Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. Попытаемся выяснить, как поверхностное натяжение зависит от рода жидкости, наличия примесей, температуры. Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости. Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается. Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия при-месей.
Поверхностные явления
Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости. По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление. Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит.
§ 8-1. Поверхностное натяжение
Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости? Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение. Поверхностное натяжение на границе двух жидкостей зависит от полярности. Главная» Новости» Почему поверхностное натяжение зависит от рода жидкости. Поверхностное натяжение и температура Поверхностное натяжение жидкости зависит от различных факторов, включая род жидкости и температуру.
Проекты по теме:
- Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)
- Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя
- Что такое поверхностное натяжение жидкости
- Домашний очаг
- Почему поверхностное натяжение зависит от состава и свойств жидкости
Почему вода имеет поверхностное натяжение?
- Содержание
- Форум самогонщиков, пивоваров, виноделов
- Поверхностные явления
- Почему поверхностное натяжение зависит от вида жидкости?
- Почему вода имеет поверхностное натяжение?
Почему поверхностное натяжение зависит от рода воды?
Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы. Пока капля мала, она не отрывается, ее удерживают силы поверхностного натяжения. Отрыв капли происходит в тот момент, когда ее вес P становится равным равнодействующей сил поверхностного натяжения, действующих вдоль окружности шейки капли. Приближенно диаметр шейки капли принимают равным диаметру трубки капельницы. Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике.
Оно собирает воду в капли и позволяет жуку-водомерке скользить по воде; благодаря ему можно выдуть мыльный пузырь и писать ручкой.
Это влияет на силу взаимодействия между молекулами и, следовательно, на величину коэффициента поверхностного натяжения. Например, молекулы воды образуют водородные связи, что приводит к высокому коэффициенту поверхностного натяжения, а углеводороды обычно имеют низкий коэффициент поверхностного натяжения. Зависимость от наличия примесей Наличие примесей в жидкости может также влиять на величину коэффициента поверхностного натяжения.
Примеси могут изменять межмолекулярные взаимодействия, приводя к изменению силы сцепления молекул у поверхности. Например, добавление поверхностно-активных веществ, таких как мыло или детергенты, может снизить коэффициент поверхностного натяжения. Это происходит за счет того, что эти вещества изменяют ориентацию молекул и уменьшают силу межмолекулярного взаимодействия.
В этом случае появляется ясный физический смысл понятия поверхностного натяжения. В 1983 году было доказано теоретически и подтверждено данными из справочников [2] , что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии хотя и специфической: для симметричных молекул близких по форме к шарообразным. Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии [3] [4]. В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения как части внутренней энергии при решении другой физической задачи был опубликован В.
Вайскопфом в США [5].
Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха. По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки. Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.
Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения.
Почему поверхностное натяжение зависит от вида жидкости?
Во внутреннее отверстие капаем жидкое мыло с помощью пипетки. Жидкое мыло стремится вырваться наружу через узкий канал. А лодка при этом движется вперед. Повторил опыты, заменяя жидкое мыло средством для мытья посуды и маслом. Мы видим, чем больше скорость больше расстояние пройденное лодкой , тем больше способность раствора уменьшать поверхностное натяжение. Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. Опыт 4. Ну и наконец, я проверил, зависит ли поверхностное натяжение жидкости от температуры.
Так же взял лоток с водой, на поверхность воды положил бумажную модель лодки, во внутреннее отверстие капнул жидкое мыло с помощью пипетки. Жидкое мыло так же стремится вырваться наружу через узкий канал. Это связано с силой поверхностного натяжения жидкого мыла. А лодка при этом устремится вперед. Повторил опыт, изменяя температуру. Мы видим, что с увеличением температуры скорость движения лодки уменьшается меньше расстояние, пройденное лодкой. Уменьшается поверхностное натяжение воды.
В результате, данная гипотеза не подтвердилась: поверхностное натяжение жидкости зависит от температуры жидкости. Таким образом, в результате опытов, подтвердились гипотезы: 1 - Жидкости обладают поверхностным натяжением. А гипотеза 3 не подтвердилась: Поверхностное натяжение жидкости зависит от температуры.
Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения.
Сила поверхности натяжения зависит от плотности жидкости.
От чего зависит коэффициент поверхности натяжения жидкости. От каких параметров зависит коэффициент поверхностного натяжения. Поверхностное натяжение. Поверхностное натяжени. Поверхностное натяжение это в химии. Коэффициент поверхностного натяжения жидкости таблица.
Коэффициент поверхностного натяжения жидкости физика 10 класс. Формула нахождения коэффициента поверхностного натяжения. Коэффициент поверхностного натяжения парафина. От чего зависитповерэностное нат. От каких факторов зависит поверхностное натяжение. Зависимость поверхностного натяжения жидкости от температуры. Как зависит коэф поверхностного натяжения от температуры. Pfdbcbvjcnm gjdth[yjcnyjuj yfnz;tybz JN ntvgthfnehs.
Как зависит коэффициент поверхностного натяжения от температуры. Формула коэффициента натяжения жидкости. Коэффициент поверхностного натяжения жидкости. Формула для расчета коэффициента поверхностного натяжения. Коэффициент тповерхностное натяжение. Зависимость коэффициента поверхностного натяжения от температуры. Поверхностное натяжение мыльного раствора. Поверхностное натяжение воды.
Эксперимент натяжение воды. Коэффициент поверхностного натяжения мыльного раствора. Коэффициент поверхностного натяжения. Факторы влияющие на величину поверхностного натяжения жидкости. Влияние концентрации на поверхностное натяжение. Факторы влияющие на поверхностное натяжение жидкости. Зависимость поверхностного натяжения от температуры. Коэффициент поверхностного натяжения от температуры формула.
Почему коэффициент поверхностного натяжения зависит от температуры. Зависимость поверхностного натяжения от примесей. Коэффициент поверхностного натяжения зависит. Поверхностное натяжение воды при. Поверхностное натяжение от температуры. Температурный коэффициент поверхностного натяжения. Коэффициент натяжения жидкости. Формула для расчета поверхностного натяжения.
Поверхностное натяжение жидкости физика. Поверхностное натяжение раствора формула. Работа поверхностного натяжения формула. Коэффициент поверхностного натяжения физика. Коэффициент поверхностного натяжения выражается соотношением:. Коэффициент поверхности натяжения. Формула поверхностного натяжения физическая химия. Формула поверхностного натяжения воды в химии.
Поверхностное натяжение воды формула физика. Поверхностное натяжение формула химия. Поверхностное натяжение жидкости тем больше, чем. Явление поверхностного натяжения. Механизм снижения поверхностного натяжения. Явления с уменьшением поверхностного натяжения. Схема снижения поверхностного натяжения. Поверхностное натяжение жидкости формула физика.
Поверхностное натяжение растворов.
Знание этого свойства помогает в понимании различных процессов, связанных с поверхностными явлениями, как в науке, так и в повседневной жизни. История изучения поверхностного натяжения Однако полноценное изучение явления поверхностного натяжения началось только в конце XVIII века, благодаря работам немецкого ученого Иоганна Фромма. Фромм открыл, что поверхностное натяжение вызывается силами, действующими на молекулы на поверхности жидкости, и предложил метод ее измерения. Он использовал метод капиллярного подъема жидкости в тонкой трубке, с помощью которого было возможно определить коэффициент поверхностного натяжения.
Затем исследования в области поверхностного натяжения продолжались и в XX веке. Были разработаны более точные методы измерения этой физической величины, а также открыты различные законы, описывающие зависимость поверхностного натяжения от различных факторов, таких как температура, давление и состав жидкости. Сегодня изучение поверхностного натяжения является важной частью физической химии и находит применение во многих областях, включая технику, медицину, пищевую промышленность и другие. Понятие поверхностного натяжения Поверхностное натяжение возникает из-за этих сил притяжения между молекулами. Оно вызывает образование поверхностной тонкой пленки на границе раздела жидкости с другим веществом или с воздухом.
Эта пленка стремится минимизировать свою площадь, создавая известное «сопротивление» при изменении формы или разделении на меньшие капли. Поверхностное натяжение проявляется в силе сокращения или смятия капли, и именно эта сила определяет форму капли и влияет на ее поведение во внешней среде. Значение поверхностного натяжения зависит от рода жидкости. У разных жидкостей это значение может быть разным. Оно может зависеть от структуры молекул, температуры, давления и наличия добавленных веществ солей, кислот и т.
Жидкости с высоким поверхностным натяжением имеют более сильные силы притяжения между молекулами, что делает их менее податливыми к изменению формы и более устойчивыми к внешним воздействиям. Напротив, жидкости с низким поверхностным натяжением имеют слабые силы притяжения между молекулами, что делает их более податливыми к изменению формы и менее устойчивыми к внешним воздействиям. Понимание поверхностного натяжения и его зависимости от рода жидкости имеет практическое значение в различных областях, таких как химия, физика, биология и технология. Знание о свойствах поверхностного натяжения позволяет управлять поведением жидкостей, контролировать процессы смачивания, пенивания и пенообразования, а также разрабатывать новые материалы и технологии. Таким образом, изучение поверхностного натяжения и его зависимости от рода жидкости является важной частью науки и промышленности.
Влияние ионной природы на поверхностное натяжение Когда в растворе присутствуют ионы, они могут вступать в химические реакции с молекулами жидкости, изменяя их свойства. Взаимодействие ионов с молекулами на поверхности жидкости приводит к изменению их ориентации и межмолекулярных сил.
Домашний очаг
- Почему поверхностное натяжение зависит от рода жидкости? -
- Почему поверхностное натяжение зависит от рода жидкости кратко
- Почему поверхностное натяжение зависит от рода жидкости? — Школьные
- Почему поверхностное натяжение зависит от рода жидкости? -
- Дистилляция
- Поверхностное натяжение
Почему поверхностное натяжение зависит от рода
Это приводит к большей силе притяжения на поверхности воды, и в результате, водяная поверхность обладает высоким поверхностным натяжением. В то же время, некоторые другие жидкости, такие как спирты и нефтепродукты, имеют меньшую силу притяжения между молекулами. Это объясняет их более низкое поверхностное натяжение по сравнению с водой. Таким образом, род жидкости является одним из факторов, определяющих поверхностное натяжение. Знание этого свойства помогает в понимании различных процессов, связанных с поверхностными явлениями, как в науке, так и в повседневной жизни. История изучения поверхностного натяжения Однако полноценное изучение явления поверхностного натяжения началось только в конце XVIII века, благодаря работам немецкого ученого Иоганна Фромма. Фромм открыл, что поверхностное натяжение вызывается силами, действующими на молекулы на поверхности жидкости, и предложил метод ее измерения. Он использовал метод капиллярного подъема жидкости в тонкой трубке, с помощью которого было возможно определить коэффициент поверхностного натяжения. Затем исследования в области поверхностного натяжения продолжались и в XX веке. Были разработаны более точные методы измерения этой физической величины, а также открыты различные законы, описывающие зависимость поверхностного натяжения от различных факторов, таких как температура, давление и состав жидкости. Сегодня изучение поверхностного натяжения является важной частью физической химии и находит применение во многих областях, включая технику, медицину, пищевую промышленность и другие.
Понятие поверхностного натяжения Поверхностное натяжение возникает из-за этих сил притяжения между молекулами. Оно вызывает образование поверхностной тонкой пленки на границе раздела жидкости с другим веществом или с воздухом. Эта пленка стремится минимизировать свою площадь, создавая известное «сопротивление» при изменении формы или разделении на меньшие капли. Поверхностное натяжение проявляется в силе сокращения или смятия капли, и именно эта сила определяет форму капли и влияет на ее поведение во внешней среде. Значение поверхностного натяжения зависит от рода жидкости. У разных жидкостей это значение может быть разным. Оно может зависеть от структуры молекул, температуры, давления и наличия добавленных веществ солей, кислот и т. Жидкости с высоким поверхностным натяжением имеют более сильные силы притяжения между молекулами, что делает их менее податливыми к изменению формы и более устойчивыми к внешним воздействиям. Напротив, жидкости с низким поверхностным натяжением имеют слабые силы притяжения между молекулами, что делает их более податливыми к изменению формы и менее устойчивыми к внешним воздействиям. Понимание поверхностного натяжения и его зависимости от рода жидкости имеет практическое значение в различных областях, таких как химия, физика, биология и технология.
В любом жидком веществе молекулы находятся в постоянном случайном движении и постоянно перестраиваются. Посреди жидкости все молекулы притягиваются другими молекулами во всех направлениях. Однако на поверхности, где над жидкостью находится только воздух, молекулы притягиваются только сбоку и вниз молекулами, расположенными рядом и под ними, соответственно. Это нисходящее притяжение молекул поверхностного уровня заставляет их плотнее притягиваться друг к другу, сжимаясь в более устойчивое, выровненное расположение. Этот более плотный ряд поверхностных молекул образует нечто вроде упругой мембраны на поверхности жидкости.
Молекулы расположены более плотно и плавно выстроены рядом друг с другом, в отличие от более хаотических молекулярных схем ниже. Прочность этой «эластичной мембраны» зависит от типа жидкости. Вода, например, имеет очень высокое поверхностное натяжение, потому что кислород и водород - два химических компонента воды H2O - имеют частичные отрицательные и положительные заряды, соответственно, и, таким образом, притягиваются ко всем другим молекулам воды, окружающим их.
Одним из следствий эффекта поверхностного натяжения является то, что для увеличения площади поверхности жидкости — ее растяжения — нужно проделать механическую работу по преодолению сил поверхностного натяжения. Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха. По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки.
Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер. Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни.
Межмолекулярные силы определяют, насколько сильно молекулы притягиваются друг к другу и как они упорядочены на поверхности жидкости. Чем сильнее взаимодействие между молекулами, тем больше энергии требуется для разрыва этих связей и образования новой поверхности. Это приводит к повышению поверхностного натяжения.
Почему поверхностное натяжение зависит от вида жидкости?
Найди верный ответ на вопрос почему поверхностное натяжение зависит от рода жидкости по предмету Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. Правильный ответ здесь, всего на вопрос ответили 1 раз: Почему поверхностное натяжение зависит от рода жидкости? Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой.
Поверхностное натяжение жидкости
Так же ведет себя вода в невесомости. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Например, их добавляют в жидкие средства для посудомоечных машин.
Эти силы определяют поверхностное натяжение — силу, с которой молекулы жидкости притягиваются к поверхности. Разные жидкости имеют разные межмолекулярные силы и, следовательно, разное поверхностное натяжение.
Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами.
Эти свойства определяют поведение жидкости на границе раздела между жидкостью и газом, а также на границе раздела между жидкостью и твердым телом. Между жидкостью и газом или паром образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости.
Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости силами, действующими на данную молекулу жидкости со стороны молекул газа или пара можно пренебречь.
В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу:.
Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Значит жидкость должна самопроизвольно переходить в такое состояние, при котором площадь её свободной поверхности имеет наименьшую величину.
Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. Поскольку при одном и том же объеме наименьшая площадь поверхности у шара, то жидкость в состоянии невесомости принимает форму шара. По этой причине свободная капля жидкости принимает шарообразную форму.
Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Силы, действующие в горизонтальной плоскости и стягивающие поверхность жидкости, называют силами поверхностного натяжения.
Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности то есть от того, как пленка деформирована , а силы поверхностного натяжения не зависят от площади поверхности жидкости. Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму — в этом тоже проявляется действие сил поверхностного натяжения.
Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости. Подвижная сторона проволочной рамки в равновесии под действием внешней силы и результирующей сил поверхностного натяжения. Для равновесия подвижной стороны рамки к ней нужно приложить внешнюю силу.
Поверхностное натяжение зависит от рода жидкости и от ее температуры : с повышением температуры оно уменьшается. Так называемые поверхностно-активные вещества мыло, жирные кислоты также уменьшают поверхностное натяжение. Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы. Пока капля мала, она не отрывается, ее удерживают силы поверхностного натяжения. Отрыв капли происходит в тот момент, когда ее вес P становится равным равнодействующей сил поверхностного натяжения, действующих вдоль окружности шейки капли. Приближенно диаметр шейки капли принимают равным диаметру трубки капельницы.
Поверхностное натяжение и его зависимость от температуры и рода жидкости
Поверхностное натяжение — это величина, которая показывает стремление жидкости сократить свою свободную поверхность, то есть уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой. Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью.
Физическая химия.
Поверхностное натяжение Поверхностное натяжение видео 3 - Силы межмолекулярного взаимодействия - Химия Коэффициент поверхностного натяжения.
Связь молекулярных свойств с поверхностным натяжением Связь молекулярных свойств с поверхностным натяжением проявляется через силы взаимодействия молекул. Вода — это полярная молекула, которая образует водородные связи между соседними молекулами. Эти связи создают силы притяжения, которые удерживают молекулы на поверхности воды. Для других жидкостей, таких как масло или спирт, молекулы не образуют таких сильных водородных связей. В результате, силы притяжения между молекулами в этих жидкостях слабее, что приводит к меньшему поверхностному натяжению. Поверхностное натяжение также зависит от размера молекул и их формы.
Молекулы, которые имеют больший размер или могут формировать сложные структуры, могут создавать более сильные связи и, следовательно, иметь более высокое поверхностное натяжение. Изучение связи молекулярных свойств с поверхностным натяжением позволяет лучше понять не только физическую природу этого явления, но и его важность в различных процессах и приложениях, включая капиллярность, смачивание и адгезию. Количество изученных жидкостей существует ограниченное число, и дальнейшие исследования помогут расширить наши знания в этой области.
Полярные жидкости, такие как вода или спирт, имеют сильный дипольный момент. Молекулы таких жидкостей обладают различными зарядами на разных концах молекулы. Из-за этого полярные молекулы жидкости сильнее притягиваются друг к другу и образуют более сильные взаимодействия между соседними молекулами.
В результате, полярные жидкости имеют более высокое поверхностное натяжение по сравнению с неполярными жидкостями. Поверхностное натяжение полярных жидкостей проявляется в форме устойчивой пленки на поверхности, которая удерживает молекулы жидкости внутри и не позволяет им легко выходить из нее. Неполярные жидкости, такие как масло или толуол, имеют слабый или отсутствующий дипольный момент. Взаимодействия между молекулами таких жидкостей менее сильны, что приводит к более низкому поверхностному натяжению. Это проявляется в виде менее стабильной пленки на поверхности неполярной жидкости. Роль межмолекулярных взаимодействий в поверхностном натяжении Межмолекулярные взаимодействия играют важную роль в формировании поверхностного натяжения.
Эти взаимодействия могут быть различными в зависимости от рода жидкости — молекулярных веществ, которые составляют данную жидкость. Вода, например, обладает высоким поверхностным натяжением благодаря сильным водородным связям между молекулами.
Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя
Почему поверхностное натяжение зависит от Рода Жидкости. Жидкости с маленькими и сферическими молекулами обычно имеют более высокое поверхностное натяжение, чем жидкости с большими и несферическими молекулами. Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости? Поверхностное натяжение жидкости зависит от нескольких факторов, которые определяют ее свойства и поведение на поверхности. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры. Температурная зависимость поверхностного натяжения между жидкой и паровой фазами чистой воды Температурная зависимость поверхностного натяжения бензола Поверхностное натяжение зависит от температуры.
Загадки поверхностного натяжения: почему жидкость любит себя?
Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение. Поверхностное натяжение жидкости зависит от её рода из-за молекулярных сил, действующих на поверхности жидкости. Следовательно, силы поверхностного натяжения будут действовать слабее. Рис.2.5. Зависимость поверхностного натяжения неполярной жидкости от Т. Другие вещества менее строго следуют этой зависимости, но часто отклонениями можно пренебречь, т.к. dσ/dТ слабо зависит от температуры (для воды dσ/dТ= -0,16 10-3 Дж/м2).