Додекаэдр — 1 из 5ти вероятных правильных многогранников.
Определение додекаэдра
- Значение слова додекаэдр: что это такое?
- Геометрия. 10 класс
- Додекаэдр - Dodecahedron -
- Проект по математике: "Звёздчатые формы додекаэдров"
Правильные многогранники
И — кто знает — быть может, и маленькие каменные шары-многогранники играли для древних жителей Британии роль «домашних Стоунхенджей», олицетворяя какие-то важные для них духовные идеи и тайны мироустройства. Чуть позже эти идеи были тщательно развиты в текстах Платона 427-347 д. Так, в позднем платоновском диалоге «Тимей» четыре главных элемента материи — огонь, воздух, вода и земля — представлены в виде скоплений крошечных частиц в форме правильных многогранников: тетраэдра, октаэдра, икосаэдра и куба. Интересно отметить, насколько эта схема созвучна современной физической концепции о 4 агрегатных состояниях вещества — плазма, газ, жидкость и твердое тело. Что же касается пятого правильного многогранника, додекаэдра, то его Платон упоминает как-то вскользь, отметив лишь, что эта форма использовалась «для образца» при создании вселенной, имеющей совершенную форму сферы. Исследователи древнегреческой философии предполагают, что здесь Платон, вероятно, размышлял в духе более ранней традиции, уходящей к Пифагору. В пифагорейской школе известна идея, согласно которой додекаэдр образовывал «балки», на которых был возведен свод небес. Также уместно отметить, что в более раннем диалоге «Федон» Платоном вложено в уста Сократа такое 12-гранное додекаэдрическое описание небесной, более совершенной земли, существующей над землей людей: «Рассказывают, что та Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи». Под очевидным влиянием идей Платона, в последующие века философы и ученые стали предполагать, что небеса сделаны из пятого элемента «эфира» или «квинтэссенции».
Эту традицию можно увидеть в иллюстрациях к работе Иогана Кеплера Mysterium Cosmographicum, изданной в 1596 году, где космос изображен в форме додекаэдра. Космос по Кеплеру Наступившая после Кеплера эпоха великих научных открытий постепенно принесла совершенно новые знания об окружающем мире, включая и молекулярное устройство материи.
Папп Александрийский в «Математическом собрании» занимается построением додекаэдра, вписанного в данную сферу, попутно доказывая, что вершины додекаэдра лежат в параллельных плоскостях. На территории нескольких европейских стран найдено множество предметов, называемых римскими додекаэдрами, относящихся ко II—III вв.
Римский додекаэдр — это небольшой объект, сделанный из бронзы или реже из камня или железа, чаще имеющий форму додекаэдра с двенадцатью плоскими пятиугольными гранями. Звёздчатые формы додекаэдра: Кроме правильных выпуклых многогранников существуют и правильные выпукло-вогнутые многогранники. Их называют звездчатыми самопересекающимися. Они называются также телами Кеплера- Пуансо.
Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр - он считается первой звёздчатой формой додекаэдра. Это тело Кеплера — Пуансо. Многограннику дал имя Артур Кэли. Малый звёздчатый додекаэдр является одним из четырёх невыпуклых правильных многогранников.
Он состоит из 12 граней в виде пентаграмм с пятью пентаграммами, сходящимися в каждой вершине. Он имеет то же самое расположение вершин, что и выпуклый правильный икосаэдр. Кроме того, у него то же самое расположение рёбер, что и у большого икосаэдра. Он состоит из 12 пятиугольных граней шесть пар параллельных пятиугольников , с пятью пятиугольниками в каждой вершине, пересекающих друг друга и делая рисунок пентаграммы.
Гранью многогранника является правильный звёздчатый многоугольник, который состоит из правильных треугольников. В отличие от октаэдра, любая из звёздчатых форм додекаэдра не является соединением Платоновых тел, а образует новый многогранник. У большого додекаэдра гранями являются пятиугольники, которые сходятся по пять в каждой из вершин. У малого звёздчатого и большого звёздчатого додекаэдров грани — пятиконечные звёзды пентаграммы , которые в первом случае сходятся по 5, а во втором по 3 грани в одной вершине.
Вершины большого звёздчатого додекаэдра совпадают с вершинами описанного додекаэдра. Звездчатые многогранники: Ещё существуют такие звездчатые многогранники: Звёздчатый октаэдр Существует только одна звёздчатая форма октаэдра. Звёздчатый октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт И. Кеплером и назван им Stella octangula — звезда восьмиугольная.
Эйлерова характеристика, т. Тор можно получить "приклеив" к сфере одну ручку, значит его Эйлерова характеристика равна 0, если приклеить две ручки - получим двойной тор с характеристикой "-2": Подводя краткие итоги: мы будем классифицировать правильные двумерные многогранники двумерные - в смысле, что их поверхность двумерна, но вложены они всё-таки в трехмерное пространство. Их эйлерова характеристика равна 2.
Для примера рассмотрим тетраэдр и попытаемся выяснить зависимость. У тетраэдра 4 грани, в каждой из которых три угла. Если умножить 4 вершины на 3 грани получим 12 чего-то там, что в два раза больше количества ребер их так же считали дважды В качестве упражнения можно посчитать для куба.
Получили три уравнения с тремя неизвестными, которые будем сейчас решать, чтобы получить в чистом виде зависимость от составляющих символа Шлефли: Такую систему уравнений удобно решить, воспользовавшись параметризацией через некое t. Остается в целых числах решить соответствующее неравенство: Не только лишь все натуральные числа при умножении дают результат, меньший 4, поэтому у нас не так много работы: А теперь вспомните рисунок с символами Шлефли для платоновых тел! Как видите, мы получили одно и то же с помощью решения обычной системы уравнений!
Алгебраизация - один из самых мощных способов исследования окружающего нас мира.
Картон должен быть ровным. Перед работой нужно убедиться, что лист не был согнут или порван.
Лишние заломы и разрывы испортят внешний вид фигуры. В некоторых случаях эти дефекты способны нарушить целостность и симметричность конструкции. Не рекомендуется использовать для работы картон с глянцевой поверхностью.
Такой материал тяжело склеить. Придется долго ждать высыхания клея. Окрашивать готовое изделие нужно после полного высыхания клея.
Жидкость может попасть на не высохший клей и разбавить его. Клей потеряет вязкость и не соединит детали должным образом. На однослойном картоне ненужно делать надрезы на линиях сгиба.
Лучше продавить их обратной стороной ножниц или ребром линейки. Перед сборкой готового изделия, можно предварительно собрать фигуру, зафиксировав припуски для склеивания кусочками двухстороннего скотча. Этот способ поможет устранить неточности, которые нельзя заметить на чертеже.
Выбирая упаковочный картон, важно обратить внимание на количество слоев. Не рекомендуется использовать материал состоящий более чем из 4 слоев. Это слишком толстый картон, который будет тяжело резать и сгибать.
Также нужно помнить, что чем толщи материл, тем шире должны быть припуски для склеивания. Тонкие полосы не смогут удержать грани на месте. Соединение будет ненадёжным.
Подготовка и вырезание шаблона Развертка для склеивания додекаэдра, описанная в этом мастер-классе, будет построена без использования шаблона. Порядок действий: На 1 из листов начертить окружность диаметром 10 см. Разделить круг на 4 части, проведя через его центр вертикальную и горизонтальную линию.
Точками отметить углы пятиугольника. Соединить точки между собой, используя линейку. Проверить, совпадают ли все грани по длине.
От всех сторон пятиугольника начертить еще 5 одинаковых фигур. При этом их стороны должны стать общими со сторонами центрального пятиугольника. Начертить припуски для склеивания.
На верхних гранях они должны располагаться с правой стороны, а на нижних — с левой стороны. На другом листе начертить еще 1 развертку, повторяя пункты инструкции с 1 по 8. Вырезать детали канцелярским ножом, прикладывая к чертежу линейку.
Соединение граней Перед соединением деталей, необходимо сделать надрезы на всех линиях, которые образуют центральную фигуру, а также надрезать линии сгиба припусков на склеивание. Затем нужно подогнуть все грани к центру. Наносить быстросохнущий клей следует на всю поверхность припусков для склеивания.
Соединять детали нужно поочередно, фиксируя место склейки пальцами. Излишки клея нужно убрать. Крупные капли следует оставить до полного высыхания, а затем аккуратно срезать их канцелярским ножом.
Додекаэдр с отверстиями на гранях Из цветной бумаги можно сделать красивый додекаэдр, у которого на гранях будут отверстия. Эта фигура сделана без использования клея. Грани состоят из модулей, которые просто вставляются друг в друга.
Для работы потребуется бумага 3 цветов. Из неё нужно нарезать по 10 квадратов каждого цвета. Размер квадратов: 10х10 см.
Что делать дальше: 1 любой квадрат сложит пополам. Подогнуть 1 слой так, чтобы край совпал с линией сгиба. Перевернуть бумагу и сложить 2 слой точно также.
Должна получиться «гармошка» из бумаги. Подогнуть верхний угол полоски так, чтобы его правый край совпал с левым. Развернуть полоску другой стороной.
Подогнуть верхний угол по аналогии.
Додекаэдр | Стереометрия #44 | Инфоурок
Или симметричное пересечение пяти трехмерных пространств. Ближайшая параллельная к произвольно выбранной грани плоскость, образованная пятью вершинами, не принадлежащими выбанной грани, отстоит от этой грани на расстояние радиуса описанной вокруг данной грани окружности. А радиус описанной вокруг этих пяти вершин окружности образующих плоскость равен диаметру вписанной в любую из граней окружности. Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер.
Все права защищены. Условия использования информации.
Впрочем, среди множества подобных теорий есть одна весьма правдоподобная. Согласно ей, эти предметы относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших территории Северной Европы и Британии. Вполне возможно, что имеется какая-то прямая связь между додекаэдрами римского периода и множеством куда более древних каменных шаров с вырезанными на их поверхности правильными многогранниками. Такие шары-многогранники, датируемые периодом между 2500 и 1500 годами до нашей эры, находят в Шотландии, Ирландии и Северной Англии. Примерно к этому же времени относится возведение знаменитого мегалитического комплекса под названием Стоунхендж. Никто до сих пор не знает наверняка, каково было предназначение этого сооружения. Однако явно неслучайное расположение гигантских камней, привязанное к циклам движения солнца по небу, дает основания полагать, что Стоунхендж служил не только для религиозно-ритуальных обрядов наиболее вероятное назначение , но и для астрономических наблюдений. Возможно, что и маленькие каменные шары-многогранники играли для древних жителей Британии роль «домашних Стоунхенджей», олицетворяя какие-то важные для них духовные идеи и тайны мироустройства. То, что додекаэдры могли быть предметами именно этого назначения, подтверждает и роль правильных многогранников в картинах мироздания, созданных в Древней Греции школой пифагорейцев.
Так, в платоновском диалоге «Тимей» четыре главных элемента материи - огонь, воздух, вода и земля - представлены в виде скоплений крошечных частиц в форме правильных многогранников: тетраэдра, октаэдра, икосаэдра и куба. Что же касается пятого правильного многогранника, додекаэдра, то его Платон упоминает как-то вскользь, отметив лишь, что эта форма использовалась «для образца» при создании Вселенной, имеющей совершенную форму сферы. По мнению ученых, это явная отсылка к Пифагору, который пропагандировал идею, согласно которой додекаэдры образовывали «балки», на которых возведен свод небес. Двенадцать граней Вселенной В одном из своих ранних диалогов «Федон» Платон устами Сократа дает «12-гранное додекаэдриче-ское» описание небесной, более совершенной земли, существующей над землей людей: «Рассказывают, что та Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из 12 кусков кожи». А ведь по сути это и есть додекаэдр с 12 гранями!
Будем говорить, что точки А и А1 симметричны относительно точки О рис. В таком случае О будет являться центром симметрии и будет симметрична сама себе. Рисунок 6 — Центральная симметрия Точки А и А1 называются симметричными относительно прямой а, если прямая а проходит через середину отрезка АА1 и перпендикулярна к этом отрезку рис.
Прямая а называется осью симметрии, а каждая ее точка считается симметричной самой себе. Если фигура имеет центр ось, плоскость симметрии, то говорят, что она обладает центральной осевой, зеркальной симметрией. Рисунок 8 — Зеркальная симметрия Рисунок 9 — Элементы симметрии куба Примером фигуры, обладающей и центральной, и осевой и зеркальной симметрией является куб рис. Фигура может иметь один или несколько центров осей, плоскостей симметрии. Так, например, у куба один центр симметрии и несколько осей и плоскостей симметрии. В геометрии центр, ось и плоскость симметрии многогранника называют элементами симметрии многогранников. С симметрией мы часто можем встретиться в природе, архитектуре, быту. Например, многие кристаллы имеют центр ось или плоскость симметрии.
Многие здания симметричны относительно плоскости. Примером такого здания является здание Московского государственного университета. В действительности, додекаэдр состоит из двенадцати правильных пятиугольников. Утверждение 2 верно. Тетраэдр с греческого означает 4 грани и состоит тетраэдр из 4-х треугольников. Гексаэдр, он же куб состоит из квадратов, которые в свою очередь являются параллелограммами, поэтому утверждение 3 верно.
Пять правильных многогранников
- Платоновы тела. Октаэдр. Додекаэдр. Икосаэдр | Математика - YouTube
- Правильный додекаэдр — Википедия Переиздание // WIKI 2
- Правильный додекаэдр — Что такое Правильный додекаэдр
- Что такое фигура Додекаэдр, как получила свое название и почему является символом Вселенной
Что такое додекаэдр?
Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Римский додекаэдр ставит археологов в тупик более 200 лет. Гипотеза, что додекаэдры являлись подсвечниками, была высказана еще в 1907 году. Правильный додекаэдр – правильный многогранник, составленный из 12 правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников.
ИКОСАЭДРО-ДОДЕКАЭДРИЧЕСКАЯ СТРУКТУРА ЗЕМЛИ.
- Значение слова «додекаэдр»
- Значение слова додекаэдр: что это такое?
- Символы Шлефли
- «Римский додекаэдр» - древний мистический артефакт и его назначение
Зачем в древности был нужен и как использовался «Римский додекаэдр».
Ниже приведем основные формулы додекаэдра, который состоит из правильных пятиугольников. Новости Новости. Пра́вильный додека́эдр — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. Тайна римского додекаэдра Римский додекаэдр, найденный в Бонне, Германия. Додекаэдр. Додекаэдр (греч. δωδεκάεδρον, от δώδεκα – двенадцать и ἕδρα – грань), один из пяти типов правильных многогранников. Построение структуры начинается с центрального додекаэдра, путем добавления к нему внешних додекаэдров к каждой из двенадцати граней.
Ответ на вопрос — зачем в древности был нужен и как использовался «Римский додекаэдр».
Додекаэдр составлен из двенадцати равносторонних пятиугольников. Римский додекаэдр датируется II—III веком н. э. Около сотни додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции. Римский додекаэдр датируется II-м или III-м веком нашей эры. В словаре Ожегова и Шведовой додекаэдр определяется как многогранник, у которого каждая грань является правильным пятиугольником. В пифагорейской школе известна идея, согласно которой додекаэдр образовывал «балки», на которых был возведен свод небес. Найдите нужное среди 1 756 стоковых фото, картинок и изображений роялти-фри на тему «додекаэдр» на iStock.
Ответ на вопрос — зачем в древности был нужен и как использовался «Римский додекаэдр».
Додекаэдр. | Многогранник с 12 гранями, он же додекаэдр В геометрии додекаэдр (греч. |
Зачем в древности был нужен и как использовался «Римский додекаэдр». | Найдите нужное среди 1 756 стоковых фото, картинок и изображений роялти-фри на тему «додекаэдр» на iStock. |
Римские додекаэдры. Загадочные артефакты, которым нет объяснения | Пикабу | Просмотр содержимого документа «презентация к уроку "Додекаэдр"». Додекаэдр Подготовила Рочева Александра ученица 10 класса МБОУ «Мохченская СОШ» 2015 г. |
Римский додекаэдр – назначение таинственного предмета | Около сотни подобных додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции. |
Додекаэдр в природе и жизни человека | Например, обнаруженный в Бельгии бронзовый додекаэдр был изготовлен более 1600 лет назад. |
Додекаэдр — большая загадка римской истории
Источники звука. Современные звуковые колонки часто изготавливают в форме додекаэдра, поскольку они распространяют звук во всех направлениях и защищают его от окружающего шума. Историческая справка Как выше было сказано, додекаэдр — это одно из пяти платоновых тел, которые характеризуются тем, что образованы одинаковыми правильными многогранниками. Остальными четырьмя платоновыми телами являются тетраэдр, октаэдр, куб и икосаэдр. Упоминания о додекаэдре относятся еще к вавилонской цивилизации.
Однако первое подробное изучение его геометрических свойств сделали древнегреческие философы. Так, Пифагор в качестве эмблемы своей школы использовал пятиконечную звезду, построенную на вершинах пентагона грани додекаэдра. Платон подробно охарактеризовал правильные объемные фигуры. Философ считал, что они представляют главные стихии: тетраэдр — это огонь; куб — земля; октаэдр — воздух; икосаэдр — вода.
Поскольку додекаэдру не досталась никакая стихия, то Платон предположил, что он описывает развитие всей Вселенной. Мысли Платона многие могут посчитать примитивными и псевдонаучными, однако вот что любопытно: современные исследования наблюдаемой Вселенной показывают, что приходящее на Землю космическое излучение обладает анизотропией зависимостью от направления , и симметрия этой анизотропии хорошо согласуется с геометрическими свойствами додекаэдра. Додекаэдр и сакральная геометрия Священная геометрия представляет собой совокупность псевдонаучных религиозных знаний, которые приписывают различным геометрическим фигурам и символам определенное сакральное значение. Значение многогранника додекаэдра в сакральной геометрии заключается в совершенности его формы, которую наделяют способностью приводить окружающие тела в гармонию и равномерно распределять энергию между ними.
Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу. История[ ] Правильные многогранники известны с древнейших времён.
Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита , в Шотландии , как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников. В значительной мере правильные многогранники были изучены древними греками.
Некоторые источники такие как Прокл Диадох приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона.
Примером могут служить кости, которые они используют для ролевых игр, они представляют собой правильный додекаэдр. Каждое лицо обозначено номером: Число 1 представляет собой наименьшую фигуру, которая противоположна лицу, представленному цифрой 12, которая является самой большой фигурой. В самом деле, если добавить обе противоположные цифры, результат будет 13. Существуют различные виды додекаэдров, некоторые из них: Тупой додекаэдр: те, которые принадлежат к группе «архимедовых тел» множество выпуклых многогранников с гранями, которые являются правильными многоугольниками различных типов.
Внутрь додекаэдра возможно вписать куб таким образом, что стороны вписанного куба станут диагоналями додекаэдра. У додекаэдра 3 звёздчатые формы. Внутрь додекаэдра возможно вписать 5 кубов.