Новости актуальность искусственного интеллекта

Искусственный интеллект примет участие в Тотальном диктанте. — Учебная дисциплина об искусственном интеллекте существует давно, ещё до основания СФУ. Эксперты рекламируют искусственный интеллект (ИИ) как настоящий инструмент в борьбе за выживание планеты, но говорят, что комбинация с другими новыми технологиями может даже увеличить шансы. К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события.

Влияние искусственного интеллекта на различные сферы жизни

  • Топ-10 ИИ (AI) 2023 года: революция в технологии
  • Цифровые технологии и наработки в области искусственного интеллекта обсудили в Москве
  • Яков и Партнёры - Искусственный интеллект в России – 2023: тренды и перспективы
  • Искусственный интеллект: что это, зачем нужен и на что способен ИИ| Читайте на Эльдоблоге
  • Значимость искусственного интеллекта и нейронных сетей в современном мире
  • Каким будет будущее нейросетей в 2024 году: анализ IT-рынка

Цифровые технологии и наработки в области искусственного интеллекта обсудили в Москве

Искусственный интеллект находит широкое и все более значимое применение в различных областях и сферах деятельности, что приводит к новым технологическим революциям и повышению эффективности деятельности в различных отраслях. Актуальность проекта заключается в важности развития технологий искусственного интеллекта для таких прогрессивных отраслей науки, как кибернетика, робототехника, для более быстрого, удобного доступа к мировым информационным. ТОП 10 искусственных интеллектов в 2023 году. Искусственный интеллект (ИИ) продолжает революционизировать наш мир, влияя на различные области, от программирования и обработки данных до взаимодействия с пользователями и управления домашними устройствами. AI навигатор Искусственный интеллект Российской Федерации. Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT?

Обзор развития ИИ-технологий: как изменится экономика, образование и общество?

За 2022 год на поддержку компаний, проектирующих разные ИИ-решения, было направлено 3,5 млрд рублей в виде целевых грантов. Всего в период с 2021 по 2023 год государство помогло 406 ИИ-проектам, а к 2024 году их количество планируется довести до 569. Это системы видеоаналитики, коммуникационные платформы, софт для работы с цифровыми медицинскими изображениями — есть варианты практически для каждой сферы бизнеса. Инструмент позволяет встраивать в приложения интеллектуальные технологии распознавания данных. Примеры решений для разных сфер бизнеса из реестра: Транспорт и логистика Система управления движением судов «Нави-Мастер». Видеопотоки типовых дефектов стальных канатов.

Дмитрий Масюк, директор бизнес-группы Поиска и рекламных технологий Яндекса Открытие для компаний API российских генеративных нейросетей будет стимулировать бизнес внедрять технологию в пользовательские продукты и внутренние процессы. Александр Громов, партнёр «Яков и Партнёры» и соавтор отчёта Сегодня каждая вторая опрошенная компания в России находится на этапе экспериментирования и эксплуатации решений на базе искусственного интеллекта. С появлением новых инструментов, расширением сфер применения и упрощением доступа к ИИ мы ожидаем, что эффект станет гораздо больше и в несколько раз превысит текущие показатели. Особенно это актуально в условиях исчерпания потенциала традиционных источников роста.

По итогам опроса эксперты пришли к выводу, что экономический потенциал искусственного интеллекта в России к 2028 г. Реализованный эффект от внедрения искусственного интеллекта к 2028 году может достичь 4,2—6,9 трлн руб. Из них 0,8-1,3 трлн руб.

Я купил в антикварном магазине один из томов многотомного издания, который назывался "Опыт советской медицины в годы Великой Отечественной войны", и обнаружил там просто сумасшедшую статистику. Том, который я держал в руках, назывался "Лёгочные патологии при ранении конечностей". Казалось бы, какая связь — патологии в легких и ранения конечностей. Оказывается, какие-то закономерности есть, при этом книга была выпущена сразу после войны, и не было времени понять почему. Там были собраны наблюдения и статистика, и она была просто огромная, тысячи случаев. Из этого понятно, что, просто анализируя события и наблюдая за происходящим, можно найти закономерности, которые на первый взгляд неочевидны. Дело в том, что медицина — это консервативная область, которая жёстко регулируется по вполне понятным причинам — слишком высока цена ошибки, любое внедрение требует множества экспериментов. Второй важный момент — данные, которые собирает медицина, очень чувствительны и приватны, никто из нас не хочет, чтобы его история болезни стала публичной. Поэтому законодательная база устроена таким образом, что любые медицинские данные крайне строго охраняются. Эту ситуацию нужно как-то аккуратно менять, потому что медицина — сфера, где максимально высок потенциал применения технологий: и скорость постановки диагноза, и постановка каких-то упреждающих диагнозов, и прогноз ситуации. Все врачи говорят одно и то же: приходите и проверяйтесь, чем раньше что-то диагностировано, тем лучше. Никто из нас, конечно, не ходит, потому что кажется, что меня это не коснётся, я молодой, у меня нет времени или ещё что-нибудь. Но если система будет давать индивидуальные рекомендации: конкретно тебе нужно прийти конкретно к этому врачу, потому что именно в твоём случае высок риск появления такого-то заболевания, которое нужно диагностировать на раннем этапе, — это было бы невероятно полезно. Надеюсь, что такие системы появятся. О том, почему банки заинтересованы в развитии технологий ИИ Есть то, что называется скоринг — принятие решения, выдавать или не выдавать кредит. Для банков это важно, вообще-то, банки зарабатывают на том, что они выдают кредиты, проценты по кредиту — одна из главных доходных частей банка. Но при этом, если по кредиту деньги не возвращаются, банк проигрывает. Я сейчас говорю не только о частных кредитах, не о бытовом кредитовании граждан, а о кредитах, которые выдаются большим компаниям. Это большие деньги. Если банк плохо принимает решение о выдаче этих кредитов, то начинает действовать консервативно. Долгое согласование, куча бумаг и высокая ставка по кредиту, потому что она должна покрывать риски в тех ситуациях, когда кредит не возвращается. И значит, хорошая компания, хороший растущий бизнес получают дополнительное обременение. Теперь посмотрим со стороны нас всех, как нас эта история касается. А так и касается: чем лучше, быстрее принимается решение о выдаче кредита, тем быстрее деньги приходят в хороший, качественный, работающий бизнес, а если процветает бизнес, процветает и страна, платятся налоги, появляются новые рабочие места, растёт производство, вот это всё. И поэтому ключевое место — внедрение системы искусственного интеллекта в скоринг, в оценку рисков в системе выдачи кредитов, в кредитование — это важнейшая область, которая влияет не только на банки, но на всю экономику страны, на нашу жизнь. Но здесь, по счастью, банки это прекрасно понимают, туда вкладываются огромные усилия, там есть постоянно двигающийся прогресс, и он будет развиваться. О том, как ИИ уже встроен в нашу повседневность и при чём тут бизнес Всё, что касается голосовых помощников, — это новый канал общения людей с бизнесом. Или, наоборот, бизнеса с людьми. Давайте посмотрим, что было некоторое время назад. Недавно, лет 20 назад, появились первые веб-сайты. Это были пустые странички, гипертекст с ссылками, которые позволяли учёным выкладывать статьи. Зачем бизнесу делать такую веб-страницу? Это какая-то нелепая игрушка для учёных. Проходит время, и бизнес понимает: обязательно нужно иметь свой сайт, потому что это главное средство общения с людьми. Таких страниц становится всё больше — появляются поисковые системы. Думать о том, насколько хорошо ты ранжируешься в поиске — да вы что, поиском никто не пользуется! Затем становится понятно, что, конечно, ты должен быть в поиске, в этот момент появляется интернет-торговля. Все такие: интернет-торговля — это неинтересно, это для гиков, там можно купить электронику и больше ничего. Не подумаете же вы, что в интернете в самом деле можно одежду покупать, не примерив, не потрогав, этого не может быть! Дальше появляются соцсети и мессенджеры. И скептики опять: и что мессенджер — передать сообщение, бизнес-то здесь при чём? Потом "Инстаграм". И каждый раз появляется что-то новое. Сейчас главный канал общения бизнеса и потребителя — голосовой, кто—то говорит, что и это пройдёт, но многие бизнесы уже начали с ним работать. Строятся большие экосистемы, и этот канал в них встраивается. В случае "Яндекса" сам голос — целая экосистема, потому что помимо самого базового ядра распознавания синтеза речи под этим есть уже большое количество готовых сервисов, к которым человек привык. Человек привык к навигатору — и он голосом прокладывает маршрут, человек привык к поиску — и он ищет голосом, человек привык к музыке — он голосом ставит музыку. Голос прорастает везде: в браузеры, в отдельные поисковые приложения. Автомагнитолы заменяются на встроенные голосовые сервисы, ориентированные именно на ситуацию человека за рулём. Голосовое общение для нас станет привычным, мы везде будем управлять голосом чем угодно, любой техникой. А это другой интерфейс, он отличен от текста.

Она постоянно обновляется для улучшения взаимодействия с пользователем и интеграции с другими устройствами. Этот ИИ широко используется в автомобильной индустрии и игровом секторе. Он обучен распознавать и интерпретировать естественный язык, что позволяет ему взаимодействовать с пользователем почти как человек. Он значительно упрощает процесс разработки программного обеспечения. Facebook AI Research FAIR FAIR — это отдел ИИ Facebook, разрабатывающий инновационные методы машинного обучения и искусственного интеллекта, которые применяются во всей экосистеме продуктов Facebook, также активно участвуют в научном сообществе, публикуя свои исследования. PaddlePaddle активно используется в большом числе областей, от рекомендательных систем до систем самоуправляемых автомобилей. Einstein способен автоматически анализировать данные и предлагать оптимальные стратегии общения с клиентами. Искусственный интеллект продолжает эволюционировать с каждым годом, предлагая всё новые и новые возможности для улучшения нашей жизни. Список топ-10 ИИ 2023 года демонстрирует удивительный размах отрасли, начиная от ИИ, способных генерировать естественный текст и автоматизировать кодирование, до ИИ, помогающих нам в общении и анализе данных.

Обзор развития ИИ-технологий: как изменится экономика, образование и общество?

Основные рассматриваемые темы: искусственный интеллект, нейронные сети (нейросети), машинное обучение, большие данные (big data), квантовые компьютеры, практическая реализация ИИ, новости науки за 2019 год. Руководитель лаборатории искусственного интеллекта "Яндекса" Александр Крайнов рассказал, как развивается искусственный интеллект и в каких сферах используется. Искусственный интеллект призван стать помощником и источником повышения качества человеческого капитала, но не оппонентом, полностью вымещающим работников с рынка труда.

Главные новости

  • Значимость искусственного интеллекта и нейронных сетей в современном мире
  • Прошу удалить мой номер
  • Сайты-партнеры
  • Искусственный интеллект: ближайшее будущее
  • Значимость искусственного интеллекта и нейронных сетей в современном мире
  • 1. Автоматизированный транспорт

Будущее искусственного интеллекта: перспективы и выгоды

Нейронные сети состоят из слоев взаимосвязанных узлов или нейронов, каждый из которых обрабатывает информацию и отправляет ее на следующий слой. Первый слой нейронов получает входные данные, а последний слой производит выходные данные. Слои между входным и выходным слоями называются скрытыми слоями и отвечают за обработку и анализ входных данных [1]. Процесс обучения нейронной сети включает в себя ввод в нее входных данных и корректировку весов и смещений нейронов для повышения точности выходных данных. Чем больше данных обучает сеть, тем лучше она распознает закономерности и делает точные прогнозы машинное обучение. Нейронные сети имеют несколько приложений в различных областях, включая распознавание изображений и речи, обработку естественного языка и прогнозное моделирование. Цель нейронной сети — находить закономерности в данных и делать прогнозы на основе выявленных корреляций. Во время обучения в сеть подается большое количество размеченных данных, а веса связей между нейронами корректируются до тех пор, пока сеть не сможет точно предсказать правильный результат для заданного ввода.

Нейронные сети оказались невероятно эффективными в широком спектре приложений. Специалисты в области экономики считают, что, в финансах их можно использовать для прогнозирования цен на акции или обнаружения мошенничества. Разработчики программ в сфере медицины также замечают, что в здравоохранении их можно использовать для анализа медицинских изображений и выявления заболеваний. Рабочие процессы медицинских учреждений неразрывно связаны со сбором, обработкой и анализом различных медицинских изображений к которым относятся рентген, КТ, цифровые гистологические исследования и так далее. А также, искусственный интеллект в медицине использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе большого объема сложных медицинских данных. Исходя из этого можно сделать вывод, что нейронные сети и искусственный интеллект всегда были и являются сквозными технологиями. В области лингвистики специалисты считают, что нейронные сети и искусственный интеллект можно использовать для улучшения распознавания речи и обработки естественного языка [2].

Одним из ключевых преимуществ нейронных сетей является их способность обучаться и адаптироваться к новым данным. После того, как нейронная сеть была обучена на определенном наборе данных, она может продолжать обучение и улучшать свои прогнозы по мере поступления новой информации. Это делает нейронные сети особенно полезными в приложениях, где данные постоянно меняются, например, на фондовом рынке или в анализе социальных сетей. Мы предлагаем практическое применение искусственного интеллекта в роли чат-бота в телеграмме, который внедрен в обслуживающие программы компании для психологической помощи и поддержки сотрудников, которые сталкиваются с проблемами и трудностями при выполнении работы.

В данной сфере ИИ и без того развивается сумасшедшими темпами, но теперь на него косвенно будет возложена социальная функция. Молодые люди, которые не смогут найти работу или получить образование, будут вымещать своё недовольство перед экранами мониторов, телевизоров, мобильных устройств. То, что вчера было нарушением социального поведения, к 2030-му станет нормой. Развитие будет поддержано на самом высшем уровне, киберспорт заменит спорт физический, а системы онлайн-услуг и дешевые электронные устройства ещё больше отвлекут внимание людей от растущего кризиса.

Социальная сфера С другой стороны, большее количество людей получит доступ к образовательным и информационным ресурсам, зависимость от местоположения и социального статуса будет снижена, что предоставит возможность большему количеству людей повысить свое благосостояние. Системы моделирования и прогнозирования выйдут на новый уровень; стихийные бедствия можно будет предвидеть еще раньше, социальную помощь оказывать адресно, городская инфраструктура будет развиваться эффективнее, статистические данные будут основываться на принципиально большей выборке. В 2030 для них всё ещё серьёзными проблемами будут преодоление физических препятствий вроде лестниц, бордюров и ям, взаимодействие с окружающим миром. Поэтому не стоит ожидать, что через 15 лет к вам сможет приехать рободоставщик пиццы. С большой долей вероятности, зависимость людей от онлайн-услуг, будь то шоппинг, вызов такси или покупка билетов в кино, выйдет на такой уровень, что эти действия будут совершать только благодаря мобильному помощнику с голосовым управлением. А какие у вас ожидания от будущего с ИИ?

Примеры решений для разных сфер бизнеса из реестра: Транспорт и логистика Система управления движением судов «Нави-Мастер». Видеопотоки типовых дефектов стальных канатов. Диалоговые приложения чат-боты и голосовые помощники TalkBank Platform. Версия 2. Медицина ПО для работы с цифровыми медицинскими изображениями Retina. Интеллектуальная настройка оборудования, контроль поставщиков, мониторинг информации о контрагентах, автоматическая оценка имущества, голосовые помощники и многое другое уже активно применяется в бизнесе.

Это составляет основу интеллектуальной мощи устройства, обеспечивает его способности взаимодействовать с людьми и… 1 Гаджеты Rabbit продала 10000 «ИИ-помощников» R1 в день презентации Гаджет Rabbit R1 стал одной из самых интересных и привлекательных новинок на выставке CES-2024. Стартап успел привлечь к себе небольшое внимание накануне и его организаторы рассчитывали продать хотя бы 500 экземпляров, что уже стало бы успехом для необычного устройства. Вместо этого в первый же день презентации они… 0 Гаджеты Стартап Rabbit представил интеллектуального персонального помощника под названием R1. Устройство призвано избавить человечество от необходимости лично пользоваться различными приложениями в смартфоне и цифровыми сервисами в целом. Теперь все это вместо пользователя сможет делать ИИ. Столь серьезное изменение в раскладке является первым с 1994 года. Преимущество их разработки в том, что она не требует имплантации электродов в живой организм. Достаточно надеть специальную шапочку для снятия… 0 Технологии Нейросеть Pigeon научилась определять геолокацию места по фотографии Трое инициативных студентов из Университета Стэнфорда разработали нейросеть PIGEON, способную с удивительной точностью определять местоположение, где были сделаны фотографии. Эта модель получила название «life2vec», ее задача в составлении последовательности событий, из которых состоит человеческая жизнь. Конечный… 0 Роботы ИИ научился жульничать для обхода физических ограничений в заданиях Разработчики системы искусственного интеллекта CyberRunner собираются в ближайшее время выложить ее исходный код в открытый доступ. Это позволит кратно увеличить объем упражнений и сеансов обучения ИИ новым возможностям по реализации задач в физическом мире. Какими они будут, зависит от самих людей. По умолчанию… 5 Технологии Виртуальные ведущие новостей на основе ИИ заменят живых людей в студии Сервис Channel 1 обещает с 2024 года запустить полную версию своего выпуска новостей с виртуальными телеведущими.

Сферы применения систем искусственного интеллекта

Конец года — время подводить итоги. Редакция проекта «Мир 2051» подготовила для вас целую серию видео про технологические достижения, впечатлившие нас в 2023. Вице-премьер Дмитрий Чернышенко на конференции AI Journey, посвященной развитию искусственного интеллекта (ИИ), обозначил приоритеты правительства в этой сфере. В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс. Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT? Обучили нейросеть на данных открытых источников, в основном это новости СМИ и публикации открытых Telegram-каналов, посвященные теме искусственного интеллекта, за 2022 год.

Ключевые тенденции-2024 в области ИИ

Будущее искусственного интеллекта обещает нам прогресс и новые возможности, но требует также осознанного подхода и ответственного использования. Влияние искусственного интеллекта на различные сферы жизни Искусственный интеллект ИИ уже сейчас оказывает значительное влияние на различные сферы нашей жизни, и его влияние только увеличивается. Современные технологии ИИ проникают во все сферы человеческой деятельности, от медицины и финансов до образования и спорта. Одной из областей, на которые ИИ уже оказал значительное влияние, является медицина. Благодаря возможностям ИИ в обработке больших объемов данных и выявлении закономерностей, врачи получают более точные диагнозы и оптимальные методы лечения. Также ИИ помогает ускорить процесс разработки новых лекарств и терапий. В сфере транспорта ИИ приводит к автоматизации и оптимизации процессов.

Например, автономные транспортные средства на базе ИИ способны уменьшить число аварий на дорогах, повысить эффективность использования транспорта и уменьшить выбросы загрязняющих веществ. Это особенно актуально в условиях растущей мегаполисов и проблем с транспортной инфраструктурой. Искусственный интеллект находит свое применение также в сфере финансов. Благодаря анализу больших объемов данных и обучению на основе исторических показателей, ИИ используется для прогнозирования рыночных трендов и принятия решений в инвестиционной сфере. Это позволяет улучшить качество принимаемых решений и минимизировать риски для инвесторов. Один из самых заметных примеров влияния ИИ на нашу жизнь — это сфера развлечений.

Искусственный интеллект уже используется в компьютерных играх для создания реалистичных и неповторимых игровых миров. Кроме того, алгоритмы ИИ способны адаптироваться к поведению игроков, что позволяет создать максимально увлекательный геймплей и индивидуальный опыт каждому игроку. Искусственный интеллект также оказывает влияние на сферу образования. Компьютерные системы с ИИ могут персонализировать образовательный процесс, предлагая студентам индивидуальные задания и материалы, которые соответствуют их индивидуальным потребностям и уровню знаний. Это позволяет эффективнее осваивать новую информацию и развивать уникальные способности каждого ученика. В заключение, влияние искусственного интеллекта на различные сферы жизни является неотъемлемой частью нашего современного мира.

От медицины и транспорта до финансов и образования, ИИ приводит к автоматизации, оптимизации и улучшению процессов. Необходимо учитывать как позитивные, так и потенциально негативные последствия использования ИИ, чтобы использовать его потенциал на благо человечества. Этические вопросы искусственного интеллекта С развитием искусственного интеллекта возникают все больше этических вопросов, которые общество должно рассмотреть и решить. Для оценки этических аспектов развития ИИ необходимо учитывать его потенциальные негативные последствия и влияние на человечество в целом. Одной из главных этических проблем является создание автономных систем ИИ, способных принимать решения без внешнего вмешательства. Вызывает беспокойство, что такие системы могут принимать решения, которые не соответствуют этическим нормам и ценностям общества.

Необходимо разработать и применять этические принципы и нормы, чтобы гарантировать соблюдение прав и интересов людей во всех сферах использования ИИ. Еще одной проблемой является неравенство доступа к инновационным технологиям ИИ. Если развитие ИИ будет неравномерным и ограниченным только небольшой группой людей или организаций, это может создать социальное неравенство и усугубить уже существующие проблемы. Важно обеспечить равный доступ к развитию и использованию технологий ИИ, чтобы все слои населения могли воспользоваться их преимуществами. Также возникают этические вопросы в сфере приватности и безопасности. ИИ может собирать и обрабатывать огромные объемы данных о людях, что вызывает опасения относительно нарушения личной жизни и конфиденциальности.

Регулирование искусственного интеллекта должно включать строгие меры по защите данных и соблюдению приватности. Другой важной этической проблемой является возможность злоупотребления ИИ. Использование искусственного интеллекта для негативных целей, таких как массовая слежка, манипуляция мнениями и создание оружия, может иметь серьезные последствия для общества. Необходимо установить строгие правила и надзор за использованием ИИ, чтобы предотвратить его злоупотребление. В целом, этические вопросы, связанные с развитием искусственного интеллекта, требуют внимательного изучения и обсуждения. Они касаются основных ценностей и норм общества и должны быть решены в интересах сохранения человеческого достоинства и благополучия.

Будущее робототехники и автоматизации В современном быстро развивающемся мире, робототехника и автоматизация занимают все более важную роль. В будущем эти области ожидается еще больший рост и прогресс, оказывая значительное влияние на различные сферы нашей жизни. Сейчас уже можно наблюдать, как роботы вступают в нашу повседневную жизнь. Они помогают нам в домашних делах, доставляют посылки, выполняют операции в медицине и даже заменяют людей в определенных сферах работы.

В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI.

Это перспективная подсистема ИИ, которая способна распознавать и интерпретировать проявления человеческих эмоций. Благодаря этому достигается более естественное и непринужденное взаимодействие человека и ИИ [6]. Виртуальные помощники. К примеру, чат-бот Олег, применяемый в приложении интернет-банка Тинькофф, с помощью распознавания речи общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы. Эти же функции осуществляются первым в мире семейством виртуальных ассистентов «Салют» экосистемы «Сбер» [7].

Использование виртуальных помощников — это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8]. К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл. США в год, к 2022 г.

К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями. Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020. Автоматизация ручного труда также является важной и неоднозначной темой, поскольку использование алгоритмов искусственного интеллекта в промышленности способно вытеснить из этой сферы человеческий труд.

Автоматизированные технологии выполняют сложные процессы быстрее и качественнее, чем человек, они способны работать 24 часа в сутки. Следует подчеркнуть, что основная цель внедрения высокоинтеллектуальных решений сегодня — это не полная замена человека в производственных и бизнес-процессах, но повышение эффективности человеческого труда. Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. Еще одно направление применения алгоритмов искусственного интеллекта — это предиктивная аналитика. ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции.

Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации [18] Sergeev, 2020. Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий. В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных.

В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который с помощью алгоритмов программы позволяет обрабатывать и структурировать человеческую речь, обеспечивая тем самым ее подготовку к проведению дальнейшего анализа. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени. Такой анализ способен облегчить работу инженеров, в том числе сэкономить время на сортировку и организацию данных перед тем, как оценить их и выявить важные взаимосвязи.

Оператором инфраструктуры, что вполне ожидаемо, стала госкомпания «Автодор». Обучение — машинам, образование — специалистам Разумеется, дальнейшее развитие сферы ИИ закономерно сталкивается с рядом трудностей, которые страна должна преодолеть для дальнейшего преуспевания. Первая — сугубо технологическая. Для эффективного машинного обучения требуется мощное оборудование из-за работы с огромным количеством данных. Так, например, для того, чтобы научить машину отличать кролика от черепахи на картинке, придется задействовать мощности примерно 16 тысяч персональных компьютеров и обработать свыше 10 млн изображений. Именно поэтому технологическое развитие оборудование, безусловно, должно идти с опережающими темпами. Вторая — сложившаяся проблема нехватки кадров, которую на данный момент в России планируют решить путем создания новых образовательных специальностей в сфере ИИ. Так, в 2021 году на базе петербургского ИТМО появилась первая аспирантура, посвященная обучению данного типа специалистов.

Кроме того, мы собрали информацию о нескольких подходах к решению вопроса о нейросетях и авторском праве. Основные способы использования ИИ обычными пользователями Одной из наиболее впечатляющих инноваций в мире ИИ является развитие генеративного искусственного интеллекта. Он привлекает к себе большое внимание, особенно в следующих областях. Генерируемый текст С помощью текстовых вводов генеративный ИИ может создавать разные виды текста: начиная с электронных писем и текстов для веб-сайтов и заканчивая сопроводительными письмами и детскими книгами. ИИ может генерировать искусство, а также сверхреалистичные изображения. Он способен создавать удивительные произведения, иногда настолько неожиданные, что они вдохновляют меня и помогают расширить границы моего творчества", — говорит Светлана Васина, художник и иллюстратор, в комментарии РЕН ТВ. Генерируемая речь Многие генераторы голоса на базе ИИ позволяют пользователям преобразовывать текст в аудио, предоставляя множество языков, голосов и акцентов. Внедрение разговорного ИИ планируется и в чат-ботах. Это позволит более эффективно обрабатывать сложные запросы пользователей и обеспечивать персонализированные ответы. Генерируемое видео Преобразование текста в видео стало намного проще. ИИ может создавать видеоролики с реалистичными искусственными аватарами, произносящими текст, который вы вводите, на более чем 120 языках и акцентах. Он помогает решать сложные задачи анализа данных, предсказывать тенденции и оптимизировать бизнес-процессы. Такие тренды, как автоматизация и управление данными, позволяют женщинам более успешно развивать карьеру. Он помогает автоматизировать рутинные задачи. Например, создание цветовых палитр. Это позволяет мне сосредотачиваться на самом творческом процессе, на поиске новых идей и концепций, но, независимо от вашей сферы деятельности, ИИ меняет мир вокруг нас и предоставляет новые возможности для личного и профессионального развития", — отмечает Светлана Васина. Искусственный интеллект приносит инновации Искусственный интеллект уже укоренился в нашей повседневной жизни. Умные дома, голосовые ассистенты, медицинская диагностика, автономные автомобили — все это становится частью нашего обыденного существования. Одним из наиболее заметных проявлений ИИ в повседневной жизни являются умные дома. При помощи ИИ мы можем управлять домом через приложения на смартфоне. ИИ даже научился предсказывать предпочтения и реагировать на них автоматически, создавая более комфортную среду для проживания. Они могут выполнять широкий спектр задач — от составления списка дел до заказа товаров онлайн. В целом искусственный интеллект становится неотъемлемой частью нашей повседневной жизни, и его влияние будет только расти в ближайшие годы.

«Искусственный интеллект в нашей жизни»

В целях коммуникации с клиентами ИИ-компании используют чат-боты, которые вступают во взаимодействие и отвечают на вопросы. Системы искусственного интеллекта активно применяются при оказании телекоммуникационных услуг, в автомобильной промышленности и финансовом секторе. Указанные технологии внедряются и в розничных сетях, при производстве FMCG пер. Технологии искусственного интеллекта широко используются в таких разных сферах бизнеса, как ритейл, строительство, информационные технологии, образование и т. В каждой из указанных бизнес-сфер применяются технологии управления поведением потребителей, изучения будущих тенденций рынка и автоматизации различных рутинных процессов. Рассмотрим сектора применения возможностей искусственного интеллекта. Беспилотные автомобили, использующие алгоритмы искусственного интеллекта с возможностью полного автономного вождения без вмешательства человека, могут существенно трансформировать транспортную систему. Машины с использованием ИИ анализируют трафик и альтернативные маршруты, сокращая время в пути [5]. Применение высокопроизводительных роботов способствует быстрому и качественному выполнению задач, более эффективной, чем у человека, деятельности. Благодаря использованию 3D-технологий и машинного зрения роботы способны в разы ускорить процесс производства в любой сфере.

Автономные хирургические роботы, виртуальные помощники медицинского персонала и автоматическая диагностика изображений — это новейшие разработки, благодаря которым искусственный интеллект начинает играть решающую роль в технологическом прогрессе сферы здравоохранения, а также в развитии услуг телемедицины в трансграничном режиме [8] Ermakova, Kovyazin, 2002. Сфера развлечений. Машинное обучение на нейронных сетях позволяет предсказывать сценарии поведения пользователя и предоставлять рекомендации по подбору фильмов, музыки, телешоу и другого интересующего потребителя контента. ИИ в зависимости от предпочтений пользователя осуществляет персонализированный подбор рекламы, что способствует повышению эффективности маркетинга в аспекте таргетированной рекламы и увеличению объемов продаж. Предиктивный анализ и автоматизация, осуществляемая алгоритмами искусственного интеллекта, применяются в целях принятия бизнес-решений, продажи билетов и прогнозирования результатов спортсменов. Искусственный интеллект, применяемый в бизнесе, способствует улучшению показателей во всех сферах. К примеру, к процессам, в рамках которых ИИ решает определенные узконаправленные задачи, следует отнести следующие: 1. Искусственный интеллект осуществляет изучение статистики и выполняет прогностические функции, обрабатывая гигантские массивы информации в целях подбора наиболее оптимального распределения цен на конкретный вид продукции. Это позволяет в несколько раз повысить объемы выручки и доходов компании.

Самообучающиеся нейронные сети анализируют поведение клиентов и вычисляют подозрительные операции, существенно снижая таким образом негативные последствия действий кибермошенников и киберпреступников, что приводит к значительному снижению финансовых потерь, повышенной защищенности системы и росту доверия пользователей [7] Dudin, Shkodinskiy, 2021. Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом. Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования.

В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций. Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения.

ИИ, осознающий себя Это, возможно, не такое далекое будущее. Недавно инженер Google сказал, что ИИ, созданный в компании, «выдал себя», отметив, что не хочет «умирать», то есть быть отключенным. Возможно, мы, простые люди, ничего не знаем и такие ИИ уже существуют — они полностью осознают, что они, где они находятся и чего хотят. Первые принципы ИИ были заложены американским информатиком Джоном Маккарти, придумавшим термин «искусственный интеллект». Он мог рассуждать о своих действиях, анализировать команды, разбивая задачу на простые части.

Первый робот в истории человечества, который совмещал логику с физическими действиями. Например, его просили «сбросить блок с платформы». Шейки осматривался, находил платформу, проверял, есть ли на ней блок, находил пандус, чтобы забраться на платформу, заезжал на нее и сталкивал блок, отчитываясь о выполнении задачи. Звание первого проигравшего ИИ в шахматы заслужил Гарри Каспаров. Создание этого большого компьютера стало важной вехой для IBM. Это был Roomba от компании iRobot. Фирма, как и модели пылесосов Roomba, существуют и по сей день.

Дебютируют распознавание речи, роботизированная автоматизация процессов RPA , танцующий робот, умные дома, голосовые помощники, автопилоты в машинах и так далее. Алгоритм может предсказать последовательность РНК вируса всего за 27 секунд, что в 120 раз быстрее, чем другие методы. Ранее мы рассказывали: 7 невероятных историй, когда гаджеты спасли жизнь Чем ИИ отличается от работы человеческого мозга Основная задача искусственного интеллекта — симулировать человеческий мозг, но лишить его недостатков. Грубо говоря, ИИ — это сверхчеловек, который никогда не спит, способен легко впитывать любую информацию, не прокрастинирует и анализирует события, не полагаясь на собственные эмоции. Люди могут решать множество проблем и учиться решать те, с которыми мы раньше не сталкивались. Текущее состояние ИИ не позволяет ему действовать в таком же духе. Но как это может выглядеть, можно посмотреть в фильме «2001 год: Космическая одиссея».

В 1968 году Стэнли Кубрик показал ИИ HAL 9000, который мог решать обычные человеческие проблемы и постоянно преодолевать новые сложности на основе полученной информации, как это делают люди. Делал он это, скажем так, по-особенному. Сегодня ИИ все еще отличается от человеческого мозга. Например, ему недоступно осознание таких вещей, как: Физические объекты существуют в трехмерной реальности и сохраняются, даже если вы их не видите. Объекты обладают многочисленными свойствами и подчиняются физическим законам, таким как гравитация. Время идет и накладывает определенный порядок на действия в окружающей среде. Объекты в движении следуют обычно предсказуемым траекториям, таким как падение, перекатывание и так далее.

Причины могут предсказуемо привести к следствиям. Действия, предпринимаемые человеком или слабым искусственным интеллектом , могут повлиять на будущее, которое может повлиять на человека. Например, человек находится за рулем автомобиля и видит, что рядом с проезжей частью находится детская площадка, на которой ребенок играет с мячом. Водитель сразу же принимает во внимание тот факт, что ребенок с мячом где-то рядом, а значит, либо мяч может укатиться на проезжую часть, либо на нее выбежит ребенок.

Источник изображения: SoftBank Благодаря столь крупным инвестициям SoftBank будет обладать самыми высокопроизводительными вычислительными мощностями в стране, отметил Nikkei Asia. Как утверждают источники ресурса, для их работы будут использоваться ускорители Nvidia. В 2024 финансовом году SoftBank планирует завершить создание своей первой большой языковой модели LLM с 390 млрд параметров. Затем, по данным Nikkei Asia, компания начнёт в 2025 году разработку LLM с 1 трлн параметров и поддержкой японского языка. Как отметил ранее Nikkei Asia, в Японии наблюдается нехватка частных компаний с высокопроизводительными суперкомпьютерами, необходимыми для создания LLM, несмотря на возросший интерес к ИИ.

Благодаря инвестициям SoftBank превратится в сильного игрока в сфере генеративного ИИ в то время, когда международные компании пытаются выйти на рынок Японии. На прошлой неделе OpenAI открыла свой первый офис в Токио. Она стала первой из трёх небольших ИИ-моделей, которые софтверный гигант планирует выпустить в свет. В декабре прошлого года Microsoft выпустила модель Phi-2, которая работала так же хорошо, как и более крупные модели, такие как Llama 2. По словам разработчиков, Phi-3 работает лучше предыдущей версии и может давать ответы, близкие к тем, что дают модели в 10 раз больше. По сравнению с более крупными аналогами, небольшие ИИ-модели обычно дешевле в эксплуатации и лучше работают на персональных устройствах, таких как смартфоны и ноутбуки. Наряду с Phi компания также создала модель Orca-Math, которая ориентирована на решение математических задач. Конкуренты Microsoft занимаются разработкой небольших ИИ-моделей, многие из которых нацелены на решение более простых задач, таких как обобщение документов или помощь в написании программного кода. По словам Бойда, разработчики обучали Phi-3 по «учебному плану».

Они вдохновлялись тем, как дети учатся на сказках, читаемых перед сном. Это книги с более простыми словами и структурами предложений, но в то же время зачастую в них поднимаются важные темы. Поскольку существующей литературы для детей при тренировке Phi-3 не хватало, разработчики взяли список из более чем 3000 тем и попросили большие языковые модели написать дополнительные «детские книги» специально для обучения Phi-3. Бойд добавил, что Phi-3 просто развивает дальше то, чему обучились предыдущие итерации ИИ-модели. Если Phi-1 была ориентирована на кодирование, а Phi-2 начала учиться рассуждать, то Phi-3 ещё лучше справляется с кодированием и рассуждениями. Расследование Reuters показывает, что санкционная продукция Nvidia продолжает поставляться в Китай. Источник изображения: Nvidia Агентство использовало для получения подобных выводов общедоступную конкурсную документацию, в которой отображались состоявшиеся закупки серверного оборудования, в составе которого содержались запрещённые к экспорту в Китай компоненты Nvidia. По словам представителей Reuters, уже после вступления новых ограничений в середине ноября прошлого года не менее 10 китайских учреждений смогли получить серверное оборудование, содержащее «запрещённые» ускорители Nvidia. В выборку попали конкурсные процедуры, которые проводились в период с 20 ноября прошлого года по 28 февраля текущего.

Среди 11 поставщиков, выигравших конкурсные процедуры на поставку «запрещённой» вычислительной техники в Китай, все были малоизвестными торговыми компаниями из КНР, как поясняет Reuters. Поставляли ли они оборудование из запасов, сформированных до вступления в силу осенних изменений к правилам экспортного контроля, определить не удалось. Представители Nvidia заявили, что даже если указанные поставки и осуществлялись в обход санкций США, они составляют лишь малую часть оборота мирового рынка, и никак не дискредитируют ни саму компанию, ни её партнёров. Получателями оборудования по рассматриваемым конкурсам выступали государственные ВУЗы КНР и правительственные организации, а также пара исследовательских центров, работающих в аэрокосмической отрасли. Представители Super Micro заверили, что собственные требования компании к соблюдению правил экспортного контроля с запасом превосходят по строгости государственные, а поставленное в Китай оборудование относилось к прошлому поколению, которое под санкции США ранее не попадало. Китайские поставщики, которые участвовали в конкурсе, клиентами Super Micro не являлись. Dell разбирается в ситуации, но на момент подготовки материала к печати заявила, что не располагает доказательствами поставки запрещённого к экспорту в Китай оборудования в адрес упоминаемых агентством Reuters китайских организаций и компаний. Gigabyte Technology просто заявила, что соблюдает международные правила торговли и законы Тайваня.

Значение термина «искусственный интеллект» Значение термина «искусственный интеллект» Искусственный интеллект является наукой о создании интеллектуальных машин и компьютерных программ. Направления развития искусственного интеллекта Решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность. Разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством. Сферы применения искусственного интеллекта в современном мире Сферы применения искусственного интеллекта в современном мире Искусственный интеллект в машинном творчестве Современные компьютеры создают музыкальные, литературные, живописные произведения… Прогнозирующие системы Системы предназначены для предсказания событий или результатов событий на основе имеющихся данных, характеризующих текущую ситуацию или состояние объекта Прогнозирующие системы Системы предназначены для предсказания событий или результатов событий на основе имеющихся данных, характеризующих текущую ситуацию или состояние объекта. Планирование Системы планирования предназначены для решения задач с большим количество переменных с целью достижения конкретных результатов Интеллектуальные системы контроля и управления Интеллектуальные системы контроля и управления Экспертные системы успешно применяются для контроля и управления. Они способны анализировать данные, полученные от нескольких источников, и по результатам анализа принимать решения. Диагностика и устранение неисправностей в электрическом и механическом оборудовании Медицина В медицине ценится отменная память искусственного интеллекта и его способность обрабатывать большое количество данных, сопоставлять и анализировать информацию Медицина В медицине ценится отменная память искусственного интеллекта и его способность обрабатывать большое количество данных, сопоставлять и анализировать информацию. Промышленность и сельское хозяйство. В промышленности искусственный интеллект позволяет делать работу более автоматизированной. Искусственный интеллект используется для контроля за состоянием растений, уровнем влажности, наличием в почве питательных веществ и надлежащего ухода за посадками.

Каким будет будущее нейросетей в 2024 году

Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России. Наработки в области искусственного интеллекта в ближайшие годы могут принести государству триллионы рублей.

Искусственный интеллект в карьере

  • Цифровые технологии и наработки в области искусственного интеллекта обсудили в Москве
  • Новости по теме: искусственный интеллект
  • Ключевые слова
  • 82% россиян позитивно относятся к технологиям искусственного интеллекта
  • Что такое искусственный интеллект и зачем он нужен
  • Фиксируем прибыль: самарцы чаще других россиян зарабатывают с помощью искусственного интеллекта

«Сократят 300 млн человек по всему миру»: людей каких профессий совсем скоро могут заменить роботы

И недаром. Список того, что умеет ChatGPT, поражает воображение. Например, этот бот-«интеллектуал» может написать школьное сочинение. Причем, как пишет The Washington Post , оно получается настолько качественным, что его невозможно отличить от авторского текста школьника. Учителя уже бьют тревогу по этому поводу. Вот еще малый список того, что умеет ChatGPT: сочинять стихи и песни; писать рефераты на любую тему; вести увлекательные разговоры; давать персональные советы, в том числе медицинские всякий раз они сопровождаются плашкой о необходимости обратиться к врачу. ChatGPT даже попытался доказать научную теорему. Однако попытка оказалась провальной: нейросеть написала структурированную белиберду.

Хотя и вполне убедительную на непрофессиональный взгляд. Кроме того, программа может обучаться на ходу. Возможно, в скором времени она отберет часть работы у копирайтеров, журналистов пишущих новостные заметки , учителей, врачей и людей самых разных профессий.

Она вручается за достижения в области компьютерных наук, за самое интересное исследование молодых учёных. Мы объявляем об этой премии в разных вузах, и я воспользовался таким поводом приехать, рассказать о премии и машинном обучении в "Яндексе". До 28 февраля 2019 года мы принимаем заявки, в марте определимся с победителями и в апреле будем премию вручать. Лауреаты получат по 350 тысяч рублей примерно 2 миллиона тенге. Нужно это для того, чтобы стимулировать интерес к науке, ещё это отличный шанс и отличная перспектива для студентов и их научных руководителей, для молодых учёных, которые проводят исследования в вузах или исследовательских центрах. Единственное требование — участники не должны быть аффилированы ни с одной коммерческой структурой. В "Яндексе" есть свои исследователи, и они на эту премию претендовать не могут, потому что у тех, кто работает на коммерческие компании, и так всё хорошо. О будущем искусственного интеллекта Скажу парадоксальную для кого—то вещь: это будет что-то привычное и совсем незаметное. Никакого восстания машин. Каждый раз, когда в нашу жизнь приходит любое громкое техническое новшество, это вызывает много эмоций, а спустя время всё становится привычным. Оглядываясь назад, мы думаем, например: "Автомобили, а что автомобили? А когда они только появились, была масса разговоров: эти машины будут всех захватывать, раньше были понятные лошади, а теперь это. То же самое с искусственным интеллектом: использование научных технологий сильно поменяет нашу жизнь, но для наших детей и внуков это будет абсолютно привычной, естественной и незаметной частью жизни. Приведу пример. Совсем недавно нормальное распознавание голоса было чистой экзотикой, во всех старых фильмах о будущем роботы говорят противным, мёртвым механическим голосом. Сейчас задавать голосовые запросы поисковой системе — абсолютно естественно, и голос той же самой "Алисы" звучит натурально, он не раздражает. И "Алиса", с которой дети общаются без проблем, — это для них понятно и естественно, она появилась всего полтора года назад. И вошла в нашу жизнь так, будто была всегда. Есть такие вещи, о природе которых мы не задумываемся, как навигация, например. Мы забыли, что было иначе, что люди какие-то там карты разворачивали. Сказал, куда тебе ехать, проложили тебе маршрут, ты поехал, даже не задумываясь о том, что в это время где-то на куче серверов собираются данные, анализируются маршруты, строится система предсказаний пробок и так далее. Маршрут непрерывно переобсчитывается, и, конечно, этим занимаются не люди — это делает машина, и это тоже можно назвать искусственным интеллектом. А для нас абсолютно буднично. И количество таких естественных вещей будет увеличиваться, и они будут становиться всё более привычными. Каждый раз или почти каждый раз что-то новое выглядит как какая-то сенсация, и мы думаем, стоит этого опасаться или нет, но проходит год или два — и это становится частью быта. При этом это я сейчас говорю год или два, чем дальше, тем быстрее: время тоже ускоряется. О главных трендах в развитии искусственного интеллекта Если мы говорим про беспилотные автомобили как один из образцов искусственного интеллекта, то их появление на улицах сильно зависит от заинтересованности в этом государства, что требует серьёзной работы со стороны властей — проработки законодательной базы и введения последовательных законов, которые облегчат процесс. Здесь должны, конечно, работать вместе и разработчики, и государство, потому что это действительно сложная вещь — делать юридическую базу для того, чтобы максимально безопасным образом вывести беспилотные автомобили на улицы города. Те страны, где об этом будут думать активнее и лучше, получат результат быстрее. Второе — технологии безналичной оплаты и сам принцип взаимодействия человека с деньгами. Я вот, например, забыл, когда в России мне надо было доставать карточку, всё оплачиваю с телефона. В Казахстан это тоже уже проникает. И там мне удалось наконец заплатить с телефона, во всех остальных местах — нет, даже PayPass далеко не везде работает, нельзя карточку приложить, надо засовывать, пин-код вводить, и таких мест большинство. Хотя там разрабатывается много передовых технологий, но что касается их внедрения и применения, это не всегда так. Потому что США — бюрократическая страна, и внедрение новых технологий здесь не сказать, чтоб самое передовое, иногда кажется, что передовое, но нет. Китай в этом лидер, там высокая конкуренция везде, на любом уровне, где только можно представить, и скорость проникновения новых технологий взрывная, просто колоссальная. Технология распознавания лиц, положим, максимально доступна, ее может сделать практически кто угодно, есть много открытого кода, который неплохо работает. В китайском Синьцзяне, например, достаточно жёсткий контроль над людьми, сканируют всё, в том числе лица. На поимку нарушителя уходит буквально несколько минут. Звучит как антиутопия, верно? Но таков прогресс, и здесь можно думать, пройдёт он быстрее или нет, рассуждать, хорошо это или плохо, но он неизбежен. И, главное, мы через это уже проходили, и не раз. Во-первых, в какой-то момент появились паспорта для идентификации человека. Был период, когда никакой идентификации не было, у человека было только имя, не было даже фамилии, по которой можно навести справки. Потом появились документы, благодаря которым о человеке можно многое узнать, и чем дальше, тем больше. В какой-то момент появляется технология обработки отпечатков пальцев, жёсткий идентификатор, который нельзя поменять. Сейчас то же самое с лицом, и это удобно, позволяет нам разблокировать телефон, например. Мы периодически думаем: а как же соображение приватности, но на другой чаше весов лежит отсутствие необходимости доказывать, что ты ничего плохого не делал. Это ещё один важный тренд. Паспорт будущего — принципиально другой тип коммуникаций. О спектре применения искусственного интеллекта Первое, с чего стоит начать, — поиск, который невозможен без технологии искусственного интеллекта.

Если пять лет назад индустрия только формировалась, то в 2021 китайские компании лидируют в мировом рейтинге по числу патентов в области искусственного интеллекта: в первой пятерке они занимают три места, а Tencent и Baidu возглавляют этот рейтинг. По данным LexisNexis, в период с 2012 по 2019 год наибольшим количеством патентов в области искусственного интеллекта владела Microsoft , но в 2019 она резко провалилась в рейтинге из-за активности других компаний. Самый яркий представитель в этом рейтинге — китайский страховой гигант Ping An. За 5 лет число патентов в области искусственного интеллекта в распоряжении компании выросло в 139 раз — с 46 до 6410. И это не просто патенты, а реальные технологии, применяемые в бизнесе компании. Например, среди инструментов искусственного интеллекта, недавно разработанных компанией, есть программное обеспечение для анализа микровыражений лица — моргания глаз, непроизвольных подергиваний губами и так далее, — которое Ping An использует для оценки страховых требований, которые страхователи отправляют в компанию с помощью видео. Но больше всех из китайских компаний к полномасштабной конкуренции с ChatGPT готовы в Baidu — крупнейшем поисковике в Китае и аналогу Google. В ближайшие месяцы Baidu запустит собственного чат-бота «Эрни» , который будет интегрирован в поисковик по аналогии с ChatGPT, встроенным в поисковик Bing от Microsoft. Модель искусственного интеллекта, лежащая в основе бота, разрабатывалась с 2019 года, а ее новейшее поколение обучено 260 млрд параметров, что сопоставимо с GPT3 — технологией, лежащей в основе ChatGPT. Что в итоге Искусственный интеллект и нейросети — действительно «разрушающие» технологии, которые могут создать новый рынок и разрушить старые. С другой стороны, пока искусственный интеллект не вносит ощутимого вклада в бизнес Tencent, Baidu или Microsoft. Поэтому с точки зрения инвестиций я бы придерживался уроков времен золотой лихорадки, во время которой больше всего заработали продавцы лопат.

Как ИИ-системы влияют на образование? В середине 2000-х, когда я была студентом-переводчиком, основным инструментом была программа автоматизированного перевода Trados. Эта система, разработанная в 1992 году, помогала переводить и редактировать тексты. Стоила она недешево, да и пользоваться ей было непросто, однако уже тогда преподаватели предупреждали нас о неизбежном прогрессе в этой области. Сегодня чат-боты переводят тексты любой сложности за несколько секунд, что неизменно влияет на рынок труда как минимум в области письменного перевода. Такие языковые системы как ChatGPT пишут безупречные академические эссе, сочинения и дипломные работы. Но что это означает для образования? Это интересно: Подборка неожиданных способностей нейросети GPT-4 — как ее опробовать бесплатно? Дети учатся в школе будущего с помощью искусственного интеллекта. Картинка создана за пару минут Согласно результатом доклада AI Index Report, системам школьного и высшего образования не избежать внедрения искусственного интеллекта и изменения способа обучения. Дэниел Ламетти, психолингвист из Университета Акадия считает, что ChatGPT сделает с академическими текстами то же, что калькулятор сделал с математикой. Калькуляторы изменили способ преподавания математики. До появления калькуляторов часто имел значение только конечный результат: решение. Но когда появились калькуляторы, стало важно показать, как именно вы решили проблему, то есть ваш метод работы, — объясняет Ламетти. По этой причине ряд экспертов предполагает, что академические работы и эссе будут оценивать не только потому, что в них говорится, но и по тому, как студенты редактируют и улучшают текст, сгенерированный с помощью искусственного интеллекта, то есть их метода «решения». Необходимо также отметить, что ChatGPT не является полностью интеллектуальным инструментом и не понимает значение языка и эссе, которые пишет. Подобно попугаю в кабинете профессора, который слушает разговоры и «повторяет их», чат-бот с искусственным интеллектом просто обрабатывает и представляет язык и факты, которые ему «скормили». И это может привести к проблемам: есть примеры текстов ChatGPT, в которых язык читается так, как если бы он был написан экспертом, но сам текст фактически неверен. Так по мнению нейросети выглядит эволюция технологий Еще больше интересных статей о том, как развиваются нейросети и как ими пользоваться, читайте на нашем канале в Яндекс. Дзен — там регулярно выходят статьи, которых нет на сайте! Таким образом, как и в случае с другими технологиями искусственного интеллекта, людям придется просматривать и исправлять тексты, сгенерированные чат-ботами. Это редактирование часто является сложным и требует реальных знаний предмета, так что трата времени на образование — верное и актуальное решение. И хотя для преподавателей адаптация к ChatGPT будет непростой, она дарит им возможность для развития профессиональной деятельности. Еще одна проблема касается академических стандартов, которые могут пострадать, если студенты станут зависимыми от технологии и перестанут учиться писать самостоятельно. Подобный сценарий предполагает, что будущие ученые могут стать «крайне некомпетентными и зависимыми», а знаменитый лингвист и интеллектуал Ноам Хомский в своем эссе указывает на проблему «плагиарзима». Этические проблемы ИИ-технологий Авторы ежегодного отчета AI Index Report поднимают вопрос об этической составляющей ИИ-систем — их растущая популярность побудила межправительственные, национальные и региональные организации разработать стратегии управления искусственным интеллектом, так как этого требует целый ряд социальных и этических проблем. В этой связи можно вспомнить Хе Цзянькуя — китайского ученого, который в 2018 году заявил о рождении первых в мире генетически модифицированных детей.

Похожие новости:

Оцените статью
Добавить комментарий