2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа).
Человек и его здоровье (стр.51-75)
Передача импульса между нервными клетками. Нейроны передача импульсов. Передача импульса между нейронами. Рефлекторная дуга внутри ЦНС. Рефлекторная дуга и ее компоненты. Рефлекторная дуга путь рефлекса.
Рефлекторная дуга начинается с рецепторов. Ответную реакцию организма на раздражение осуществляемую. Ответная реакция организма осуществляемая ЦНС. Ответные реакции на раздражитель. Ответная реакция на раздражение.
Продолговатый мозг центры регуляции. Регуляция нервной системы. Нервные центры продолговатого мозга. Продолговатый мозг нервная система. Супрахиазменные ядра гипоталамуса.
Супрахиазматическое ядро гипоталамуса строение. Супрахиазмальное ядро головного мозга.. Ретиногипоталамический тракт. Передача нервного импульса в ЦНС. Путь передачи нервного импульса в центральную нервную систему.
Сигналы нейронов. Рефлекторный механизм деятельности нервной системы. Рефлекторный принцип функционирования ЦНС. Рефлекторный принцип деятельности нервной системы человека.. Рефлекс нервная система.
Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи. Экзоцитоз нейромедиатора. Нейроны физиология Аксон.
Строение нейрона коллатерали. Функции нервной клетки физиология. Функциональные структуры нейрона. Дендрит двигательного нейрона. Строение спинного мозга анатомия Нейроны.
Дендрит это периферический отросток клетки. Нейроны строение передача импульса. Нейрон передает Импульс. Названия нейронов. Передача сигналов в нервной системе.
Тела нейронов находятся в. Тело нейрона функции. Передачи нервного импульса по звеньям рефлекторной дуги. Рефлекторная дуга характеристика ее звеньев. Афферентное звено рефлекторной дуги выполняет функции.
Аксон нервной клетки. Нейроны аксоны дендриты. Нейроны передающие импульсы. Аксон двигательного нейрона. Возбуждение нервной клетки.
Строение чувствительного нейрона. Возбудимость нейрона. Проведение возбуждения в нервной клетке. Афферентные и эфферентные нервные пути. Афферентный путь и эфферентный путь.
Проводящие пути афферентные и эфферентные. Афферентные двигательные пути. Образование спинномозговых нервов схема. Схема формирования спинномозгового нерва. Симпатический ствол и спинномозговые нервы.
Образование и ветви спинномозгового нерва схема :. Рефлекторная дуга задние рога спинного мозга. Рефлекторная дуга двигательного рефлекса. Рефлекторная дуга рвотного рефлекса схема. Структура трехнейронной рефлекторной дуги..
Схема трехнейронной рефлекторной дуги соматического рефлекса. Схема трехнейронной рефлекторной дуги двигательного рефлекса. Синапс на схеме рефлекторной дуги. Схема строения анализатора рефлекторной дуги. Нейрон Аксон синапс рефлекторная дуга.
Афферентный нерв. Исполнительные органы. Обратная афферентация связь. Замкнутая кольцевая цепь рефлексов. Вегетативная автономная и анимальная нервная система. Развитие нервной системы.
Филогенез нервной системы. Трубчатая нервная система. Развитие отделов мозга: промежуточный, передний, конечный. Новый мозг. Первая сигнальная система. Вторая сигнальная система.
Эмбриогенез нервной системы. Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора. От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода.
По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет.
Ток, направленный наружу, также не вызывает возбуждения.
Длина аксона. Направлении проведения нервного импульса аксоном и дендритами. Аксон , проводящий нервный Импульс. Телодендрии аксона. Продолговатый мозг центры регуляции. Рефлекторная функция продолговатого мозга. Нервные центры продолговатого мозга.
Продолговатый мозг нервная система. Нейрон структурно-функциональная единица нервной системы. Структурно-функциональная характеристика нейронов. Функциональное строение нервной системы. Структурная организация нейрона. Передача нервного импульса в ЦНС. Путь передачи нервного импульса в центральную нервную систему. Сигналы нейронов.
Нервная система строение нейрона. Функции нейрона схема. Структурно-функциональная единица нейрона. Структурные элементы и Нейроны таблица. Возбуждение нервной клетки. Проведение возбуждения в нервной клетке. Строение чувствительного нейрона. Двигательная нервная клетка.
В нейроне различают. Вставочный Нейрон. Роль нейронов. Нейроны различаются по форме. Синапс место контакта между двумя нейронами. Нейрон передача импульса. Передача импульса между нейронами. Передача импульса между нервными клетками.
Передача импульса в нервной системе. Передача нервного импульса от нейрона к нейрону. Функции нервной клетки. Распространение нервного импульса по аксону. Нервные импульсы от тела. Нервные импульсы к телу нейрона идут по. Импульс нейрона. Ветвящийся отросток нейрона.
Нервные импульсы передаются в мозг по нейронам. Передача нервного импульса с нейрона. Передача нервных импульсов по волокнам нервной системы. Схема строения двигательного нейрона. Структурно-функциональной единицей нервной ткани является. Схема проведения нервного импульса. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия.
Рефлекторная дуга строение и функции. Рефлекторная дуга периферической системы. Рефлекс вставочные Нейроны. Функции вставочного нейрона рефлекторной дуги. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Вставочные Нейроны нервные импульсы. Нейрон состоит из аксона и дендритов. Строение нейрона тело Аксон дендрит.
Строение нейрона. Строение нефрона Аксон дендрит. Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи. Синапс этапы синаптической передачи. Путь нейрона по рефлекторной дуге. Последовательность нервного импульса в рефлекторной дуге.
Путь передачи нервного импульса рефлекторная дуга. Рефлекторная дуга по порядку нервного импульса.
В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности.
Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов — чувствительного, вставочного и двигательного или секреторного.
Тело первого нейрона афферентного находится в спинномозговом узле или чувствительном узле черепного нерва. Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего чувствительного корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру.
В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего двигательного нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу.
Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным чувствительным и эфферентным двигательным или секреторным нейронами расположено несколько вставочных нейронов.
В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы. Дата последнего обновления публикации: 20.
Рецептор, кондуктор и эфферентный нейрон Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью например, кожей , а другой с помощью своего нейрита оканчивается в мышце или железе. При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе.
В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору.
У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И. Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов. Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И.
Нервные импульсы поступают непосредственно к мышцам и железам по
Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. 2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по.
КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по
Нервные импульсы поступают непосредственно к железам по. Нервные импульсы поступают непосредственно к железам по 1) аксонам. Дендриты проводят нервный импульс к телу нервной клетки; их, как правило, несколько. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга.
Как нервная система регулирует работу эндокринной системы?
Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса.
Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора. Библиографическая ссылка M.
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс — это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др. Простейшая рефлекторная дуга состоит из трех нейронов — чувствительного, вставочного и двигательного или секреторного.
Вазопрессин регулирует водный обмен, повышает тонус сосудов. Гормоны гипоталамуса поступают к гипофизу по кровеносному руслу и там воздействуют на его функции. Статины и либерины не всегда действуют строго избирательно. Так, соматостатин может подавлять выработку не только соматотропина, но также тиротропного гормона, инсулина и пролактина. Нервная регуляция работы надпочечников Надпочечники — парные железы, которые у человека расположены в области верхнего полюса почек. В их строении выделяют две составляющих: корковое и мозговое вещество. Кора выполняют эндокринную функцию и вырабатывает гормоны в кровь, а мозговой слой представляет собой промежуточное звено между нервной и эндокринной системами. Одна из функций мозгового вещества надпочечников — выработка катехоламинов. Это группа биологически активных соединений, которая включает адреналин и норадреналин. Они максимально активируются в стрессовых ситуациях, когда необходимо срочно привести организм в тонус, и запускают ряд изменений: ускорение сердцебиения;.
Для каждой величины определите соответствующий характер её изменения: 1 увеличилась, 2 уменьшилась, 3 не изменилась. Цифры в ответе могут повторяться. Ответ 213 2. Экспериментатор использовал три группы лабораторных крыс для изучения нарушений углеводного обмена. Первой группе животных была проведена операция по тотальному удалению поджелудочной железы; второй группе — операция по резекции поджелудочной железы удалению части органа ; третьей группе — операция по перевязке протоков поджелудочной железы. Крыс кормили углеводистой пищей и определяли концентрацию глюкозы в крови.
Ответ 113 3. Экспериментатор внес в первую пробирку раствор глюкозы, во вторую — раствор сахарозы, в третью — раствор гликогена. Во все пробирки он добавил инсулин. Как спустя 10 минут изменится содержание углеводов А в первом растворе, Б во втором растворе, В в третьем растворе? Для каждой величины определите соответствующий характер её изменения: 1 увеличилась 2 уменьшилась 3 не изменилась. Ответ 333 4.
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам | Добавить в избранное 0. Вопрос пользователя. Нервные импульсы поступают непосредственно к железам по. Ответ эксперта. аксонам двигательных нейронов. |
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам | Дендриты проводят нервный импульс к телу нервной клетки; их, как правило, несколько. |
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
Какие железы выделяют синтезирующиеся в них гормоны непосредственно в капилляры кровеносных сосудов? Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь. Дендриты проводят нервный импульс к телу нервной клетки; их, как правило, несколько.
Регуляция желудочной секреции.
Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека | среды путем модификационного приема и проведения импульсов, поступающим по различным каналам. |
Нервные импульсы поступают непосредственно к железам по...? — Ваш Урок | Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь. |
Как нервная система регулирует работу эндокринной системы? | Рецептор преобразует раздражение в нервный импульс, который достигает тела нервной клетки. |
Как устроена периферическая нервная система человека? | В эти центры поступают все нервные импульсы и протягиваются все афферентные чувствительные пути, которые (за немногими исключе-ниями) предварительно проходят через один общий центр – таламус. |
Нервные импульсы поступают непосредственно | Импульсы, исходящие от коры, затормозили нервные центры продолговатого мозга. |
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
Он разделен на две симметричные половины: переднюю и заднюю борозды. По центру проходит спинномозговой канал, заполненный жидкостью — ликвором. Вокруг спинномозгового канала расположено серое вещество. На срезе он имеет вид бабочки, образован телами нервных клеток. Спинной мозг снаружи покрывает белое вещество, состоит из отростков нейронов, образует проводящие пути.
Поперечный срез спинного мозга Поперечный срез спинного мозга имеет боковые и передние рога. В задних находится ядро чувствительного нейрона, а в передних нейроны двигательного центра. В боковых рогах залегают рецепторы симпатической и парасимпатической системы. В спинном мозге различают 31 пару нервов.
Каждая из начинается двумя корешками, передними двигательными , задними чувствительными. На задних корешках располагаются тела чувствительных, называются нервными узлами. Каждая пара спинномозговых нервов отвечает за определенное действие. Спинной мозг выполняет несколько функций: Рефлекторную — осуществляется соматическими и вегетативными нервами; Проводниковую — осуществляется белым веществом нисходящих и восходящих проводящих путей; Головной мозг расположен в черепе.
Во многих центрах был обнаружен норадреналин, но его непосредственный предшественник — дофамин был найден в значительных количествах только в определённых областях. В различных центрах был идентифицирован также серотонин. Нейронная теория, разработанная Рамон-и-Кахалом, знаменитым испанским гистологом, подтверждена биохимически. Нейрон, его аксон и окончания синтезируют медиатор, который хранится в особых пузырьках, видимых с помощью электронного микроскопа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Пузырьки образуются в теле нейрона, заполняются молекулами медиатора и транспортируются вдоль аксона к нервному окончанию. Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы синоним — нейротрансмиттер. Для краткости можно употреблять термин медиаторы.
Медиаторы были открыты австрийским ученым Лёви в результате достаточно простого опыта. В физиологический раствор он поместил два изолированных сердца лягушек и соединил их между собой тонкой трубочкой. Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться. Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва. Сначала были открыты адреналин и ацетилхолин. В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P. По химическому составу и механизму действия медиаторы сходны с гормонами. Подробнее медиаторы будут рассмотрены ниже.
Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путём окисления пищеварительных веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают кроме того специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов: необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков — нейромедиаторов. В синапсах — микроскопических участках где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из окончания. Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона. За последние годы достигнуты значительные успехи в познании различных медиаторных веществ, в составлении карт, их распределении по мозгу и в выяснении молекулярных процессов синаптической передачи. Такими исследованиями установлено, что действие многих лекарственных веществ и нейротоксинов на поведение основано на их способности прерывать или модифицировать химическую передачу от нейрона к нейрону. В них есть также указания на то, что причинами психических болезней, возможно, окажутся в конечном счёте нарушения функции специфических медиаторных систем мозга. Методика исследования функционального химизма мозга очень сложна, так как медиаторы содержатся в ничтожно малых количествах, ткань мозга структурно и химически очень сложна и выделить для исследования определённую медиаторную структуру нелегко. Одну из методик разработали В.
Выглядит эта структура как «мелкая зернистость и полосатость» в теле и дендритах нейрона отсюда и название. Длительное голодание или стресс приводит к разрушению тигроида и прекращению синтеза специфических белков. Связь нейрона с другими клетками Нейрофибриллы нейрофиламенты состоят из микротрубочек и являются основным структурным компонентом цитоскелета. Их функция — аксональный транспорт перемещение веществ по аксону. Аксональный транспорт Помимо своей специфической функции в качестве проводника нервных импульсов аксон является каналом для транспорта веществ. Аксональный аксонный транспорт — это перемещение веществ по аксону. Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему.
Аксональный транспорт — активный процесс — зависит от энергии АТФ. При снижении уровня АТФ вдвое аксональный транспорт блокируется. Различают антероградный от тела нейрона и ретроградный к телу нейрона аксонный транспорт. Выделяют два вида отростков: короткие ветвящиеся дендриты и один длинный не ветвящийся аксон. Дендриты ветвятся дихотомически надвое , аксоны же дают коллатерали боковые ответвления. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки. У большинства аксонов миелиновая оболочка имеется.
Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку. Последние ответы Iamintelligent 28 апр. Октябрина2 28 апр. Nutaustinskaya1 28 апр. Это просто... Viki0110 28 апр.