01-05. Задачи с практическим содержанием ПРИМЕРЫ. Все вы правы, задачи с практическим содержанием в математике называются прикладными. Представленные в пособии задачи разбиты по темам, что поможет легко отобрать необходимое количество заданий для каждого урока. Используй примеры задач из учебников и задачников, а также практикуйся в решении задач на ОГЭ предыдущих лет.
Повышение квалификации для работников образования
В первом случае, каждый следующий член прогресси будет на одно и то же число больше предыдущего, а во втором — на одно и тоже число меньше предыдущего. Например, 2; 4; 6; 8; 10; 12; 14; 16; 18... Свойства арифметической прогрессии. Примеры задач на арифметическую прогрессию. Задача 2. Выписано несколько последовательных членов арифметической прогрессии: …; 11; x ; —13; —25; …. Найдите член прогрессии, обозначенный буквой x.
Способ I. Известны предыдущий и последующий члены прогрессии для элемента x. Найдите сумму первых 14 её членов. Это число называется знаменателем геометрической прогрессии. Знаменатель геометрической прогрессими q может принимать любые действительные значения, кроме нуля. А если знаменатель прогрессии отрицателен, то последовательность окажется знакопеременной.
Например: 2; 4; 8; 16; 32; 64; 128; 256; 512... Каждое следующее число в 2 раза больше. Каждое следующее число в 2 раза меньше. Свойства геометрической прогрессии. Обратите внимание, в общем случае, все последовательности бесконечны. Но в задачах часто рассматривают упорядоченные конечные участки таких множеств, также называя их последовательностями и прогрессиями.
Примеры задач на геометрическую прогрессию. Задача 4. Любой член прогрессии можно найти по формуле её общего члена, то есть через первый член и знаменатель. Поэтому вопрос "найти прогрессию" равносилен вопросу "найти первый член прогрессии и её знаменатель". Это облегчает восприятие понятий на первом этапе, но не более того. Однако и это необязательно.
Бывают случаи, когда члены последовательности начинают нумеровать с нуля. Задачи на прогрессии и последовательности с практичеcким содержанием. С некоторых пор в ОГЭ по математике задание на работу с последовательностями и прогрессиями представлено как задание с практическим содержанием, направленное на проверку умения применять знания о последовательностях и прогрессиях в прикладных ситуациях. Суть этого задания состоит в том, что надо сначала определить, о какой последовательности идёт речь в условии задачи, и только потом начинать применять формулы. Для этого надо искать в тексте условия ключевые слова "каждый, следующий, предыдущий... Задача 6.
Неужели с возрастом значение практических задач уменьшается и их надо разбирать в 2, а то и в 3, 4 раза меньше? Безусловно, тенденция должна быть совершенно обратная: на самом деле, должно присутствовать увеличение таких упражнений, потому что с возрастом дети всё больше начинают включаться в жизнь общества. Им необходимо уметь самостоятельно решать задачи, которые встретятся на их пути, для этого в школе нужно больше времени уделять практическим задачами, отражающим реальные ситуации из жизни. Хотелось бы отметить, что в рассмотренном учебнике Алгебры за 7 класс есть параграф «Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций», за 8 класс — «Рациональные уравнения как модели реальных ситуаций», за 9 класс — «Системы уравнений как математические модели реальных ситуаций».
Также в алгебру за 9 и 10-11 классы включаются параграфы на элементы математической статистики, комбинаторики, теории вероятности, в которых несомненно присутствуют задачи с практическим содержанием. В курсе геометрии присутствуют параграфы под названием «Практические задания», но в них очень мало отражено задач с практическим содержанием. Несмотря на то, что задачам практического содержания в данных учебниках отводятся целые параграфы, их все равно недостаточно, чтобы научить школьников применять математические знания на практике. По мнению М.
Егуповой, одна из причин такого малого количества практических задач в школьном курсе математики — сложность подбора богатых по содержанию случаев применения математики на понятном для учеников языке. Более того, большинство учителей считают, что решение практических задач тратит большое количество времени на уроке, а обучающий результат при этом малый. Можно привести несколько доводов для опровержения данного мнения. Во-первых, посредством задач на применение математических знаний на практике достигаются как ближайшие цели обучения математики усвоение математического материала, подготовка к экзаменам , так и отдаленные, связанные с глубиной и качеством приобретённых знаний по математике.
Во-вторых, при решении практических задач приобретаются надёжные неформальные знания не только по математике, но и по другим дисциплинам [4]. Чтобы определить роль и место задач с практическим содержанием в процессе обучения математике следует рассмотреть, какие функции они выполняют. Виноградова выделяет воспитывающие, развивающие и обучающие функции. Воспитывающая функция таких задач заключается в том, что в ней может содержаться различная информация из разных областей знания.
С помощью данных задач расширяется кругозор знаний и увеличиваются познавательные возможности. Развивающая функция состоит в том, что практические задачи вырабатывают способность применения теоретических, математических знаний на практике, учат выделять общие методы решения и применять их на новых задачах, развивают внимание, память, логическое мышление, воображение учеников. Обучающая функция проявляется на каждом этапе изучения нового материала: на этапе подготовки к изучению, на этапе усвоения, на этапе первичного применения полученных знаний и на этапе контроля и закрепления [3]. Как уже было выяснено в школьном курсе математики крайне мало отводится времени задачам с практическим содержанием, следовательно, они должны быть идеально подобраны и оставлены.
Бикеева проанализировала, какие практические задачи предлагаются в русских учебниках, а какие в зарубежных. Вот какие выводы она сделала. Во-первых, в наших учебниках многие задачи представляют бесхозяйственность, непрофессионализм работников и расточительство. В пример этому педагог приводит следующую задачу: «в кране подтекает водопроводный кран.
В секунду капают две капли, а за 12 мин набегает полный стакан воды. Если не починить кран вовремя, то сколько литров воды может вылиться из него зря в течение часа? В течение суток? Считать, что в одном литре 5 стаканов воды» [2, с.
Во-вторых, по её мнению, малое количество предложенных ученикам задач выходят на собственный опыт школьника, многие из них не злободневны для детей, а значит им не интересны. Например, «для приготовления вишневого варенья на две части вишни беру три части сахара по массе. Сколько вишни и сколько сахара пошло на варенье, если сахара израсходовали на 7 кг 600 г больше, чем вишни?
Слева от входа в квартиру находится санузел, а в противоположном конце коридора — дверь в кладовую. Рядом с кладовой находится спальня, из которой можно пройти на одну из застеклённых лоджий.
Самое большое по площади помещение — гостиная, откуда можно попасть в коридор и на кухню.
Это создает условия для выработки у учащихся таких полезных политехнических умений, как выполнение измерений, использование таблиц и справочников, из которых они смогут взять значения тех или иных величин либо выяснить, какие данные нужны для решения той или иной задачи. Задачи с практическим содержанием в школьных учебниках представлены преимущественно в виде стандартных текстовых алгебраических и геометрических задач. Содержание используемых в школьном обучении задач прикладного характера можно обогатить, включив в их число следующие разновидности задач: 1 на вычисление значений величин, встречающихся в практической деятельности; 2 на составление расчетных таблиц; 3 на применение и обоснование эмпирических формул; 4 на вывод формул зависимостей, встречающихся на практике. Задачи для практикума уровень, А 1 Длина железнодорожной шпалы 2,7 м. Размеры поперечного сечения указаны на рисунке рис. Сколько шпал можно погрузить на платформу грузоподъемностью 17 т. Сколько земли надо, чтобы сделать такую насыпь на протяжении 100 м. Найти площадь выемки льда на озере, необходимую, чтобы наполнить ледник льдом доверху. Толщина льда на озере 40 см.
Длина чердака 12 м. Какой наибольший груз может он поднять, не затонув. Сколько раз экскаватор зачерпнет ковшом при рытье канала длиной 1 км, если сечение канала — есть трапеция с основаниями 4 м и 20 м, а боковые стороны трапеции10 м. Определить в кубических метрах производительность автомата в час.
Использование задач с практическим содержанием в преподавании математики
Эти первые 5 заданий варианта ОГЭ по математике объединены одним сюжетом. Задания с практическим содержанием. Выводы Задача №15 несложная планиметрическая задача с практическим содержанием. В своей работе я хочу поделиться с педагогами, как я использую в 5 классе различные задания с практическим содержанием, и рассказать о возможностях.
Презентация на тему "Задачи практического содержания (задания b1)" 11 класс
Задачи с практическим содержанием ПРИМЕРЫ «Теплица» Задание 1. Ярослав Александрович решил построить на дачном участке теплицу длиной 5 м. Для этого он сделал прямоугольный фундамент. Публикация: Подготовка к ОГЭ с практическим содержанием. Теперь можно переходить к разбору самого упрямого задания — №5. Разберем несколько примеров и выявим единый алгоритм решения задач с прототипами. Задачи с практическим содержанием ФИПИ «Тарифы».
Top 10 online roulette casinos -【n5m】- casino.org | Casinos Online Bonuses Everywhere
Найдите измерения параллелепипеда. Сколько денег получил богач и сколько он отдал? Кто выиграл от сделки? Считая три поколения на каждые 100 лет, посчитайте, сколько у вас было предков 3000 лет тому назад. Подумайте, почему полученный вами верный математический ответ нереален. Ответ: 29000 Больной принимает лекарство по следующей схеме: в первый день он принимает 5 капель, а в каждый следующий день — на 5 капель больше, чем в предыдущий. Дойдя до нормы 40 капель в день, он 3 дня пьёт по 40 капель, а потом ежедневно уменьшает прием на 5 капель, доведя его до 5 капель в последний день. Сколько пузырьков лекарства нужно купить больному, если в каждом содержится 20 мл лекарства что составляет 200 капель?
Ответ: 2 пузырька Улитка ползет вверх по дереву, начиная от его основания. За первую минуту она проползла 30 см, а за каждую следующую минуту — на 5 см больше, чем за предыдущую.
Самое большое по площади помещение — гостиная цифра 7 , откуда можно попасть в коридор 8 и на кухню цифра 5. Ответ: 4365 Е. Найдите ширину окна в спальне. Ответ дайте в сантиметрах. Ширина окна в клетках : 3 клетки. Сторона одной клетки на плане соответствует 0,4 м или 40 см. Ответ: 120 3.
Найдите площадь гостиной. Ответ дайте в квадратных метрах. Ответ: 23,04 4. На сколько процентов площадь коридора больше площади кухни? Ширяева Задачник ОГЭ 2023 5. На сколько процентов площадь большей лоджии меньше площади спальни? Плитка для пола размером 20 см на 40 см продаётся в упаковках по 8 штук.
Средний вес новорожденного ребенка 3 кг 300гр. Если у ребенка курящий отец, то его вес будет меньше среднего на 125 гр; если курящая мать — меньше на 300 гр. Определите, сколько процентов теряет в весе новорожденный, если: а курит папа; б курит мама ответ округлите до единиц 6. Весь мир борется с табаком. Во многих странах запрещено курение на рабочем месте. Серьезный работодатель может не принять на работу, или уволить курящего. Сколько ошибок будет у него на страницах, где знаков в 1,5 раза больше? В теме «Проценты» необходимо показывать учащимся связь данной темы с ценами на товары и услуги. На задачи, в которых говорится о ценообразовании, в школьном курсе стали обращать внимание совсем недавно, поэтому методические подходы к их решению не очень хорошо отработаны. А между тем с ценами на товары и услуги люди встречаются каждый день, и именно школьная математика в ответе за то, чтобы эти встречи не оборачивались для людей финансовыми потерями. Примеры задач 5 класс : 1. Яблоки в магазине стоили 3 400 рублей за 1 килограмм. Какова стала стоимость яблок за 1 килограмм? На сколько меньше килограмм яблок можно купить на те же деньги? Осталась ли цена прежней? На сколько надо снизить цену, чтобы цена стала прежней? В приложение 1 приведены задачи с практическим содержанием по теме «Площадь», которые целесообразно использовать при изучении данной темы. Формула 2. Рациональные дроби 1. Иррациональны е числа 2 Выражения и их преобразования 1. Арифметически й к в а д р а т н ы й корень 3 Уравнения и неравенства 1. Линейное уравнение 1. Система уравнений с двумя переменными 4 Ко о р д и н а т ы и функции 1. Линейная функция и ее график 1. Квадратичная ф у н к ц и я и е е график 1. Арифметическа я и геометрическая прогрессии 2. Формулы n-го члена и суммы n первых членов арифметической и геометрической прогрессии 5 Геометрические фигуры и их свойства 1. Свойства параллельных прямых 3. Неравенство треугольника 1. Многоугольник и 2. Параллелограм м 3. Прямоугольник 4. Квадрат 5. Ромб 6. Свойство 1. Касательная к окружности 2. Центральный угол 3. Правильные многоугольники 15 средней линии и трапеции 7. Теорема Пифагора 8. Подобные треугольники 6 Геометрические величины 1. Расстояние между двумя точками 2. Расстояние от точки до прямой 3. Площадь параллелограмма 2. Площадь ромба 3. Площадь трапеции 4. Площадь треугольника 1. Площадь круга и его сектора 2. Длина окружности и ее дуги 7 Геометрические построения 1. Построение с помощью ц и р к у л я и л и н е й к и : серединного перпендикуляра к отрезку 2. Построение с помощью циркуля и линейки: угла, равного данному 3. Построение с помощью ц и р к у л я и л и н е й к и : биссектрисы угла 1. Деление отрезка на равные части 1. Построение правильного треугольника, четырехугольник а, шестиугольника В качестве примера ниже приведены задачи практического характера биологической направленности для 7 класса по теме «Линейная функция»: 1. Кто летит быстрее, и во сколько раз? Найдите, сколько особей будет в данном заповеднике через 3 года. Через сколько лет в этом заповеднике особей будет 65 штук? Какой вес будет иметь рыбка, поедающая 15г сухого корма, и рыбка, поедающая 15г живого корма? Сделать вывод о зависимости М m. Одинакова ли эта зависимость для рыбки на сухом корме и на живом корме? В организме человека всегда есть определенное число бактерии, их около 10 тысяч. Во время эпидемии гриппа, если больной не принимает антибиотики, то количество бактерий в организме каждый день увеличивается на 100 тысяч. Сколько бактерий будет в организме человека через 3 дня, через 5 дней? Запишите формулу в тетрадь и ответьте на следующий вопрос: будет ли данная зависимость линейной? В приложение 2 приведены задачи с практическим содержанием по темам «Расстояние от точки до прямой» и «Теорема Пифагора», которые целесообразно использовать на уроках математики. Заключение В работы была разработана система методических рекомендаций по формированию метапредметных связей и связей с жизнью через использование на уроках математики задач с практическим содержанием. Связь математики с жизнью и другими предметами способствует общей направленности деятельности школьника и играет значительную роль в структуре его личности. Влияние задач с практическим содержанием на формирование личности обеспечивается рядом условий: уровнем развития интереса его силой, глубиной, устойчивостью ; характером многосторонними, широкими интересами, либо локальными ; местом познавательного интереса среди других мотивов и их взаимодействием; своеобразием интереса в познавательном процессе теоретической направленностью или стремлением к использованию знаний практического характера , связью с жизненными планами и перспективами. Реализация задач с практическим содержанием тесно связана с методологическими мировоззрениями педагогов на проблему формирования связи математики с другими науками и с жизнью. Теоретическое и практическое решение этой проблемы изменялось в соответствии с развитием общества, его социальным заказом школе. Утверждение и 17 упрочнение связей математики с жизнью и другими предметами в современной школе неразрывно связано с использованием задач с практическим содержанием. В области обучения необходимо придавать большой значение глубокой и вдумчивой работе учителя по отбору содержания учебного материала, который составляет основу формирования научного кругозора учащихся, столь необходимого для появления и укрепления межпредметных связей и связей с жизнью. Поэтому предлагается: 1. Знакомить учащихся через задачи практического характера с новыми фактами и сведеньями, которые могут показать учащимся современный уровень науки и перспективы ее движения. Раскрывать с помощью практических задач научные поиски, результаты открытий, трудности. Показать необходимость различных подходов для объяснения явлений жизни, знаний, приобретаемых личным опытом. Раскрывать перед учащимися практическую силу научных знаний, возможность применения приобретаемых на уроках знаний в жизни человека при решении бытовых и практических вопросов. Выявление и последующее осуществление необходимых и важных для раскрытия ведущих положений учебных тем метапредметных связей позволяет: а снизить вероятность субъективного подхода в определении метапредметной емкости учебных тем; б сосредоточить внимание учителей и учащихся на узловых аспектах математики, которые играют важную роль в раскрытии ведущих идей наук; в осуществлять поэтапную организацию работы по установлению метапредметных связей, постоянно усложняя задачи практического характера, расширяя поле действия творческой инициативы и познавательной самодеятельности школьников, применяя все многообразие дидактических средств для эффективного осуществления многосторонних связей; г формировать познавательные интересы учащихся средствами самых различных учебных предметов в их органическом единстве; д осуществлять творческое сотрудничество между учителем и учащимися; е изучать важнейшие мировоззренческие проблемы и вопросы современности средствами математики и ее связи с жизнью. Задачи с практическим содержанием, как известно, усиливают познавательный интерес у школьников, а познавательный интерес — это один из важнейших мотивов учения школьников. Его действие очень сильно.
Решение задач практического содержания — один из способов повышения мотивации к изучению математике. Слайд 3 Описание слайда: Под задачей с практическим содержанием понимается математическая задача, которая раскрывает приложения математики в окружающей нас действительности, в смежных дисциплинах, знакомит с ее использованием в организации, технологии и экономике современного производства, в сфере обслуживания, в быту, при выполнении трудовых операций. Под задачей с практическим содержанием понимается математическая задача, которая раскрывает приложения математики в окружающей нас действительности, в смежных дисциплинах, знакомит с ее использованием в организации, технологии и экономике современного производства, в сфере обслуживания, в быту, при выполнении трудовых операций. В детском оздоровительном центре делают бассейн цилиндрической формы. Длина окружности его основания равна 36 м, высота — 1,2 м. Стены бассейна выкладывают плиткой. Сколько кг клея нужно приобрести, если на 1 м2 расходуется 2 кг клея? Решено стены учебной комнаты покрасить краской. Высота комнаты — 2,5 м, длина 8 м, ширина 6 м. Дверь имеет размеры: высота — 2 м, ширина — 0,9м. На дне аквариума прямоугольной формы лежит куб с ребром 15 см. При этом уровень воды в аквариуме 32,25 см. Каким будет уровень воды в аквариуме после того, как куб вынули? Длина аквариума 50 см, ширина 30см.
01 05 задачи с практическим содержанием часть 1 фипи участок ширяева ответы и решения огэ
Открыть мини-сайт на портале Pandia для ведения проекта. PR, контент-маркетинг, блог компании, образовательный, персональный мини-сайт. Регистрация бесплатна В ходе беседы следует обратить внимание учащихся на то, сто при ремонте главной передачи необходимо, чтобы оси карданного вала и заднего моста были не скрещивающимися, а пересекающимися. Это достигается регулировкой главной передачи. Большое значение в области развития мотивации в данный момент является организации экскурсий если предметы специального цикла не изучались на данный момент в производственные мастерские слесарная и мастерская диагностики , пункт технического обслуживания. Если занятия по специальным предметам проводились, то лучше провести уроки геометрии совместно с мастером производственного обучения или преподавателем спец. Пример: объект работы по слесарному делу молоток с квадратным бойком. Данная тема плотно связана с темой по геометрии "Перпендикулярность плоскостей".
Преподаватель задает следующие вопросы: какое математическое предложение лежит в основе проверки опиленной поверхности на плоскость? Какое математическое предложение можно применить при проверке на параллельность противоположных граней заготовки, при изготовлении молотка с квадратным бойком? Мастер производственного обучения показывает, что две плоскости считаются в данной работе параллельными, если концы ножек кронциркуля скользят по двум поверхностям в любом направлении при легком равномерном трении. Окончательная проверка осуществляется штангенциркулем, с помощью которого измеряется параллельность в нескольких точках плоскостей. Такая коллективная работа на уроке, как правило, осуществляется в форме беседы. Еще один пример, при изучении темы "Перпендикуляр и наклонная" наряду с вопросами, содержащими чисто материал по геометрии, можно задать учащимся вопросы связанные с производственной деятельностью: 1. Как обосновать положение угольника с помощью которого определяется вертикальное направление.
Чтобы проверить вертикальные сверла к поверхности стола, на котором устанавливается деталь, к нему прикладывается угольник с двух сторон. Достаточно ли этого? Как проверить вертикален ли шток поршня в цилиндре двигателя внутреннего сгорания к плоскости тарелки поршня.
Сколько килограммовых упаковок сахара нужно купить, чтобы сварить варенье из 25 кг вишни? В летнем лагере на каждого участника полагается 50 г сахара в день. В лагере 163 человека. Какого наименьшего количества килограммовых пачек сахара достаточно на 7 дней? Каждый день во время конференции расходуется 90 пакетиков чая.
Конференция длится 7 дней. Чай продается в пачках по 50 пакетиков. Сколько пачек нужно купить на все дни конференции? В школьную библиотеку привезли книги по математике для 9-11 классов, по 60штук для каждого класса. В шкафу 3полки, на каждой полке помещается 15книг. Сколько шкафов можно полностью заполнить новыми книгами по математике, если все книги одного формата? В школе есть трехместные туристические палатки. Какое наименьшее число палаток нужно взять в поход, в котором участвует 11 человек?
На день рождения полагается дарить букет из нечетного числа цветов. Тюльпаны стоят 45 руб. У Вани есть 300 руб. Из какого наибольшего числа тюльпанов он может купить букет Маше на день рождения Поезд Волгоград-Москва отправляется в 15:00, а прибывает в 10:00 на следующий день время московское. Сколько жителей города смотрело этот матч? Книга стоит 400 рублей. Сколько рублей заплатит держатель дисконтной карты за эту книгу? Пётр не является держателем дисконтной карты, но он хотел бы купить книги себе, своей сестре, а младшему братику книгу- раскраску за 120 рублей.
Сколько сдачи он получит с 1000 рублей? В доме, в котором живет Оля, 5 этажей и несколько подъездов. На каждом этаже находится по 4 квартиры. Первый этаж занимают офисы. В каком подъезде живет Оля? В доме, в котором живет Федя, один подъезд. На каком этаже живет Федя? Терминал принимает суммы, кратные 10 рублям.
Дмитрий положил на свой телефон 500 рублей, с какой суммой ему пришла СМС о пополнении счета? Аня хочет положить на счет своего мобильного телефона не меньше 500 рублей. Какую минимальную сумму она должна положить в приемное устройство данного терминала?
Длина окружности его основания равна 36 м, высота — 1,2 м. Стены бассейна выкладывают плиткой. Сколько кг клея нужно приобрести, если на 1 м2 расходуется 2 кг клея? Решено стены учебной комнаты покрасить краской. Высота комнаты — 2,5 м, длина 8 м, ширина 6 м. Дверь имеет размеры: высота — 2 м, ширина — 0,9м. На дне аквариума прямоугольной формы лежит куб с ребром 15 см. При этом уровень воды в аквариуме 32,25 см. Каким будет уровень воды в аквариуме после того, как куб вынули? Длина аквариума 50 см, ширина 30см. Хозяйка квартиры решила покрасить стены чулана на высоту 1,5 м от пола. Какое количество краски кг нужно приобрести, если на 1 м2 расходуется 300 граммов краски дверь 0,8 м на 2 м не красится. Длина чулана 3 м, ширина 2 м, высота 2,5. Стены и потолок ванной комнаты решили выложить кафельной плиткой.
Сколько земли надо, чтобы сделать такую насыпь на протяжении 100 м. Найти площадь выемки льда на озере, необходимую, чтобы наполнить ледник льдом доверху. Толщина льда на озере 40 см. Длина чердака 12 м. Какой наибольший груз может он поднять, не затонув. Сколько раз экскаватор зачерпнет ковшом при рытье канала длиной 1 км, если сечение канала — есть трапеция с основаниями 4 м и 20 м, а боковые стороны трапеции10 м. Определить в кубических метрах производительность автомата в час. Разрез канавы есть трапеция с основаниями 1 м и 0,7 м. Высота трапеции 0,6 м. Сколько весит погонный метр трубы? Определить глубину канала. Вес куба 514,15 г. Найти плотность металла, из которого сделан куб.
Использование задач с практическим содержанием в преподавании математики (Шапиро) 1990 год
Задачи с практическим содержанием примеры «Участок» Задание 1. Download 336.15 Kb. Задачи с практическим содержанием примеры. В своей работе я хочу поделиться с педагогами, как я использую в 5 классе различные задания с практическим содержанием, и рассказать о возможностях. В следующем параграфе будет рассмотрена методика решения задач с практическим содержанием и приведен пример работы с задачей практического содержания. Как заполнить дневник классного руководителя разговоры о важном образец заполнения. Писатели и поэты 20 века о родине и родной природе 5 класс презентация.
Похожие презентации
- Математика. 5 класс. Задачи с практическим содержанием
- Практика по 19 заданию ЕГЭ по химии
- ВПР. Математика 5 класс. Образец.
- Задачи на прогрессии
1 5 задачи с практическим содержанием
Пример практического решения задач. Решение практических задач. Интересует тема "Задачи практического содержания (задания b1)"? Лучшая powerpoint презентация на эту тему представлена здесь! Решение задач практического содержания — один из способов повышения мотивации к изучению математике. 01 05 задачи с практическим содержанием часть 1 фипи план местности.