световых лет).
Размеры Вселенной
Многие могут возразить, что по Теории относительности ничто не может двигаться быстрее скорости света. Ученые не видят противоречий в данном обстоятельстве, расширяться быстрее скорости света может пространство, при этом расположенные в этом пространстве объекты, как и прежде, будут иметь досветовые скорости. Выходит, что какая-то часть Вселенной убегает от нас быстрее, чем нас достигает ее собственное световое излучение, то есть мы никогда не сможет ее увидеть. Отсюда следует, что во Вселенной есть граница, которая делит ее на видимую и невидимую часть, эту границу называют Сферой Хаббла. Принимая во внимание последние факты, в суть определения Вселенной следует внести некоторые коррективы. Пространство, расположенной до Сферы Хаббла и все имеющиеся в нем объекты, которые можно обнаружить при помощи инфракрасного телескопа, ранее называлось Вселенной, теперь его называют Метагалактикой.
NASA опубликовало самую детальную в истории фотографию Вселенной. На ней изображены более 256 тысяч галактик, которые зародились в промежутке от 13,3 млрд до 500 млн световых лет после большого взрыва.
Фотография стала результатом 16-летней работы телескопа «Хаббл». За это время он сделал более 7,5 тысячи снимков, а специалисты NASA объединили их в одну большую мозаику.
Однако некоторые ученые, разрабатывая теории элементарных частиц и квантовой гравитации, возможно, придут к мнению, что существование большого количества измерений просто необходимо. Некоторые модели Вселенной не исключают такого их количества, как 11 измерений. Следует учесть, что существование многомерной Вселенной возможно при высокоэнергетических явлениях — черные дыры, большой взрыв, барстеры. По крайней мере, это одна из идей ведущих космологов. Модель расширяющейся Вселенной базируется на общей теории относительности. Ее предложили для адекватного объяснения структуры красного смещения. Расширение началось в одно время с Большим взрывом.
Ее состояние иллюстрирует поверхность надутого резинового шарика, на который нанесли точки — внегалактические объекты. Когда такой шарик надувается, все его точки удаляются друг от друга независимо от положения. По теории Вселенная может либо расширяться бесконечно, либо сжаться. Барионная асимметрия Вселенной Наблюдаемое во Вселенной значительное увеличение количества элементарных частиц над всем числом античастиц называется барионной асимметрией. К барионам относят нейтроны, протоны и еще некоторые короткоживущие элементарные частицы. Данная диспропорция получилась в эру аннигиляции, а именно через три секунды после Большого взрыва. До этого момента количество барионов и антибарионов соответствовало друг другу. Во время массовой аннигиляции элементарных античастиц и частиц большая их часть объединилась в пары и исчезла, тем самым породив электромагнитное излучение. Возраст Вселенной на портале Kvant.
Space Ученые современности считают, что нашей Вселенной примерно 16 миллиардов лет. По подсчетам минимальный возраст может быть 12-15 миллиардов лет. Минимум отталкивается от самых старых в нашей Галактике звезд. Реальный ее возраст определить можно, только лишь при помощи закона Хаббла, но реальный не значит точный. Горизонт видимости Сфера с равным расстоянию радиусом, которое свет проходит за все время существования Вселенной, называется его горизонтом видимости. Существование горизонта прямо пропорционально связано с расширением и сжатием Вселенной. Согласно космологической модели Фридмана, расширяться Вселенная начала от сингулярного расстояния примерно 15-20 миллиардов лет назад.
Но в действительности с самого начала, со времен Большого Взрыва, Вселенная продолжает непрерывно расширяться. Как сообщил астрофизик, вследствие того, что Вселенная постоянно и очень быстро расширяется, фотонам света приходится преодолевать гораздо больший путь, компенсируя это расширение. Точка, из которой 13 миллиардов лет назад отправился в свой путь фотон, который сейчас достигает Земли, удалена от планеты на 78 миллиардов световых лет.
Видимая Вселенная
Специалисты заявили, что размеры NGC 6872 в поперечнике (то есть от начала одного «хвоста» до конца другого по диагонали) составляют 522 тысячи световых лет. Астрофизики измерили весь звездный свет, рожденный за всю историю наблюдаемой Вселенной. Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7миллиардовсветовыхлет (или 14,6 гигапарсек). наблюдаемая Вселенная имеет радиус 13.8 млрд световых лет. Её размеры — примерно 14 миллиардов световых лет.