Это объясняется тем, что чем больше площадь, тем меньше сила, действующая на определенную единицу площади, то есть давление. 2 Чем больше площадь, тем меньше давление." в (PowerPoint). Чем меньше площадь опоры, тем больше давление, оказываемое на опору. Давление больше когда на коньках, потому что площадь поверхности меньше именно по этому когда спасают кого-то, то ложатся на лед, чем больше площадь, тем давление меньше там есть формула силы давления, но т.к. я проходила это лет 10 назад, я не помню приверно так.
Что такое атмосферное давление и как оно влияет на погоду?
Давление зависит от площади поверхности, на которую оказывается больше площадь, тем меньше давлениеЧем меньше площадь, тем большая сила действует на единицу площадиДавление зависит от значения силы, которая действует на поверхность. Поэтому если давление хотят уменьшить, то площадь опоры делают как можно больше, а если давление хотят увеличить, то делают её как можно меньше. 1. Чем больше площадь опоры, тем меньше давление производимое одной и той же силой на эту поверхность. Давление тем меньше площадь.** которую действует сила.И
Закон Бернулли для чайников и учёных
Примеры уменьшения давления в живой природе | 2 Чем больше площадь, тем меньше давление." в (PowerPoint). |
Как с высотой изменяется атмосферное давление. Формула, график | Давление тем меньше площадь.** которую действует сила.И |
Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда – FIZI4KA | потому что распределяется на БОЛЬШУЮ площадь. |
Закон Бернулли для чайников и учёных (Виктор Бабинцев) / Проза.ру | Чем больше площадь, тем меньше давление. |
Чем больше площадь тем меньше давление? | Таким образом, при подъеме вверх давление будет убывать неравномерно: на малой высоте, где плотность воздуха больше, давление убывает быстро; чем выше, тем меньше плотность воздуха и тем медленнее уменьшается давление. |
Как площадь влияет на давление: чем больше площадь, тем меньше давление+
Самое высокое атмосферное давление было зарегистрировано в 2001 году в Монголии и составило 814,27 мм рт. Самое низкое давление — 637,55 мм рт. Хотя после изобретения первого ртутного барометра прошло 380 лет, он и сегодня считается одним из самых точных и надёжных приборов для измерения атмосферного давления. Поэтому барометры с ртутью используются на метеостанциях хотя в некоторых странах отходят от их использования из-за токсичности вещества , однако в быту распространены более удобные барометры-анероиды. Внутри них металлический короб с разреженным воздухом, который расширяется или сжимается при изменении давления, приводя в движение стрелку. Воздушные вихри с пониженным давлением в центре и радиусом, длина которого может достигать тысяч километров, называются циклонами. Их разделяют на два вида.
Тропические циклоны образуются вблизи экватора благодаря сильному нагреву и подъёму влажного воздуха над самыми прогретыми частями океанов и обычно имеют радиус в несколько сотен километров. В их центре — низкое давление, а из-за быстрого подъёма воздуха ветер у поверхности может достичь очень высоких скоростей, и циклон перерастёт в ураган. Внетропические циклоны возникают в умеренных и полярных широтах, а их размеры достигают нескольких тысяч километров в диаметре. В отличие от однородных по температуре тропических циклонов, во внетропических обычно есть выраженные секторы тёплого и холодного воздуха, на границах которых атмосферных фронтах чаще всего выпадают осадки, наблюдаются сильные ветра и грозы. Источник: travelask.
Нам также известно, что давление принято измерять в паскалях в честь французского учёного Блеза Паскаля. Но почему именно в честь него? Какое открытие было им сделано или какое изобретение создано? Об этом и пойдёт речь далее. Блез Паскаль Французский учёный Блез Паскаль прожил очень короткую, но невероятно насыщенную открытиями и изобретениями жизнь. Например, именно им была создана первая вычислительная машина на основе связанных шестерёнок — «паскалина». Им был проведён эксперимент, доказывающий существование атмосферного давления и подтверждающий результаты опыта по измерению этого давления, который впервые был проведён учеником Галилео Галилея — Эванджелистой Торричелли. Паскаль предложил основную идею гидравлического пресса или домкрата, которая и сейчас применяется во всех гидравлических подъёмных или прессовальных устройствах. Как видим, тот факт, что его именем названа единица измерения давления вовсе не случаен. Знакомьтесь: наш мир.
Это связано как раз с тем, что площадь гусениц больше. Отвечает Владислав Магомедов Доказать, что давление зависит от площади опоры. Гипотеза: чем больше площадь опоры тем, меньше давление. Отвечает Володька Митюхин Ответ: чем больше площадь, тем меньше давление; чем меньше площадь, тем больше давление. Как вы думаете, почему у иголок такие... Отвечает Даниил Мещанов Мы знаем, что, чем больше площадь опоры, тем меньше давление, производимое данной силой, и, наоборот, с уменьшением площади опоры при... Отвечает Елена Суворова При одной и той же силе давление больше в том случае, когда площадь опоры меньше, и, наоборот, чем больше площадь опоры, тем давление меньше. Отвечает Дмитрий Прейнек Учащиеся делают вывод, что при одной и той же силе давление больше в том случае, когда площадь опоры меньше, и, наоборот, чем больше площадь опоры, тем... Видео-ответы Давление. Единицы давления Давление - это сила, приходящаяся на единицу площади. Чтобы уменьшить давление при той же силе, надо увеличить...
Поэтому, стоя на лыжах, человек действует на каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз меньшей, чем стоя на снегу без лыж. Значит, результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, перпендикулярно которой она действует. Хочешь убедиться?! Возьми доску, кнопки с различными концами и лист бумаги. Приколи кнопками лист бумаги к доске.
Чему равно давление жидкости?
Качественный закон потоков гласит: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». Давление тем больше, чем меньше площадь поверхности при одинаковой силе давления. Такая машина оказывает на землю давление приблизительно в пятьдесят килопаскаль, что всего в несколько раз меньше давления худого человека.
Остались вопросы?
Встречный воздух движется вдоль верхней поверхности крыла быстрее, чем вдоль нижней. Чем быстрее течет жидкость или газ, тем меньше давление в ней — этот физический эффект описывается законом Бернулли. Раз сверху давление меньше, чем снизу, значит крыло стремится вверх, противостоя силе тяжести. Закон Бернулли — лишь один из факторов подъемной силы. У спортивных пилотажных самолетов профиль крыла симметричный, но они все равно летают — благодаря положительному углу атаки.
Если выставить ладонь из окна едущего автомобиля и слегка повернуть ее, руку ощутимо потянет вверх. Чтобы создавалась подъемная сила, потоки воздуха должны неразрывно обтекать крыло сверху и снизу.
Площадь влияет на давление: основные принципы Основной закон, который определяет влияние площади на давление, — это закон Паскаля. Согласно этому закону, давление, создаваемое на жидкость или газ, передается полностью во всех направлениях. То есть, давление не зависит от формы сосуда или его ориентации, оно распространяется равномерно во всех направлениях. Наиболее простым примером является давление, создаваемое водным столбом. Если поместить стеклянную трубку вертикально в воду и закрыть ее верхнюю концовку, то давление внутри трубки будет равно давлению воды внутри столба.
При этом высота столба будет влиять на давление: чем выше столб, тем больше давление. Таким образом, когда площадь увеличивается, давление распределяется на большую площадь, что приводит к уменьшению силы давления на единицу площади. К примеру, стоять на острие иглы будет вызывать больший дискомфорт, чем стоять на плоской поверхности, потому что сила давления будет действовать на более маленькую площадь в случае иглы. Таким образом, площадь имеет принципиальное влияние на давление. Чем больше площадь, тем меньше давление, и наоборот. Это является наиболее общим и простым принципом влияния площади на давление и находит применение в многих физических явлениях и технологических процессах. Площадь и давление: примеры из жизни Существует несколько примеров, которые иллюстрируют взаимосвязь между площадью и давлением.
Водяной шланг. Если у вас есть водяной шланг с насадкой, то вы наверняка заметили, что когда вы сжимаете отверстие на насадке пальцем, вода вытекает сильнее, и ее струя становится мощнее. Это происходит потому, что при сжатии отверстия площадь его уменьшается, что в свою очередь увеличивает давление воды в шланге. Большая площадь отверстия позволяет давлению снижаться, а при уменьшении площади оно повышается.
Но для математиков закон есть закон, поэтому давление в скоростном потоке у них всегда низкое по всей длине трубопровода.
Трубопровод разорвало... А виноват Даниил Бернулли. Но "Кто ж его посадит, он же - па-мят-ник! Инженер-аэродинамист сформулирует свой закон потоков примерно так: «Давление потока на параллельную или отрицательно наклонную поверхность всегда тем меньше давления в самом потоке, чем больше скорость потока или поверхности верхней поверхности крыла ; а давление потока на поперечную или положительно наклонную поверхность всегда тем больше давления в самом потоке, чем больше скорость потока или поверхности нижней поверхности атакующего крыла ». И это будет качественный закон взаимодействия потоков с поверхностями, так как в каждом конкретном случае величина давления потока на поверхность зависит не только от скорости потока, но и от физических свойств потока и поверхности, поэтому она не вычисляется, а только измеряется.
Следовательно, математикам и в аэродинамике делать особо нечего. Так что, два математических закона Бернулли мы отменили. Зато, теперь имеем два основных физических закона потоков - тривиальный и качественный. И всё в этих законах понятно, и всё работает. Профессор "падсталом".
Но добьём его математическую лженауку. Действие этих двух законов во многих опытах и явлениях складывается или накладывается, поэтому наблюдаемый результат нельзя объяснять действием только какого-то одного закона. Но объединённого закона Бернулли или третьего математического закона потоков никогда не было, поэтому как определить "личную долю" каждого закона в результате того или иного опыта к теме "Закон Бернулли" не знает ни один математик... Он просто измеряет с помощью манометров и динамометров давление в потоке и давление потока при различной скорости потока, а потом лишь сравнивает результаты измерений... Действительно, зачем вычислять, если можно измерить?
Математические законы Бернулли - это лишь частный случай того, чего не может быть. Впрочем, математик всегда начинает считать, не спев подумать. Сейчас мы в этом снова убедимся. Если подуть между двумя бумажными листами, подвешенными параллельно друг другу, листы сблизятся и почти сомкнутся. Можно подуть, а можно, наоборот, прососать пылесосом воздух между листами - результат тот же.
Математик Леонард Эйлер назвал этот опыт своего друга Даниила Бернулли "Великим парадоксом", ведь в первом случае листы должны были раздвинуться расширяющимся сжатым потоком. Сам назвал - сам и объяснил... Объяснил опять же уменьшение давления в потоке с увеличением скорости потока, а не уменьшение давления потока на листы, то есть объяснил совсем не то, что надо было объяснять. И объяснил опять же математикам, а не инженерам. Инженеры твёрдо знают: давление в потоке выдуваемого из лёгких воздуха не может быть меньше атмосферного давления.
А вот давление выдуваемого потока на параллельные листы может быть меньше атмосферного, поэтому листы и смыкаются... Так и мы о том же. Кстати, ещё вопросец на засыпку: "С какого места в опытах к теме "Закон Бернулли" начинается "замкнутая система? Правильный ответ: "С головы, так как замкнутой системой можно условно считать только содержимое термоса". Качественный закон потоков гласит: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока».
Можно короче: "Давление потока на параллельную поверхность всегда тем меньше, чем больше хаос в движении частиц потока". В этой формулировке уже появилась физическая, а не математическая или теоретическая причина уменьшения давления потока на поверхность - это хаос или беспорядок в движении пограничных частиц потока. Вот почему на результат действия первого или тривиального закона потоков всегда накладывается действие второго или качественного закона, если мы рассматриваем взаимодействие потоков со стенками трубы, например, или с подвешенными листами. Однако давление внутри потока по-прежнему не измерено, а хаос в пограничном слое потока увидеть нельзя… Нет, уже всё можно. Человек, знаете ли, видит мир не глазами и слышит его не ушами.
В инженерной гидродинамике давление всегда первично, а скорость потока вторична; в аэродинамике, наоборот, скорость поверхностей крыла всегда первична, а давление неподвижной атмосферы на него всегда вторично. Плоское крыло самолёта или птицы не изменяет давление в неподвижной атмосфере, а изменяется с увеличением скорости и угла атаки лишь взаимодействие быстрого крыла с атмосферой. Но в наших рассуждениях крыло чаще всего неподвижно, а это атмосфера "набегает" на крыло, словно всё происходит в аэродинамической трубе или в статическом стационарном потоке. Просто так нам удобнее рассуждать и объяснять. У инженеров всё, что летает, делает это по причине совсем небольшой положительной разницы или асимметрии атмосферного давления на крыло.
Появление подъёмной силы как раз и обусловлено качественным законом потоков: "Давление атмосферного потока на верхнюю отрицательно наклонную поверхность быстрого крыла тем меньше давления в самой атмосфере, чем больше хаос и разрежение частиц воздуха над ней; а давление потока на нижнюю положительно наклонную поверхность крыла тем больше атмосферного давления, чем больше скорость крыла, его угол наклона или атаки и деформация или уплотнение упругого воздуха под быстрым крылом". Как диагональ делит прямоугольник на два равных треугольника, так и плоское атакующее крыло делит набегающий поток на две самостоятельные и равнозначные причины возникновения подъёмной силы. Это очень большая сила, которая давит на неподвижное плоское крыло совершенно одинаково и сверху, и снизу. Да, 10 тонн на каждый квадратный метр крыла! Как инженеры это узнали?
Они применили принцип пропорциональности Леонардо да Винчи и разделили вес орла или летательного аппарата на площадь его несущих поверхностей. Вот и всё. А у математиков всё, что летает, летать не может по причине крайне не достаточной в 6 раз меньше веса самолёта или божьей твари подъёмной силы, вычисленной ими по самым надёжным математическим законам ньютоновской механики. Можете посмотреть по запросу «Парадокс шмеля», как математики из NASA и британские учёные вычисляли подъёмную силу через лобовое сопротивление и "массовую плотность воздуха". Знание математической физики сделало их ещё глупее, чем они были, когда родились.
И вообще, математик, считающий себя физиком, - это ноль в квадрате. Считать, что подъёмная сила крыла есть результат сопротивления воздушной среды его движению, в наше время может только профессор математики, а не физики. Читайте по запросу "О математическом идеализме в физике" это не только мои статьи. Идеальный или самый эффективный аэродинамический профиль — это «беспрофиль», то есть плоское, как лезвие безопасной бритвы, крыло. И это для передовых инженеров уже аксиома и "новая аэродинамика", а Природа это знала ещё со времён первых летающих насекомых и птеродактилей.
Так вот, асимметричное атмосферное давление на совершенно плоское крыло возникает и при его нулевом угле наклона к вектору движения набегающего атмосферного потока, если верхняя поверхность крыла испещрена микроскопическими неровностями, а нижняя — максимально гладкая. В воде "эффект хаоса над крылом" проявляется ещё значительно сильнее. Это утверждение доказано самой эволюцией живой природы и передовой практикой авиастроения. Смотрим на расправленное крыло любой птицы: сверху оно бархатистое и может играть всеми цветами радуги, что физику говорит о дисперсии света на мельчайших неровностях на поверхности, а снизу — всегда очень плотное, гладкое и со стальным отливом. Смотрим на современный пассажирский «Боинг»: сверху он словно матовый, а снизу — зеркально гладкий.
И пусть та положительная разница в атмосферном давлении на крыло, которая возникает только по причине различного качества покрытия его аэродинамических поверхностей, будет и недостаточной для полёта, но именно она и позволит самолёту или птице лететь горизонтально с меньшим углом атаки, то есть с меньшим лобовым сопротивлением, экономя топливо и силы. Инженеры «Боинга» уже экономят на "эффекте хаоса над крылом" и "эффекте плотного взаимодействия под крылом" до 7-ми процентов топлива, а это огромные деньги. Смотрите фотографии «Боингов» и читайте по запросу «Аэродинамика Боинг». А наши дурни из Сколково одной краской покрывают весь Боинг. Смотрите по запросу "Красим Боинг".
Кожа акулы тоже только кажется гладкой, а на ощупь она сравнима с наждачной бумагой. Шершавая кожа способствует образованию хаоса в пограничном слое воды, что ещё больше уменьшает её давление на быструю акулу. И таких примеров "мильён". Эйнштейн очень много сделал для любителей огромных и сверхмалых чисел и всевозможных формул, но он "наследил" ещё и в аэродинамике. В рассуждениях Эйнштейна о подъёмной силе «Элементарная теория полёта и волн на воде» 1916.
Берлин есть только верхняя горбатая поверхность крыла и есть закон Бернулли: мол, крыло делит набегающий поток на два потока, из которых верхний, огибающий горб, всегда несколько быстрее прямого нижнего, а раз быстрее, то и меньше давление в нём; дескать, вот вам и положительная или подъёмная разница атмосферного давления на крыло. Однако небольшая подъёмная сила горизонтального горбатого крыла всё же имеет место быть, но не по закону Бернулли, а по причине разрежения и завихрения воздуха за горбом, то есть по качественному закону потоков отрицательно наклонная поверхность. Как авторитетные авиаторы ни пытались хоть что-то объяснить знаменитому теоретику про угол атаки крыла и наклон всего самолёта к вектору движения как о главной причине возникновения положительной разницы атмосферного давления, он лишь снисходительно посмеивался над ними к примеру, переписка Эйнштейна с испытателем самолётов Паулем Георгом Эрхардтом. Дундуковость учёного всегда начинается с непонимания, незнания или с "незамечания" им сущей простоты и с желания выглядеть умным. Смотрите «Эйнштейн и подъёмная сила, или Зачем змею хвост».
Вопросы профессору на засыпку: "Почему в рассуждениях теоретиков горбатого профиля закон Бернулли действует только над крылом? Перевёрнутый самолёт Кульнева летел горизонтально с опущенным хвостом, то есть с положительным наклоном к вектору встречного потока. Про математика Николая Жуковского и про его "присоединённые вихри", как о причине возникновения подъёмной силы, толкающей крыло снизу вверх, даже упоминать не хочется. Самолёты Эйнштейна и Жуковского - "беременная утка" и "шестикрылый монстр доаэродинамического периода" - не полетели по причине большого паразитного лобового сопротивления очень горбатых крыльев.
Сосчитать то, чего нет, может каждый... С маленькой лжи, как правило, начинается ложь большая. Вот почему "Никаким количеством экспериментов нельзя доказать теорию, но достаточно одного эксперимента, чтобы её опровергнуть"; " Теория - это когда всё известно, но ничего не работает" А. Вся научная гидродинамика опровергается опытами по измерению давления в потоках. Но, допустим, что мобильных манометров у нас нет.
Что делать? Тогда можно поставить простой и неожиданный для всех эксперимент. Пусть прозрачная труба переменного сечения, что вы можете видеть на картинке, выходит из резервуара с крутым кипятком это только что переставшая кипеть вода. Температура кипения воды, как известно, зависит от давления: при понижении давления температура кипения воды тоже понижается. Так вот, если давление в потоке воды в зауженных участках трубопровода действительно понижается, то максимально горячая вода в них должна закипеть снова и это можно увидеть. Однако даже такого простого опыта, как опыт с чайником кипятка, нет в наших учебниках... Профессор, ау-у... Вы нас слышите?.. В опытах к теме "Закон Бернулли" нет соответствующих выводам измерений.
Вы врёте по причине того, что ни один математик не отличает "давление потока" от "давление в потоке". Доказательства - картинки из учебников и лживые формулки под ними. Так как давление в потоках у теоретиков не измерено, профессору опыт на картинке вверху говорит одно, а нам - другое: "Давление потока на параллельную потоку поверхность или стенки трубы всегда тем меньше давления в самом потоке, чем больше скорость потока; а давление потока на поперечную или положительно наклонную поверхность всегда тем больше давления в потоке, чем больше скорость самого потока". И чем наш вывод хуже?.. А тем-то он и хуже для профессора и учёных, что никакой научности и сложности для понимания в нём нет. К тому же, давление потока на поперечную поверхность или "скоростной напор" измеряется с помощью Г-образной "трубки Пито", вставляемой в поток загнутым концом навстречу потоку. Отсюда: давление в самом потоке примерно равно среднему арифметическому от показаний "трубки Пито" и "трубки у Бернулли". Конечно, наши выводы профессору будут сильно не по нутру. Но если он будет ещё в состоянии что-то говорить и продолжит настаивать на том, что "С увеличением скорости потока давление внутри потока уменьшается", то срежем его вторым вопросом: "Почему причина и следствие в формулировке общепризнанного закона Бернулли переставлены местами?
Действительно, так сформулировать общий закон потоков мог только теоретик с математическим складом ума, для которого "Что полумёртвый равен полуживому, что полуживой равен полумёртвому, а "полу-" вообще можно сократить". А для физика и инженера давление всегда первично, а сам поток и его скорость - это всегда лишь следствие. Инженер или физик-практик так никогда не скажет: мол, чем больше скорость потока, тем меньше давление в нём. Для него это утверждение является противоречием здравому смыслу, то есть оксюмороном: дескать, чем выше фонтан, тем меньше давление в трубе. А как скажет инженер? Инженер скажет: «Принудительный поток можно создать двумя противоположными, но равнозначными способами - локальным или местным повышением давления и локальным понижением его, потому что любой поток всегда движется только в сторону меньшего давления. Это главный закон потоков или аксиома потоков, поэтому давление в потоке всегда стремится к выравниванию с внешним давлением и к уменьшению. При этом чем значительнее перепад и падение давления мы имеем или создаём, тем больше будет здесь и скорость потока». Можно короче: "Чем больше падение давления в потоке или на данном участке трубы, тем больше здесь и скорость самого потока".
И это будет тривиальный закон потоков, у которого уже есть все пять обязательных признаков новой истины: простота, ясность, универсальность, "предсказательная сила" и антинаучность. Опровергнуть этот закон сможет только тот, кто создаст поток жидкости или газа, движущийся из области пониженного давления в область повышенного давления, то есть против действия превосходящих сил давления и упругости. Вопрос профессору: "Что толкает ракету - закон сохранения импульса или асимметричное давление непрерывного взрыва в асимметричной камере сгорания? Если скажет, что закон, перед вами математик. Стреляйтесь сразу, ибо ничто физическое и реально существующее вы ему объяснить уже не сможете никто не сможет. Получится нечто противоположное" Гёте. Если скоростной поток жидкости инженеры создают в длинной горизонтальной трубе постоянного сечения, то тут будет так: чем большее давление нагнетается в трубе, тем больше будет скорость потока в трубе при постепенном падении давления в потоке к концу трубы, то есть к расширителю потока. Всё проще простого: наибольшее давление в потоке будет в начале трубы, а наименьшее - в конце, при этом скорость несжимаемого потока будет одинаковой и там, и тут. Постепенное падение давления в потоке будет происходить по причине уменьшения массы как меры инерции и веса прокачиваемых жидкостей или газов на различных участках протяжённой трубы по мере приближения к концу трубы.
Любой пожарник скажет, что так оно и есть, ведь давление воды и в вертикальном потоке тоже убывает по мере приближения к концу пожарного рукава по причине уменьшения веса воды в столбе воды. А физик вспомнит ещё и про третий закон Ньютона - "Действие не может быть больше противодействия". Можно сказать и так: это противодействие создаёт давление в трубе. Противодействие уменьшается к концу трубы, и давление в потоке стремится к атмосферному. Итак, давление в потоке жидкости на разных участках протяжённого трубопровода всегда различное, а скорость потока всегда одна и та же; давление в жидкости может уменьшаться, а скорость потока при этом может сохраняться. Где тут закон Бернулли для давления в потоках?.. Законы Ньютона, да, мал-мало есть, а Бернулли нет и близко. Но для математиков закон есть закон, поэтому давление в скоростном потоке у них всегда низкое по всей длине трубопровода. Трубопровод разорвало...
А виноват Даниил Бернулли. Но "Кто ж его посадит, он же - па-мят-ник! Инженер-аэродинамист сформулирует свой закон потоков примерно так: «Давление потока на параллельную или отрицательно наклонную поверхность всегда тем меньше давления в самом потоке, чем больше скорость потока или поверхности верхней поверхности крыла ; а давление потока на поперечную или положительно наклонную поверхность всегда тем больше давления в самом потоке, чем больше скорость потока или поверхности нижней поверхности атакующего крыла ». И это будет качественный закон взаимодействия потоков с поверхностями, так как в каждом конкретном случае величина давления потока на поверхность зависит не только от скорости потока, но и от физических свойств потока и поверхности, поэтому она не вычисляется, а только измеряется. Следовательно, математикам и в аэродинамике делать особо нечего. Так что, два математических закона Бернулли мы отменили. Зато, теперь имеем два основных физических закона потоков - тривиальный и качественный. И всё в этих законах понятно, и всё работает. Профессор "падсталом".
Но добьём его математическую лженауку. Действие этих двух законов во многих опытах и явлениях складывается или накладывается, поэтому наблюдаемый результат нельзя объяснять действием только какого-то одного закона. Но объединённого закона Бернулли или третьего математического закона потоков никогда не было, поэтому как определить "личную долю" каждого закона в результате того или иного опыта к теме "Закон Бернулли" не знает ни один математик... Он просто измеряет с помощью манометров и динамометров давление в потоке и давление потока при различной скорости потока, а потом лишь сравнивает результаты измерений... Действительно, зачем вычислять, если можно измерить? Математические законы Бернулли - это лишь частный случай того, чего не может быть. Впрочем, математик всегда начинает считать, не спев подумать. Сейчас мы в этом снова убедимся. Если подуть между двумя бумажными листами, подвешенными параллельно друг другу, листы сблизятся и почти сомкнутся.
Можно подуть, а можно, наоборот, прососать пылесосом воздух между листами - результат тот же. Математик Леонард Эйлер назвал этот опыт своего друга Даниила Бернулли "Великим парадоксом", ведь в первом случае листы должны были раздвинуться расширяющимся сжатым потоком. Сам назвал - сам и объяснил... Объяснил опять же уменьшение давления в потоке с увеличением скорости потока, а не уменьшение давления потока на листы, то есть объяснил совсем не то, что надо было объяснять. И объяснил опять же математикам, а не инженерам. Инженеры твёрдо знают: давление в потоке выдуваемого из лёгких воздуха не может быть меньше атмосферного давления. А вот давление выдуваемого потока на параллельные листы может быть меньше атмосферного, поэтому листы и смыкаются... Так и мы о том же. Кстати, ещё вопросец на засыпку: "С какого места в опытах к теме "Закон Бернулли" начинается "замкнутая система?
Правильный ответ: "С головы, так как замкнутой системой можно условно считать только содержимое термоса". Качественный закон потоков гласит: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». Можно короче: "Давление потока на параллельную поверхность всегда тем меньше, чем больше хаос в движении частиц потока".
§ 175. Распределение атмосферного давления по высоте
Чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору. _. Таким образом, чем больше площадь, тем меньше давление, и наоборот. Чем меньше площадь опоры, тем больше давление, производимое одной и той же силой на эту опору.
Остались вопросы?
Слайд 2 Как легче идти по рыхлому снегу: на лыжах или без них? Слайд 3 По рыхлому снегу человек идёт с большим трудом Но, надев лыжи, человек может идти почти не проваливаясь в снег Слайд 4 Результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, перпендикулярно которой она действует.
Читайте подписи под картинками, чтобы разобраться. Чтобы взлететь, самолету нужна скорость. Именно он определяет подъемную силу. У самолета есть крыло, а у крыла в свою очередь правая и левая консоли.
Профиль крыла несимметричен: верхняя поверхность крыла имеет большую площадь, чем нижняя, и у них разные формы. Встречный воздух движется вдоль верхней поверхности крыла быстрее, чем вдоль нижней. Чем быстрее течет жидкость или газ, тем меньше давление в ней — этот физический эффект описывается законом Бернулли.
По оси ординат будем откладывать высоты и т. Будем подниматься вверх по ступенькам высоты. Чтобы найти давление на следующей ступеньке, нужно из давления на предыдущей ступеньке вычесть вес столба воздуха высоты , равный. Но с увеличением высоты плотность воздуха убывает. Поэтому убыль давления, происходящая при подъеме на следующую ступеньку, будет тем меньше, чем выше расположена ступенька. Таким образом, при подъеме вверх давление будет убывать неравномерно: на малой высоте, где плотность воздуха больше, давление убывает быстро; чем выше, тем меньше плотность воздуха и тем медленнее уменьшается давление. В нашем рассуждении мы считали, что давление во всем слое толщины одно и то же; поэтому мы получили на графике ступенчатую штриховую линию.
Но, конечно, убывание плотности при подъеме на какую-нибудь определенную высоту происходит не скачками, а непрерывно; поэтому в действительности график имеет вид плавной линии сплошная линия на графике. Таким образом, в отличие от прямолинейного графика давления для жидкостей, закон убывания давления в атмосфере изображается кривой линией. Для небольших по высоте объемов воздуха комната, воздушный шар достаточно пользоваться маленьким участком графика; в этом случае криволинейный участок можно без большой ошибки заменить прямым отрезком, как и для жидкости. В самом деле, при малом изменении высоты плотность воздуха меняется незначительно. Графики изменения давления с высотой для разных газов Если имеется некоторый объем какого-либо газа, отличного от воздуха, то в нем давление также убывает снизу вверх.
Приведите примеры использования больших площадей опоры для уменьшения давления. Почему режущие и колющие инструменты оказывают на тела очень большое давление? На рисунке 85 изображены плоскогубцы и клещи.
При помощи какого из этих инструментов можно произвести большее давление на зажатый предмет, прикладывая одинаковую силу? Экспериментальное задание. Зная свою массу и площадь опоры ботинка, найдите давление, которое вы производите, стоя на земле. Площадь опоры ботинка определите следующим образом.
Чем выше тем давление меньше или больше
Как давление зависит от площади? * Чем больше площадь, тем больше давление Чем больше площадь, тем давление меньше Чем меньше площадь, тем меньше давление. Created by milkymouse76. fizika-ru. Васян Коваль. Давление тем меньше которую действует сила.И увеличении которую действует ие уменьшается. Чем меньше площадь опоры, тем больше давление, производимое одной и той же силой на эту опору. Таким образом, чем больше площадь поверхности, тем больше сила давления.
Чему равно давление жидкости?
Если площадь опоры будет больше, то тем меньше будет давление, производимое данной силой, и наоборот, с уменьшением площади опоры (при неизменной силе) давление возрастает. Чем больше площадь поверхности тем меньше давление. то есть чем больше поверхность, тем меньше давление, оказываемое на нее. Таким образом, можно сделать вывод, что чем меньше площадь, на которую действует сила, тем больше давление.