Новости гипотеза рнк мира

Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году. Новости о недвижимости, экономики и финансах в России. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК. Последние новости дня на этот час.

Происхождение жизни, часть 2: РНК-мир

Поэтому многие учёные придерживаются гипотезы "мира РНК", согласно которой РНК появилась на Земле раньше, чем ДНК. Ученые из Института биологических исследований Солка провели исследования, подтверждающие гипотезу о мире РНК. Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь. Такой сценарий, по его мнению, больше соответствует результатам экспериментов и тому, что мы видим в современных организмах, чем гипотеза «РНК-мира». Ученые из Брукхейвенской национальной лаборатории раскрывают новые доказательства гипотезы РНК-мира, согласно которой первые репликаторы на Земле были РНК-молекулами. Но окончательно гипотеза мира РНК смогла сформироваться лишь после открытия в 1981 году рибосомальной РНК из ресничного простейшего Tetrahymena, которая способна к автосплайсингу.

ELife: ученые обнаружили спонтанное возникновение самовоспроизводящихся молекул

Гипотеза мира РНК — Структура рибозима — молекулы РНК, выполняющей функцию катализа Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации. Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. С самого начала гипотеза «мира РНК» привлекала ученых изящным решением проблемы «курицы и яйца» (или «феникса и огня»), вынесенной в эпиграф этой статьи. Ученые Брукхейвенской национальной лаборатории обнаружили новые доказательства гипотезы РНК-мира. Альтернативная гипотеза называется гипотезой первичного майонеза и говорит о том, что липиды, то есть вещества, образующие мембраны, были с самого начала и окружали молекулы РНК.

СВЯЗАТЬСЯ С РЕДАКЦИЕЙ

  • Биохимики спорят о том, не настаёт ли конец эпохи РНК / Хабр
  • Американские ученые выявили новое объяснение возникновения жизни на Земле
  • Почему РНК не хватало
  • Приобщаем к делу пептиды
  • РНК-мир: открыто происхождение жизни на Земле

Противоречия гипотезы мира РНК

  • Обнаружены новые доказательства РНК-мира – Земля - Хроники жизни
  • Найдено подтверждение гипотезы "РНК-мира"
  • Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле | Капитал страны
  • Приобщаем к делу пептиды
  • Моделирование происхождения жизни: Новые доказательства существования "мира РНК" |

Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле

Этот механизм приводил к образованию большого количества копий разрушенного полимера. Во второй модели к пулу РНК-цепочек, способных к спонтанному образованию рибозим, были добавлены ферменты, катализировавшие расщепление. Полимерные цепочки могли спариваться определенным образом, что приводило к образованию молекул РНК, способных к саморазрушению. Репликация полимера осуществлялась за счет циклического изменения температуры, что позволяет предположить, что древние полимеры могли размножаться при помощи циклов день-ночь.

Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера.

Ученые обнаружили новые доказательства гипотезы РНК-мира 06:36 01. Ученые из Брукхейвенской национальной лаборатории представили новые данных, подтверждающие гипотезу РНК-мира. Согласно этой гипотезе, первые репликаторы на Земле были представлены РНК-молекулами, способными к самовоспроизведению без участия белковых ферментов В сообщении, опубликованном в журнале eLife, ученые описывают механизм, согласно которому рибозимы могут возникать спонтанно и служить затравками для синтеза более длинных цепей РНК.

Дополнительно, неорганические поверхности, такие как камни, могли способствовать этому процессу. Эти открытия выявляют новые механизмы, которые могли способствовать зарождению жизни на Земле и поддержанию процессов самовоспроизводства. Они указывают на то, что процессы, касающиеся первичной жизни и РНК-мира, могли иметь множество путей развития, включая спонтанные образования рибозимов и циклические изменения окружающей среды, способствующие репликации полимеров. Эти исследования поднимают важные вопросы о происхождении жизни на Земле и механизмах, которые могли сыграть ключевую роль в ее зарождении. Надежда на то, что новые открытия помогут лучше понять эволюцию жизни на нашей планете и ее уникальное происхождение.

Ученые обнаружили новые доказательства гипотезы РНК-мира

А одним из известных решений этой парадоксальной задачи является гипотеза «мира РНК», появившаяся еще в конце 1960-х и окончательно оформившаяся в конце 1980-х. РНК — макромолекулы, в хранении и передаче информации не столь эффективные, как ДНК, а в выполнении ферментативных функций — не столь впечатляющие, как белки. Зато молекулы РНК способны и на то, и на другое, и до сих пор они служат передаточным звеном в информационном обмене клетки, и катализируют целый ряд реакций в ней. РНК же может быть полностью автономной: она способна катализировать собственное «размножение» — и для начала этого достаточно. Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Взять хотя бы наглядный пример, продемонстрированный калифорнийскими биофизиками во главе с Лесли Оргелом Lesley Orgel : если в раствор способной к саморепликации РНК добавить бромистый этидий, служащий для этой системы ядом, блокирующим синтез РНК, то понемногу, со сменой поколений макромолекул, в смеси появляются РНК, устойчивые даже к очень высоким концентрациям токсина. Примерно так, эволюционируя, первые молекулы РНК могли найти способ синтезировать первые инструменты-белки, а затем — в комплексе с ними — «открыть» для себя и двойную спираль ДНК, идеальный носитель наследственной информации. По мнению ее сторонников, никакая жизнь вовсе никогда не возникала — как не рождалась и Земля, не появлялся и космос: они просто были всегда, всегда и пребудут. Все это не более обосновано, нежели черви Паньгу: чтобы всерьез принять такую «теорию», придется забыть о бесчисленных находках палеонтологии, геологии и астрономии.

А по сути, отказаться от всего грандиозного здания современной науки — но тогда, наверное, стоит отказаться и от всего того, что полагается его жителям, включая компьютеры и безболезненное лечение зубов. Научно: Протоклетки Однако простой репликации для «нормальной жизни» недостаточно: любая жизнь — это, прежде всего, пространственно изолированный участок среды, разделяющий процессы обмена, облегчающий течение одних реакций и позволяющий исключать другие. Иначе говоря, жизнь — это клетка, ограниченная полупроницаемой мембраной, состоящей из липидов. И «протоклетки» должны были появляться уже на самых ранних этапах существования жизни на Земле — первую гипотезу об их происхождении высказал хорошо знакомый нам Александр Опарин. В его представлении «протомембранами» могли служить капельки гидрофобных липидов, напоминающие желтые капли масла, плавающего в воде. В целом идеи ученого принимаются и современной наукой, занимался этой темой и Джек Шостак, получивший за свои работы Медаль Опарина. Вместе с Катаржиной Адамалой Katarzyna Adamala он сумел создать своего рода модель «протоклетки», аналог мембраны которой состоял не из современных липидов, а из еще более простых органических молекул, жирных кислот, которые вполне могли накапливаться в местах возникновения первых протоорганизмов. Шостаку и Адамале удалось даже «оживить» свои структуры, добавив в среду ионы магния стимулирующие работу РНК-полимераз и лимонную кислоту стабилизирующую структуру жировых мембран.

В итоге у них получилась совершенно простая, но в чем-то живая система; во всяком случае это была нормальная протоклетка, которая содержала защищенную мембраной среду для размножения РНК. С этого момента можно закрыть последнюю главу предыстории жизни — и начать первые главы ее истории. Поэтическая картина вечного странствия каждой живой души по бесконечному множеству миров и их обитателей, ее перерождения то в ничтожное насекомое, то в возвышенного поэта, а то и в существо, неизвестное нам, демона или бога. Несмотря на отсутствие идей реинкарнации, Ницше эта идея действительно близка: вечность вечна, а значит, любое событие в ней может — и должно повториться вновь. И каждое существо без конца вращается на этой карусели всеобщего возвращения, так что только голова кружится, а сама проблема первичного происхождения исчезает где-то в калейдоскопе бесчисленных повторений. Научно: Эндосимбиоз Взгляните на себя в зеркало, всмотритесь в глаза: существо, с которым вы переглядываетесь, это сложнейший гибрид, возникший в незапамятные времена. Еще в конце XIX века немецко-английский естествоиспытатель Андреас Шимпер Andreas Schimper заметил, что хлоропласты — органеллы растительной клетки, ответственные за фотосинтез, — реплицируются отдельно от самой клетки. Вскоре появилась гипотеза о том, что хлоропласты — это симбионты, клетки фотосинтезирующих бактерий, когда-то проглоченные хозяином — и оставшиеся жить здесь навсегда.

Но долгое время было неясно, как такая молекула может появиться из предшественников, которые не могут проявлять каталитической активности. Специалисты обнаружили, что рибозим, который помогает расщеплять другие молекулы, может появиться спонтанно, потому что для обеспечения его работы необходимы только несколько классических оснований. Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности.

Недавние исследования позволили ученым выяснить, что рибозим, обладающий способностью расщеплять другие молекулы, может возникнуть спонтанно вследствие нескольких консервативных оснований, необходимых для обеспечения его функционирования.

Долгое время оставался вопрос о том, каким образом это свойство сохранялось в процессе биохимической эволюции. Путем разработки моделей исследователи выяснили, что случайные разрывы в простых молекулах РНК приводили к образованию коротких цепочек, действующих как праймеры для синтеза более длинных полимеров РНК. Такой неферментативный механизм приводил к образованию множества копий разрушенного полимера, аналогично регенерации червей, разрезанных на сегменты.

Однако возникал вопрос, как такие активные молекулы могли возникнуть из неактивных предшественников? Исследователи предложили возможный путь, по которому набор пребиотических олигомеров коротких полимерных цепочек , несущих информацию, мог приобрести ранние каталитические функции, такие как специфическое расщепление.

Используя компьютерное моделирование на основе структуры фермента РНК, они показали, что даже спонтанное, неферментативное расщепление может способствовать размножению олигомеров за счет образования коротких фрагментов, выступающих в роли затравок для дальнейшего роста.

Подписка на дайджест

  • Новости компаний
  • Решена главная проблема появления жизни на Земле
  • РНК у истоков жизни?
  • Исследования по гипотезе РНК-мира: возникновение саморепликации

Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК

Цепочку химических реакций, приведших к такому результату, и описали немецкие ученые. Они, вероятно, были занесены на раннюю Землю кометами. Из них уже сформировались простые аминопиримидины, которые вступили в реакцию с муравьиной кислотой и образовали амидопиримидины. Они в свою очередь в реакции с сахарами и образовали пурины в больших количествах.

Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Стоит отметить, что ученые, не участвовавшие в исследовании, ставят под сомнение достоверность условий, созданных для исследования.

Фрэнсис Уэстолл, директор группы экзобиологии в Центре молекулярной биофизики французского Национального центра научных исследований в Орлеане, отмечает, что формирование оснований требует очень специфических условий. Смеси должны были бы высыхать и подвергаться воздействию ультрафиолетового света — это могло случиться на суше, которая на Земле более четырех миллиардов лет назад была в дефиците.

Авторы описывают фермент РНК, способный создавать точные копии других функциональных нитей РНК, позволяя со временем возникать новым вариантам этой молекулы. Это значит, что самые ранние формы эволюции могли возникнуть на молекулярном уровне в РНК. Кроме того, это открытие приближает ученых к воспроизводству в лабораторных условиях процесса репликации молекул РНК и непосредственной проверки верности гипотезы «РНК-мира». Молекулы РНК, как и ДНК, состоят из нуклеотидных последовательностей, но могут также выступать в роли белков, как ферменты для проведения реакций.

Команда Джеральда Джойса, президента Института им. Однако все попытки получить в лаборатории версии, способные реплицировать крупные молекулы, оборачивались неудачей — они не обладали достаточной точностью.

Ее противники указывали на то, что формирование рибонуклеотидов, при полимеризации которых образуется РНК, «традиционным» образом — из остатка фосфорной кислоты, сахара рибозы и азотистого основания — едва ли могло произойти в естественных условиях. Английские исследователи доказали, что синтез рибонуклеотидов можно провести и другим путем, без участия рибозы и оснований. Для осуществления реакции, предложенной учеными, требуются цианамид на схеме обозначен цифрой 4 , цианоацетилен 3 , гликолевый альдегид 7 , глицеральдегид 6 и неорганический фосфат 2 — молекулы, нахождение которых на первобытной Земле оценивается как весьма вероятное. В начале процесса гликолевый альдегид реагирует с цианамидом, образуя промежуточное соединение — 2-аминооксазол 5. Периодический нагрев солнечными лучами и понижение температуры в ночной период позволяют произвести очистку 2-аминооксазола, превращая его в «заменитель» сахара и азотистого основания.

Эффективный полимеразный рибозим подкрепил гипотезу мира РНК

В 1964 г. Темин выдвинул гипотезу о существовании вирусспецифичного фермента, способного синтезировать на РНК-матрице комплементарную ДНК. Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул. С самого начала гипотеза «мира РНК» привлекала ученых изящным решением проблемы «курицы и яйца» (или «феникса и огня»), вынесенной в эпиграф этой статьи. Результаты исследования, которое фактически доказывает гипотезу существования РНК-мира, опубликованы в журнале Proceedings of the National Academy of Sciences (PNAS). Пост автора «Хайтек+» в Дзене: Найдено подтверждение гипотезы «РНК-мира» Эволюция, по определению Дарвина, это наследование с модификациями.

Обнаружены новые доказательства РНК-мира

Гипотеза и свойства РНК Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь. Некоторые теории, относящиеся к происхождению жизни, представляют РНК-опосредованную информацию и катализ как первый шаг в эволюции клеточной жизни. РНК на самом деле способна хранить информацию, но, по сравнению с ДНК, она также способна катализировать такие реакции, как белковые ферменты. Гипотеза предполагает, что эта основанная на РНК система эволюционировала в нынешнюю систему, включающую ДНК и белки, благодаря большой химической стабильности ДНК необходимой для сохранения очень ценной информации о генах и большей каталитической гибкости, которой обладают аминокислоты. Однако важную роль играют рибозимы; рибозимы являются важными компонентами рибосомы , последняя жизненно необходима для синтеза белка. Есть много возможных функций рибозима: природа широко использует саморасщепляющуюся РНК , а прямая эволюция создала рибозимы с разнообразной активностью. Среди наиболее важных каталитических свойств, связанных с происхождением жизни, можно выделить: Способность к самодупликации или дублированию других молекул РНК. В лаборатории были получены относительно короткие молекулы РНК, способные дублировать другие. Самая короткая идентифицируемая длина составляет 165 оснований, хотя считается, что может быть достаточно и меньшего размера. Способность катализировать простые химические реакции, что позволяет создавать новые молекулы. Относительно короткие нити с такими возможностями были изготовлены в лаборатории.

Эта операция в настоящее время выполняется рибосомами , комплексами, состоящими из белков и двух длинных молекул РНК известных как рРНК , которые, как полагают, несут главную ответственность за активность синтеза белка. В лаборатории была синтезирована молекула, способная образовывать короткие пептиды. Можно предположить, что современные рибосомы могли произойти из таких молекул. Также было высказано предположение, что аминокислоты могли первоначально образовывать комплексы с молекулами РНК в качестве кофакторов , способных усиливать и диверсифицировать ферментативные способности; мРНК могла произойти из сходных молекул, а тРНК из филаментов, способных катализировать перенос одних и тех же аминокислот к коротким пептидам. Самое главное, эта группа делает молекулу менее стабильной, так как она может атаковать близлежащую фосфодиэфирную связь и разорвать ее. Другим существенным отличием является используемый набор оснований РНК , который включает урацил вместо тимина , используемого ДНК.

В последующем эксперименте в менее восстановительной атмосфере, чем у Юри, были получены нуклеотиды [14] , что еще больше укрепило гипотезу мира РНК. Эта гипотеза также подтверждается исследованиями очень простых рибозимов, таких как вирусные Q-бета РНК , которые продемонстрировали способность к самовоспроизведению даже под очень сильным селективным давлением. Фактически ультрафиолетовые лучи одновременно вызывают полимеризацию РНК и расщепление других типов органических молекул, потенциально способных катализировать деградацию РНК например, рибонуклеаз. Во всяком случае, это аспект, еще не подтвержденный экспериментальными наблюдениями. Противоположные аргументы Аргументы, противоречащие гипотезе, основаны на маловероятности спонтанного образования молекул РНК, а также на том, что цитозиновое основание недостаточно проверено в методах пребиотического тестирования, так как легко подвергается гидролизу. Пребиотические условия, необходимые для самопроизвольного образования трех элементов, составляющих нуклеотид, отличаются друг от друга. Азотистые основания образуются в средах, отличных от тех, которые необходимы для образования сахаров, присутствующих в скелете нуклеиновой кислоты. По этой причине было бы необходимо предположить спонтанный синтез двух классов молекул в разных средах с последующим их объединением. Однако надо сказать, что в водной среде такое соединение маловероятно, так как азотистые основания и сахара в любом случае не способны реагировать. Третий элемент, фосфат , сам по себе крайне редко встречается в природных растворах, так как быстро выпадает в осадок. И даже если он присутствует, он должен сочетаться с нуклеозидом на правильном гидроксиле. Таким образом, чтобы встроиться в молекулу РНК, нуклеотид должен быть активирован за счет связывания двух других фосфатных групп с образованием, например, аденозинтрифосфата. Помимо всего этого, рибоза должна иметь правильную стереоизомерию , так как нуклеотиды, имеющие неправильную хиральность , выступают в роли терминаторов транскрипции. Фактически, он утверждал, что этот эксперимент не показал, что нуклеиновые кислоты были основой происхождения жизни, а просто показал, что эта гипотеза не была неправдоподобной. Кэрнс-Смит утверждал, что для того, чтобы достичь количества молекул, необходимого для возникновения жизни, процесс построения нуклеиновых кислот должен соблюдать 18 автономных условий между ними в течение нескольких миллионов лет. Мир РНК в деталях Механизмы синтеза пребиотической РНК Гипотеза предполагает наличие в первичном бульоне нуклеотидов, способных легко образовывать химические связи между собой и с такой же вероятностью разрывать эти связи благодаря малой энергии, необходимой для таких событий. В этой среде некоторые последовательности оснований, обладающие каталитическими свойствами, могли бы усиливать образование последовательностей с идентичными характеристиками именно благодаря каталитической активности, способной снижать энергию, необходимую для образования таких последовательностей.

Взять хотя бы наглядный пример, продемонстрированный калифорнийскими биофизиками во главе с Лесли Оргелом Lesley Orgel : если в раствор способной к саморепликации РНК добавить бромистый этидий, служащий для этой системы ядом, блокирующим синтез РНК, то понемногу, со сменой поколений макромолекул, в смеси появляются РНК, устойчивые даже к очень высоким концентрациям токсина. Примерно так, эволюционируя, первые молекулы РНК могли найти способ синтезировать первые инструменты-белки, а затем — в комплексе с ними — «открыть» для себя и двойную спираль ДНК, идеальный носитель наследственной информации. По мнению ее сторонников, никакая жизнь вовсе никогда не возникала — как не рождалась и Земля, не появлялся и космос: они просто были всегда, всегда и пребудут. Все это не более обосновано, нежели черви Паньгу: чтобы всерьез принять такую «теорию», придется забыть о бесчисленных находках палеонтологии, геологии и астрономии. А по сути, отказаться от всего грандиозного здания современной науки — но тогда, наверное, стоит отказаться и от всего того, что полагается его жителям, включая компьютеры и безболезненное лечение зубов. Научно: Протоклетки Однако простой репликации для «нормальной жизни» недостаточно: любая жизнь — это, прежде всего, пространственно изолированный участок среды, разделяющий процессы обмена, облегчающий течение одних реакций и позволяющий исключать другие. Иначе говоря, жизнь — это клетка, ограниченная полупроницаемой мембраной, состоящей из липидов. И «протоклетки» должны были появляться уже на самых ранних этапах существования жизни на Земле — первую гипотезу об их происхождении высказал хорошо знакомый нам Александр Опарин. В его представлении «протомембранами» могли служить капельки гидрофобных липидов, напоминающие желтые капли масла, плавающего в воде. В целом идеи ученого принимаются и современной наукой, занимался этой темой и Джек Шостак, получивший за свои работы Медаль Опарина. Вместе с Катаржиной Адамалой Katarzyna Adamala он сумел создать своего рода модель «протоклетки», аналог мембраны которой состоял не из современных липидов, а из еще более простых органических молекул, жирных кислот, которые вполне могли накапливаться в местах возникновения первых протоорганизмов. Шостаку и Адамале удалось даже «оживить» свои структуры, добавив в среду ионы магния стимулирующие работу РНК-полимераз и лимонную кислоту стабилизирующую структуру жировых мембран. В итоге у них получилась совершенно простая, но в чем-то живая система; во всяком случае это была нормальная протоклетка, которая содержала защищенную мембраной среду для размножения РНК. С этого момента можно закрыть последнюю главу предыстории жизни — и начать первые главы ее истории. Поэтическая картина вечного странствия каждой живой души по бесконечному множеству миров и их обитателей, ее перерождения то в ничтожное насекомое, то в возвышенного поэта, а то и в существо, неизвестное нам, демона или бога. Несмотря на отсутствие идей реинкарнации, Ницше эта идея действительно близка: вечность вечна, а значит, любое событие в ней может — и должно повториться вновь. И каждое существо без конца вращается на этой карусели всеобщего возвращения, так что только голова кружится, а сама проблема первичного происхождения исчезает где-то в калейдоскопе бесчисленных повторений. Научно: Эндосимбиоз Взгляните на себя в зеркало, всмотритесь в глаза: существо, с которым вы переглядываетесь, это сложнейший гибрид, возникший в незапамятные времена. Еще в конце XIX века немецко-английский естествоиспытатель Андреас Шимпер Andreas Schimper заметил, что хлоропласты — органеллы растительной клетки, ответственные за фотосинтез, — реплицируются отдельно от самой клетки. Вскоре появилась гипотеза о том, что хлоропласты — это симбионты, клетки фотосинтезирующих бактерий, когда-то проглоченные хозяином — и оставшиеся жить здесь навсегда. Разумеется, хлоропластов у нас нет, иначе бы мы могли питаться солнечным светом, как предлагают некоторые псевдорелигиозные секты. Однако в 1920-е гипотеза эндосимбиоза была расширена, включив митохондрии — органеллы, которые потребляют кислород и поставляют энергию всем нашим клеткам. К сегодняшнему дню эта гипотеза приобрела статус полновесной, многократно доказанной теории — достаточно сказать, что у митохондрий и пластид обнаружился собственный геном, более или менее независимые от клетки механизмы деления и собственные системы синтеза белка. В природе обнаружены и другие эндосимбионты, не имеющие за плечами миллиардов лет совместной эволюции и находящиеся на менее глубоком уровне интеграции в клетке. Например, у некоторых амеб нет собственных митохондрий, зато есть включенные внутрь и выполняющие их роль бактерии.

Главный вопрос, на который предстояло ответить — как пурины, аденозин и гуанозин, которые превращают РНК в сложный комплекс, могли возникнуть из так называемых дожизненных молекул. Цепочку химических реакций, приведших к такому результату, и описали немецкие ученые. Они, вероятно, были занесены на раннюю Землю кометами. Из них уже сформировались простые аминопиримидины, которые вступили в реакцию с муравьиной кислотой и образовали амидопиримидины.

Обнаружены новые доказательства РНК-мира

Вавилов Одним из часто встречающихся, довольно досадным моментом при работе с РНК является их деградация в процессе хранения или манипулирования, даже в случае хорошо очищенных препаратов. Обычно это связывают с наличием РНКаз, занесенных с посудой и реактивами или попавших в препараты РНК в процессе выделения. Однако было показано, что применение мощного ингибитора РНКаз - диэтилпирокарбоната во время выделения РНК с последующей усиленной депротеинизацией полученных препаратов и использование растворов, реактивов и посуды, обработанной диэтилпирокарбонатом и протеиназой К, не приводит к полному предотвращению деградации РНК. Известно, что если все работы проводить с очищенным препаратом РНК при температуре 0-4оС, то указанной деградации не наблюдается. В 90-е годы ХХ века было показано тождество закономерностей Mg-зависимого распада мРНК в живой клетке in vivo и в водных растворах in vitro [15, 16, 41]. На протяжении последних сорока лет многие исследователи отмечали способность выделенной из клетки РНК разрушаться в присутствии катионов металлов [15]. Но от внимания исследователей ускользал тот факт, что разрушение происходит по тем же законам, что и в живой клетке, отражая генетические особенности и физиологическое состояние организма.

В фундаментальных науках всегда имел значение объект исследования. Удачность выбора объекта или случай определяет скорость и эффективность исследований, обширность и глубину полученной информации. Как показали исследования, норма реакции на закаливающие температуры у сорта Безостая 1 на молекулярном уровне относительно узка по всем компонентам белоксинтезирующей системы - от амплитуды изменения трансляционной активности полирибосом, длины поли- А -хвоста мРНК, стабильности мРНК до амплитуды колебаний электрофоретического спектра рРНК [16, 23]. Это происходит на фоне относительно высокого содержания катионов магния в зерне Безостой 1 и соответствует реальному районированию сортов: высоко морозоустойчивый сорт Краснодарская 39 относительно низкое содержание магния в зерне способен давать урожай вплоть до Самарской области, в то время как средне морозоустойчивый сорт Безостая 1 давал и даёт великолепные урожаи, но в относительно узкой южной полосе. Особенности сорта Безостая 1 образно можно представить как глухонемого человека в группе пахарей. Товарищи отвлекаются на различные развлекательные и опасные аспекты жизни, а глухонемой пашет и пашет.

Поэтому в конечном итоге выясняется, что он вспахал больше всех. Но это только при условии относительно благоприятных обстоятельств. Этот вывод позволяет объективно понять природу феномена сорта Безостая 1 и, отталкиваясь от этих знаний, заложить основу понимания сакральных молекулярно-биологических процессов, лежащих в основе селекции и определяющих её будущие успехи. Таким образом, Безостая 1 фактом своего существования великолепно подтверждает вывод, сделанный Н. Вавиловым в 30-ых годах ХХ века: «Генотип должен превалировать над средой». Фундаментальные исследования молекулярной биологии РНК сорта Безостая 1 привели к прикладным исследованиям, способствовали формированию элементов молекулярных основ теории морозоустойчивости и возможности разработки простых методов оценки морозоустойчивости сортов озимой мягкой пшеницы по содержанию нуклеиновых кислот и катионов магния в зрелом зерне [9, 10, 20, 21].

Это событие в методологии способствовало созданию фундамента для развития новой главы в молекулярной физиологии сельскохозяйственных растений, так как новые шаги в методологии, как правило, ведут за собой длинную цепь новых фактов, которые дополняют и изменяют научное мировоззрение, предоставляют принципиально новые возможности для практики. Молекулярные маркеры ДНК-овые, белковые являются чрезвычайно эффективным инструментом генетических исследований растений. Однако их статичность не позволяет количественно оценить важнейшие свойства культурных злаков например, стрессоустойчивость и фотопериодизм. Как познание электричества и развитие электротехники стало возможным только с появлением электродинамики на основе электростатики, так и статичные молекулярные маркеры должны быть существенно дополнены молекулярно-кинетическими маркерами, способными количественно оценить экспрессию основных регуляторных генов или дать интегральную характеристику всех экспрессирующихся генов определенного генотипа в конкретных условиях роста. С практической точки зрения очень важным представляется использование этого показателя количество катионов магния для долгоживущей высокополимерной РНК зрелого зерна пшеницы в целях оценки степени морозостойкости сорта: чем выше содержание катионов магния, тем ниже морозостойкость сорта [11, 12, 21]. РНК-интерференция В настоящее время многие проблемы практики решаются путём активного вмешательства в метаболизм живых организмов при помощи методов генной инженерии на основе явления РНК-интерференции, регулирующего экспрессию генов через усиление распада мРНК определённых генов [8, 16, 17, 18, 25].

Сейчас очевидно, что перестало быть проблемой установление первичной структуры гена, но всё ещё остаётся проблема, как узнать его функцию и как ею управлять. Первое десятилетие ХХ1 века ознаменовано стремительным прорывом в важнейшую биологическую проблему -регуляцию экспрессии генов с помощью явления РНК-интерференции и основанных на этом явлении методов "нокаутов" - техники, позволяющей выводить из строя экспрессию заранее выбранного гена, а затем смотреть, как это скажется на организме. В 1998 году была обнаружена способность молекул двухцепочечных РНК дцРНК , инъецированных в организм нематоды Caenorhabditis elegans, эффективно подавлять экспрессию гомологичных по нуклеотидной последовательности генов явление РНК-интерференции. Впоследствии те же эффекты дцРНК были отмечены у других животных, а также у растений, грибов и простейших. В 2006 году Нобелевская премия в области биологии по физиологии и медицине присуждена американским учёным Эндрю Файру и Крейгу Меллоу за открытие явления РНК - интерференции, представляющей собой молекулярный механизм, контролирующий в живой клетке поток генетической информации через закономерный распад специфических мРНК и предоставляющий принципиально новые возможности регуляции экспрессии генов в практических целях [39-40]. Суть явления, механизм которого пока изучен очень слабо, состоит в том, что короткие 20-30 нуклеотидов двуспиральные РНК определённой структуры вызывают распад мРНК мишени - гена, экспрессию которого необходимо подавить.

Это широко распространённое в природе явление по-видимому, от бактерий до млекопитающих может эффективно использоваться для идентификации новых генов, выяснения их функциональной роли и управления их экспрессией in vitro и in vivo[8, 16, 25]. Исследования этого явления позволяют в настоящее время решать проблемы медицины новый класс лекарств и сельского хозяйства новые пути создания зерна злаков с высокими питательными свойствами. Работы по созданию высоколизиновых злаков на основе ряда мутаций, зерно которых отличалось повышенной питательной ценностью, потерпели неудачу. Это объясняется плейотропным действием мутаций типа мутации регуляторного гена opaque-2 в зерне кукурузы, когда дифференциальный распад мРНК под действием повышенной активности РНКаз приводит с одной стороны к положительным эффектам повышенное содержание в зерне незаменимой аминокислоты - лизина , но с другой стороны к отрицательным эффектам - нарушение синтеза крахмала, определяющего физические свойства зерна прочность и урожай [16, 25]. РНК-интерференция позволяет целенаправленно уничтожать мРНК, белки которых снижают содержание лизина в зерне запасные белки, ферменты катаболизма аминокислот , не «задевая» при этом мРНК ферментов, ответственных за синтез крахмала. Такой первый трансгенный сорт кукурузы ЬУБ38 с повышенным содержанием лизина был выведен на рынок в 2005 году [33].

Однако негативное общественное мнение, озабоченность возможным вредным влиянием генно-модифицированных продуктов на здоровье человека сдерживает развитие этого направления выхода в практику. К тому же оказалось, что РНК-препараты слишком токсичны. Даже длины в 20-30 нуклеотидов недостаточно для полной селективности по отношению к целевой РНК, и среди миллиардов пар нуклеотидов в геноме обязательно найдутся другие мишени, связывание с которыми вызывает неприятные побочные эффекты. Так в медицине те немногие препараты на основе РНК-интерференции, что дошли до рынка, были с него отозваны. Возможно, в будущем проблемы с неспецифичным связыванием РНК и недостаточной адресной доставкой будут решены и мы увидим больше модифицированных растений и животных, а также специфических препаратов на основе РНК-интерференции. Принципиально новые, удивительные факты были получены китайскими исследователями из Нанкинского университета, которые обследовали 50 добровольцев и обнаружили в их крови и тканях микроРНК РНК-интерференции растительного происхождения.

Это и само по себе стало изрядной неожиданностью, поскольку до сих пор считалось, что все растительные ДНК и РНК, попадающие в организм человека с пищей, полностью разлагаются, разрушаются в процессе переваривания. Но еще большее удивление вызвал тот факт, что эти растительные микроРНК участвуют в регуляции метаболизма человека наравне с его собственными микроРНК. Это открытие заставляет совершенно по-новому взглянуть на роль питания в жизни человека: существует шесть классов питательных веществ - белки, жиры, углеводы, витамины, минеральные вещества и вода. Однако теперь выясняется, что еще и растительные микроРНК, судя по всему, оказывают на активность наших генов, а значит, и на наш обмен веществ, самое непосредственное воздействие. Это дает основание считать их седьмым классом питательных веществ. Весьма обильно эти молекулы присутствуют в рисе.

Опыты на трансгенных мышах показали, что в организме человека MIR168a блокирует синтез чрезвычайно важного белка - так называемого клеточного рецептора липопротеинов низкой плотности. Этот белок самым непосредственным образом связан с транспортировкой холестерина и его расщеплением в печени. Таким образом, потребление риса в пищу не только обеспечивает организм человека пластическими веществами и энергией, но и регулирует активность одного из важных генов, влияя тем самым на обмен веществ и на здоровье человека. Ведь повышенный уровень содержания в крови липопротеинов низкой плотности увеличивает риск атеросклероза [43]. Как растительные микроРНК умудряются уцелеть в пищеварительном тракте человека и проникнуть оттуда в кровь, пока неясно. Возможно, что эти растительные микроРНК могут захватываться клетками эндотелия сосудов кишечной стенки.

При этом мембраны эндотелиальных клеток формируют особые внеклеточные структуры, в которые, как в оболочку, заключаются микроРНК. В таких миниатюрных пузырьках, называемых экзосомами, микроРНК поступают в кровоток. Это открытие позволяет по-новому объяснить лечебные свойства лекарственных трав, широко применяемых в традиционной китайской медицине. Собственно, идея использовать микроРНК в качестве биологически активного компонента лекарств обсуждается в фармацевтике уже давно. Но до сих пор все эксперименты упирались в одну неразрешимую проблему: как доставить микроРНК точно и целенаправленно в нужное место в организме. Исследования китайских учёных показали, что природа уже давно предусмотрительно создала такие пути и что функция пищи, очевидно, не сводится к одному лишь обеспечению организма пластическими веществами и энергией.

В качестве центрального звена этого процесса биосинтеза белков выступает совокупность взаимодействующих друг с другом молекул РНК различных типов. Исследования магний-зависимого самораспада РНК в водных растворах позволяют говорить о развитии молекулярно-кинетических маркёров, позволяющих количественно оценивать эффект взаимодействия «генотип-среда» у растений и животных. Изучение системы РНК-интерференции и её применения находится на самой ранней стадии, но этому открытию суждено сыграть в постгеномную эру такую же ключевую роль, какую открытие рестриктаз сыграло в эпоху возникновения генной инженерии и биотехнологии. Безусловно, трудностей на этом пути много. Но, ни одна не выглядит непреодолимой. Литература 1 Алексеенко Ж.

Кубанский агроуниверситет.

Долгое время ученые ломали голову над вопросом, как могли возникнуть такие молекулы из более примитивных соединений. Исследование, опубликованное в журнале eLife, представляет собой модель, которая имитирует случайное разрушение простых РНК-молекул. В ходе экспериментов возникали короткие цепочки РНК, способные служить затравками для синтеза более длинных молекул. Этот процесс приводил к формированию большого количества копий исходного полимера, подобно процессу регенерации у червей, разделенных на части.

Та же ситуация с процессом снятия копии, то есть синтеза матричной РНК. А вот участники процесса репликации ДНК немного разнятся у разных царств, хотя процесс идейно похож. Из этого наблюдения у ряда ученых родилось любопытное предположение: репликация ДНК появилась позже рибосом и системы синтеза РНК, хотя четких доказательств пока нет. Теоретически именно ДНК могла возникнуть как вспомогательный элемент догмы: нечто крупное и неповоротливое, что удобно хранить, поднимая время от времени нужные гены.

Впрочем, оказалось, что РНК способна и к самокопированию, и даже к изменчивости, то есть накоплению мутаций и некоторого рода эволюции. Эксперименты, показавшие эти ее свойства, были проведены еще в прошлом веке и тоже стали кирпичиком новой гипотезы. Одним из первых их провел британский молекулярный биолог Лесли Орджел, который, помимо своих научных исследований, известен забавным «правилом Орджела»: «Эволюция умнее, чем ты». К началу нового века гипотеза РНК-мира сформировалась окончательно. Многократно самокопирующаяся РНК действительно могла породить всё живое на Земле, постепенно отграничив себя от пространства и сформировав протоклетку. Но, как это обычно случается в науке, возникли новые вопросы. В первую очередь ко второй части молекулярной догмы: как именно появилась крепкая связь между РНК и аминокислотами и как, наконец, появилась система синтеза белка? Предполагаемая схема «первоклетки» — РНК, окруженная билипидным мембранным слоем. Источник Но есть нюанс Гипотеза РНК имеет обширную доказательную базу и по праву считается одной из самых логичных и подходящих для объяснения формирования жизни.

Но и у нее есть недостатки, или, вернее, вопросы, ответы на которые в рамках самой гипотезы найти сложно. Во-первых, РНК очень нестабильна, а время ее жизни крайне ограничено. Сложно представить себе «начало начал», способное распасться при малейших изменениях в окружающей среде. РНК нуждается в ионах двухвалентных металлов, в основном в магнии, но при этом распадается при их слишком большой концентрации. РНК любит кислую среду, но практически не выдерживает щелочной. Во-вторых, много вопросов и к самому «случайному» синтезу. Да, сахара действительно могли быть занесены извне, и да, протонуклеотиды действительно могли быть синтезированы из «того, что было». Но вот представить себе синтез итоговой молекулы РНК сложно — слишком много условий должно было совпасть для этого та же рибоза если и была занесена из космоса, то явно в очень малых количествах. Экспериментально, впрочем, возможность соединения сахара и нуклеотида уже была показана, но ведь есть и третий участник — остаток фосфорной кислоты, и о его ранней судьбе данных пока нет.

Всё это привело к тому, что из гипотезы РНК-мира возникла подгипотеза — пре-РНК-мира: в начале появились первичные метаболические компартменты-протоклетки, а потом уже в них пошел синтез реплицирующихся молекул РНК, где возникали все возможные варианты соединения трех участников, пока не был найден единственный верный. В-третьих, возникает вопрос о формировании протоклетки. Да, мембрана очень полезна — она защищает хрупкую РНК, позволяя ей «жить» чуть дольше, чем просто в обычном растворе. Но точно так же она отделяет РНК от необходимых ей элементов — нуклеотидов и ионов. То есть для формирования первых бислоев с включенной в них РНК уже должны были появиться какие-то простые системы закачки или хотя бы связывания нужных элементов, своего рода первичные челночные системы.

Этот процесс называется метаболизм. Сначала вам нужно получить энергию; допустим, из богатых энергией химических веществ вроде сахара.

Затем вы должны использовать эту энергию, чтобы построить что-нибудь полезное вроде клеток. Этот процесс использования энергии настолько важный, что многие исследователи считают его первым, с которого началась жизнь. Вулканическая вода горячая и богата минералами Как могли бы выглядеть эти предназначенные только для метаболизма организмы? Одно из самых интересных предположений было выдвинуто в конце 1980-х годов Гюнтер Вахтершаузер. Он не был штатным ученым, скорее патентным юристом с небольшими познаниями в химии. Вахтершаузер предположил, что первые организмы «радикально отличались от всего, что мы знали». Они не были сделаны из клеток.

Нет, вместо этого Вахтершаузер представил поток горячей воды, вытекающей из вулкана. Эта вода богата вулканическими газами вроде аммиака и содержит следы минералов из сердца вулкана. Там, где вода текла через скалы, начинали происходить химические реакции. В частности, металлы из воды помогали простым органическим соединениям сливаться в более крупные. Поворотным моментом стало создание первого метаболического цикла. Это процесс, в котором одно химическое вещество превращается в ряд других химических веществ, пока в конце концов не будет воссоздан исходник. В процессе этого вся система накапливает энергию, которая может быть использована для перезапуска цикла — и для других вещей.

Инопланетная жизнь может обитать рядом с белыми карликами Все остальное, из чего состоит современный организм — ДНК, клетки, мозги — появились позже, поверх этих химических циклов. Эти метаболические циклы вообще мало похожи на жизнь. Вахтершаузер назвал свое изобретение «прекурсорами организмов» и написал, что «едва ли их можно назвать живыми». Но метаболические циклы вроде тех, что описал Вахтершаузер, лежат в основе всего живого. Ваши клетки — это по сути микроскопические химические заводики, постоянно перегоняющие одни вещества в другие. Метаболические циклы нельзя назвать жизнью, но они имеют основополагающее значение для нее. В течение 1980-х и 1990-х годов Вахтершаузер работал над деталями своей теории.

Он изложил, какие минералы подошли бы больше всего и какие химические циклы могли иметь место. Его идеи начали привлекать сторонников. Но все это было сугубо теоретическим. Вахтершаузеру нужно было реальное открытие, которое подкрепило бы его идеи. К счастью, его уже сделали десятью годами ранее. Источники в Тихом океане В 1977 году группа под руководством Джека Корлисса из Университета штата Орегон погрузилась на 2,5 километра в восточной части Тихого океана. Они изучали Галапагосские горячие источники в местах, где с морского дна поднимались высокие хребты.

Эти хребты были вулканически активными. Корлисс обнаружил, что эти хребты были буквально усеяны горячими источниками. Горячая, обогащенная химическими веществами вода поднимается из-под морского дна и струится через отверстия в скалах. Невероятно, но эти гидротермальные источники были густо населены странными животными. Там были огромные моллюски, мидии и кольчатые черви. Вода также была густо пропитана бактериями. Все эти организмы жили на энергии гидротермальных жерл.

Открытие этих источников сделало Корлиссу имя. И заставило задуматься. В 1981 году он предположил, что подобные жерла существовали на Земле четыре миллиарда лет назад и что они стали местом происхождения жизни. Он посвятил львиную долю своей карьеры изучению этого вопроса. У гидротермальных источников живет странная жизнь Корлисс предположил, что гидротермальные источники могли создавать коктейли химических веществ. Каждый источник, говорил он, был своего рода распылителем первичного бульона. По мере того, как горячая вода текла через скалы, тепло и давление приводили к тому, что простые органические соединения сливались в более сложные, такие как аминокислоты, нуклеотиды и сахара.

Ближе к границе с океаном, где вода была не такой горячей, они начинали связываться в цепочки — формировать углеводы, белки и нуклеотиды вроде ДНК. Затем, когда вода подходила к океану и остывала еще больше, эти молекулы собирались в простые клетки. Это было интересно, теория привлекла внимание людей. Но Стэнли Миллер, эксперимент которого мы обсуждали в первой части, не поверил. В 1988 году он писал, что глубоководные жерла были слишком горячими. Каким образом человек смог повторно заразиться коронавирусом? Хотя сильное тепло может привести к образованию химических веществ вроде аминокислот, эксперименты Миллера показали, что оно также может и уничтожить их.

Основные соединения вроде сахаров «смогли бы выжить пару секунд, не больше». Более того, эти простые молекулы вряд ли связались бы в цепи, поскольку окружающая вода мгновенно их разорвала бы. На этом этапе к битве подключился геолог Майк Расселл. Он посчитал, что теория гидротермальных источников может быть вполне верной. Более того, ему показалось, что эти источники будут идеальным домом для прекурсоров организма Вахтершаузера. Это вдохновение привело его к созданию одной из самых широко признанных теорий происхождений жизни. Геолог Майкл Расселл В карьере Расселла было много интересных вещей — он делал аспирин, разыскивая ценные минералы — и в одном замечательном происшествии 1960-х годов координировал реагирование на возможное извержения вулкана, несмотря на отсутствие подготовки.

Но его больше интересовало, как менялась поверхности Земли на протяжении эпох. Эта геологическая перспектива и позволила сформироваться его идеям о происхождении жизни. В 1980-х годах он обнаружил ископаемые свидетельства менее бурного типа гидротермального источника, в котором температуры не превышали 150 градусов по Цельсию. Эти мягкие температуры, по его словам, могли позволить молекулам жизни жить дольше, чем полагал Миллер. Более того, ископаемые остатки этих «прохладных» жерл содержали нечто странное: минерал пирит, состоящий из железа и серы, сформировался в трубочках диаметром 1 мм. Работая в лаборатории, Расселл обнаружил, что пирит также может формировать сферические капли. И предположил, что первые сложные органические молекулы могли образоваться внутри этих простых пиритовых структур.

Железный пирит Примерно в это же время Вахтершаузер начал публиковать свои идеи, в основе которых был поток горячей химически обогащенной воды, протекающей через минералы. Он даже предположил, что в этом процессе участвовал пирит. Расселл сложил два плюс два. Он предположил, что гидротермальные источники на глубине моря, достаточно холодные, чтобы позволить образоваться пиритовым структурам, приютили прекурсоры организмов Вахтершаузера. Если Расселл был прав, жизнь началась на дне моря — и сначала появился метаболизм. Расселл собрал это все в статье, опубликованной в 1993 году, 40 лет спустя после классического эксперимента Миллера. Она не вызвала такого же ажиотажа в СМИ, но была, возможно, более важной.

Расселл объединил две, казалось бы, отдельные идеи — метаболические циклы Вахтершаузера и гидротермальные источники Корлисса — в нечто по-настоящему убедительное. Расселл даже предложил объяснение того, как первые организмы получали свою энергию. То есть он понял, как мог бы работать их метаболизм. Его идея опиралась на работу одного из забытых гениев современной науки. Питер Митчелл, нобелевский лауреат В 1960-х годах биохимик Питер Митчелл заболел и был вынужден уйти в отставку из Университета Эдинбурга. Вместо этого он создал частную лабораторию в отдаленном поместье в Корнуолле. Изолированный от научного общества, он финансировал свою работу за счет стада молочных коров.

Многие биохимики, в том числе и Лесли Оргел, чью работу по РНК мы обсудили во второй части, считали идеи Митчелла совершенно нелепыми. Спустя несколько десятков лет Митчелла ждала абсолютная победа: Нобелевская премия по химии 1978 года. Он не стал знаменитым, но его идеи сегодня в каждом учебнике по биологии. Свою карьеру Митчелл провел, выясняя, что организмы делают с энергией, которую получают из пищи. По сути, он задавался вопросом, как всем нам удается оставаться в живых каждую секунду. Он знал, что все клетки хранят свою энергию в одной молекуле: аденозинтрифосфате АТФ. К аденозину крепится цепочка из трех фосфатов.

Добавление третьего фосфата требует много энергии, которая затем запирается в АТФ. Может ли искусственный интеллект уничтожить человечество уже к 2035 году? Когда клетка нуждается в энергии — например, когда сокращается мышца — она разбивает третий фосфат в АТФ. Митчелл хотел узнать, как клетка вообще создает АТФ. Как она накапливает достаточно энергии в АДФ, чтобы прикрепить третий фосфат? Митчелл знал, что фермент, образующий АТФ, находится в мембране. Поэтому предположил, что клетка закачивает заряженные частицы протоны через мембрану, поэтому много протонов находится по одну сторону, а по другую — нет.

Затем протоны пытаются просочиться обратно через мембрану, чтобы уравновесить число протонов по каждую сторону — но единственное место, через которое они могут пройти, это фермент. Поток текущих протонов, таким образом, обеспечивал фермент энергией, необходимой для создания АТФ. Впервые Митчелл изложил свою идею в 1961 году. Следующие 15 лет он провел, защищая ее со всех сторон, пока доказательства не стали неопровержимыми. Теперь мы знаем, что процесс Митчелла используется каждым живым существом на Земле. Прямо сейчас он протекает в ваших клетках. Как и ДНК, он лежит в основе известной нам жизни.

Расселл позаимствовал у Митчелла идею протонного градиента: наличие большого количества протонов на одной стороне мембраны и немногого — на другой. Все клетки нуждаются в протонном градиенте, чтобы хранить энергию. Современные клетки создают градиенты, откачивая протоны через мембраны, но для этого нужен сложный молекулярный механизм, который просто не мог появиться сам по себе. Поэтому Расселл сделал еще один логический шаг: жизнь должна была сформироваться где-то с естественным протонным градиентом. Например, где-то у гидротермальных источников. Но это должен быть особенный тип источника. Когда Земля была молодой, моря были кислыми, а в кислой воде много протонов.

Чтобы создать протонный градиент, вода из источника должна быть с низким содержанием протонов: она должна быть щелочной. Источники Корлисса не подходили. Они не только были слишком горячими, но еще и кислыми. Но в 2000 году Дебора Келли из Вашингтонского университета обнаружила первые щелочные источники. Ее отец умер, когда она заканчивала среднюю школу, и она была вынуждена работать, чтобы остаться в колледже. Но справилась и выбрала предметом своего интереса подводные вулканы и обжигающие горячие гидротермальные источники. Эта пара и привела ее в центр Атлантического океана.

В этом месте земная кора треснула и с морского дна поднялся хребет гор. На этом хребте Келли обнаружила поле гидротермальных источников, которое назвала «Потерянным городом». Они не были похожи на обнаруженные Корлиссом. Вода вытекала из них при температуре 40-75 градусов по Цельсию и была слегка подщелоченной. Карбонатные минералы из этой воды слипались в крутые белые «столбы дыма», которые поднимались с морского дна подобно трубам органа. На вид они жуткие и призрачные, но это не так: в них обитает множество микроорганизмов. Эти щелочные жерла идеально вписывались в идеи Расселла.

Он твердо поверил в то, что жизнь появилась в таких «потерянных городах». Но была одна проблема. Будучи геологом, он знал не так много о биологических клетках, чтобы убедительно представить свою теорию. Столб дыма «черной курилки» Поэтому Расселл объединился с биологом Уильямом Мартином. В 2003 году они представили улучшенный вариант прежних идей Расселла. И это, наверное, самая лучшая теория появления жизни на данный момент. Благодаря Келли, теперь они знали, что породы щелочных источников были пористыми: они были усеяны крошечными отверстиями, наполненными водой.

Эти крошечные кармашки, предположили они, действовали в качестве «клеток». В каждом кармашке находились основные химические вещества, в том числе и пирит. В сочетании с естественным протонным градиентом от источников, они были идеальным местом для начала метаболизма. После того, как жизнь научилась использовать энергию вод источников, говорят Расселл и Мартин, она начала создавать молекулы вроде РНК. В конце концов, она создала себе мембрану и стала настоящей клеткой, сбежав из пористой породы в открытую воду. Такой сюжет в настоящее время рассматривается в качестве одной из ведущих гипотез о происхождении жизни. Клетки бегут из гидротермального источника В июле 2016 года он получил поддержку, когда Мартин опубликовал исследование, реконструирующее некоторые детали « последнего универсального общего предка » LUCA.

Это организм, который жил миллиарды лет назад и от которого произошла вся существующая жизнь. Едва ли мы когда-нибудь найдем прямые окаменевшие доказательства существования этого организма, но тем не менее вполне можем делать обоснованные предположения о том, как он выглядел и чем занимался, изучая микроорганизмы наших дней. Это и проделал Мартин. Он исследовал ДНК 1930 современных микроорганизмов и идентифицировал 355 генов, которые были почти у всех. Это убедительно говорит о передаче этих 355 генов, через поколения и поколения, от общего предка — примерно того времени, когда жил последний универсальный общий предок. Эти 355 генов включают некоторые для использования протонного градиента, но для генерации оного — нет, как и предсказывали теории Расселла и Мартина. Более того, LUCA, похоже, был адаптирован к присутствуют химических веществ вроде метана, что наводит на мысли, что он населял вулканически активную среду — по типу жерла.

Сторонники гипотезы «мира РНК» указывают на две проблемы в этой теории. Одну можно поправить; другая может быть фатальной. Гидротермальные источники Первая проблема в том, что экспериментальных доказательств описанных Расселлом и Мартином процессов нет. У них есть пошаговая история, но ни один из этих шагов не наблюдался в лаборатории. Он построил «реактор происхождения жизни», который имитирует условия внутри щелочного источника. Он надеется увидеть метаболические циклы, а может даже и молекулы вроде РНК. Но пока еще рано.

Вторая проблема заключается в расположении источников в глубоком море. Как отмечал Миллер в 1988 году, длинноцепочечные молекулы вроде РНК и белков не могут формироваться в воде без вспомогательных ферментов. Для многих ученых это фатальный аргумент. И все же Расселл и его союзники остаются оптимистами. И только в последнее десятилетие на первый план вышел третий подход, подкрепленный серией необычных экспериментов. Он обещает нечто, чего не удалось добиться ни «миру РНК», ни гидротермальным источникам: способ создать целую клетку с нуля. Часть пятая: так как же всё-таки создать клетку?

К началу 2000-х годов ученые выделили две ведущие идеи о том, как могла появиться жизнь. Сторонники «РНК-мира» были убеждены, что жизнь началась с самовоспроизводящейся молекулы. В то же время ученые в лагере «сначала метаболизм» считают, что жизнь могла появиться в гидротермальных жерлах на дне океана. И все же на передний план вышла третья идея. Каждое живое существо на Земле состоит из клеток. Каждая клетка — это по сути мягкий шарик, мешочек, с жесткой внешней стенкой, или «мембраной». Задача клетки — удерживать все предметы первой необходимости вместе.

Если наружная стенка порвется, внутренности выльются наружу и клетка умрет — так же, как и выпотрошенный человек. Человечество изменило сушу до неузнаваемости. Но что насчет воды? Наружная стенка клетки настолько важна, что некоторые исследователи происхождения жизни даже считают, что она появилась прежде всего. Они считают, что подходы «сперва генетика», который мы обсудили во второй части, и «сперва метаболизм», который мы обсудили в четвертой части, ошибочны. Все живые предметы состоят из клеток Идея Луизи проста, и с ней трудно спорить. Каким образом вы собрались создавать рабочую метаболическую систему или самовоспроизводящуюся РНК, каждый из которых опирается на наличие большого количества химических веществ в одном месте, если вы сначала не сделаете контейнер, который удерживает все молекулы вместе.

Если вы с этим согласны, есть только один способ, с которого могла начаться жизнь. Каким-то образом, в жаре и буре ранней Земли, неколько сырых материалов сложились в грубые клетки, или «протоклетки». Осталось только повторить это в лаборатории: создать простую живую клетку. Идеи Луизи можно проследить аж до Александра Опарина и рассвета науки о происхождении жизни в СССР, которых мы обсудили в первой части. Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри. Он предположил, что коацерваты были первыми протоклетками. Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде.

Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром». Но просто сформировать сгустки недостаточно. Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи наружу — и все это без сложных белков, которые используют современные клетки для этих задач. Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного. И тогда, в 1994 году, он осмелился сделать дерзкое предположение.

Он предположил, что первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки. Как-то клетка все же появилась И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация». Но у Луизи были веские доводы. Клетка с внешними стенками, но без внутренностей, мало что может. Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству. Она могла начать развиваться и становиться более сложной только при наличии некоторых генов.

Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз. Почти вся жизнь одноклеточная «Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему».

Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле

и, возможно, единственной - формой жизни до появления первой ДНК- клетки. Гипотеза РНК-мира — одна из самых популярных среди гипотез о происхождении жизни на Земле. Гипотеза мира РНК ставит РНК в центр внимания при зарождении жизни. Так возникла гипотеза «РНК-мира». Ученым из США удалось получить ее первое подтверждение. Обнаружены доказательства гипотезы РНК-мира, технологии, новости экономики, Банки, банк, кредит, проценты, ставки, финансы, курсы валют, деловые новости. В ходе исследование специалисты усомнились в достоверности гипотезы РНК-мира, предполагающей то, что первыми способными к размножению структурами были РНК-молекулы.

ELife: ученые обнаружили спонтанное возникновение самовоспроизводящихся молекул

Такой сценарий, по его мнению, больше соответствует результатам экспериментов и тому, что мы видим в современных организмах, чем гипотеза «РНК-мира». В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. Строение РНК Типы РНК Гипотеза РНК мира.

Похожие новости:

Оцените статью
Добавить комментарий