Новости в случайном эксперименте симметричную монету бросают

Задача 7. В случайном эксперименте симметричную монету бросают четырежды. Задача №9 В случайном эксперименте симметричную монету бросают дважды.

Метод перебора комбинаций

  • Будущее для жизни уже сейчас
  • Математика 11 класс
  • ЕГЭ профильный уровень. №4 Классическое определение вероятности. Задача 7
  • Монету бросают 4 раза сколько элементарных событий

В случайном эксперименте симметричную монету бросают четырежды?

В случайном эксперименте симметричную монету бросают дважды 1200 в случайном эксперименте симметричную монету. Задачи на подбрасывание монет считаются довольно сложными. 1) В случайном эксперименте симметричную монету бросают дважды. Найди верный ответ на вопрос«7. В случайном эксперименте симметричную монету бросают дважды.

Задание 10 ОГЭ 2022 математика 9 класс ответы с решением

Чтобы определить число исходов, давайте сначала задумаемся, что такое исход жеребьевки? Что будем принимать за элементарное событие? Если будем представлять себе процедуру, когда одна спортсменка уже вытащила шарик с номером выступления, а вторая должна что-то вытащить из оставшихся, то будет сложное решение с использованием условной вероятности. Ответ получить можно см.

Но зачем привлекать сложную математику, если можно рассмотреть "бытовую" ситуацию с другой точки зрения? Представим себе, что жеребьевка завершена, и каждая гимнастка уже держит шарик с номером в руке. У каждой только один шарик, на всех шариках разные номера, шарик с номером "1" только у одной из спортсменок.

У какой? Организаторы жеребьевки обязаны сделать так, чтобы все спортсменки имели равные возможности получить этот шарик, иначе она будет несправедливой. Значит событие - "шарик с номером "1" у спортсменки" - является элементарным.

Ответ: 0,25 Задача 4 В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 - из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.

Решение Аналогично предыдущей задаче. Событие A - "последним выступает спортсмен из Швеции". Элементарное событие - "последний номер достался конкретному спортсмену".

Благоприятствующее событие - спортсмен, которому достался последний номер, из Швеции. Ответ: 0,36 Задача 5 На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой.

Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Решение Аналогично 2-ум предыдущим задачам. Событие A - "шестым выступает прыгун из Парагвая".

Элементарное событие - "номер шесть у конкретного спортсмена". Благоприятствующее событие - спортсмен, у которого номер "6", из Парагвая. Ответ: 0,36 Замечание: Последние три задачи, по сути, абсолютно одинаковы, но с первого взгляда их вопросы кажутся разными.

Чтобы запутать школьника? Нет, у составителей другая задача: на экзамене должно быть много разных вариантов одинаковой степени трудности. Итак, не надо пугаться "каверзного вопроса", надо рассматривать ситуацию, которая описывается в задаче, со всех сторон.

Задача 6 Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений - по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями.

Какова вероятность, что выступление представителя России состоится в третий день конкурса? Событие A - "выступление представителя России состоится в третий день". Одно выступление можно считать элементарным событием, так как представители от всех стран равноправны по одному от каждой страны.

Пусть событие A - "выступление представителя России состоится в третий день", событие B - "выступление представителя России не состоится в первый день", событие С - "выступление представителя России состоится в третий день при условии, что он не выступал в первый день". Если выступление представителя России не попадет на первый день, то он имеет одинаковые шансы выступить в любой из следующих 4-ёх дней остальные выступления распределены равномерно, а значит дни равновозможны. Ответ: 0,225 Замечание: Задачи теории вероятностей часто решаются разными способами.

Выбирайте для себя тот, который понятнее именно вам. Задача 7 В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

В каждой игре 2 исхода например 0- не владеет и 1- владеет. Игр -3. Количество всевозможных сочетаний типа 000, 001,... Количество благоприятных исходов - 3 : 100, 010, 001.

Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз.

Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза. Подставляем n и k в формулу: Задача.

Монету бросают три раза. Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0! В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза тогда решек будет 1 , либо 4 тогда решек вообще не будет. Найдем вероятность каждого из этих событий. Пусть p 1 - вероятность того, что орел выпадет 3 раза.

Имеем: Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. Имеем: Чтобы получить ответ, осталось сложить вероятности p 1 и p 2. Помните: складывать вероятности можно только для взаимоисключающих событий. Их сегодня мы и разберем. Задачи о подбрасывании монеты Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз. В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р решка и О орел.

Так, исход ОР означает, что при первом броске выпал орел, а при втором — решка. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна. Ответ: 0,5. Задача 2.

Правильный ответ: 0,15 8 В фирме такси в данный момент свободно 30 машин: 6 чёрных, 3 жёлтых и 21 зелёная. Правильный ответ: 0. Подарки распределяются случайным образом между 10 детьми, среди которых есть Андрюша. Найдите вероятность того, что Андрюше достанется пазл с машиной. Правильный ответ: 0,2 10 Родительский комитет закупил 25 пазлов для подарков детям в связи с окончанием учебного года, из них 18 с машинами и 7 с видами городов. Подарки распределяются случайным образом между 25 детьми, среди которых есть Володя. Найдите вероятность того, что Володе достанется пазл с машиной. Правильный ответ: 0,72 11 В лыжных гонках участвуют 7 спортсменов из России, 1 спортсмен из Норвегии и 2 спортсмена из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен из Швеции. Правильный ответ: 0,2 12 В лыжных гонках участвуют 13 спортсменов из России, 2 спортсмена из Норвегии и 5 спортсменов из Швеции. Найдите вероятность того, что первым будет стартовать спортсмен из Норвегии или Швеции. Правильный ответ: 0,35 13 У бабушки 20 чашек: 15 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами. Правильный ответ: 0,25 14 У бабушки 25 чашек: 7 с красными цветами, остальные с синими. Правильный ответ: 0,72 15 В магазине канцтоваров продаётся 120 ручек: 32 красных, 32 зелёных, 46 фиолетовых, остальные синие и чёрные, их поровну. Найдите вероятность того, что случайно выбранная в этом магазине ручка будет красной или фиолетовой. Правильный ответ: 0,65 16 В магазине канцтоваров продаётся 144 ручки: 30 красных, 24 зелёных, 18 фиолетовых, остальные синие и чёрные, их поровну. Найдите вероятность того, что случайно выбранная в этом магазине ручка будет синей или чёрной. Правильный ответ: 0,5 17 Вероятность того, что новая шариковая ручка пишет плохо или не пишет , равна 0,14. Покупатель в магазине выбирает одну такую ручку. Найдите вероятность того, что эта ручка пишет хорошо. Правильный ответ: 0,86 18 Вероятность того, что новая шариковая ручка пишет плохо или не пишет , равна 0,08. Правильный ответ: 0,92 19 В среднем из 150 карманных фонариков, поступивших в продажу, три неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен. Правильный ответ: 0,98 20 В среднем из 75 карманных фонариков, поступивших в продажу, девять неисправных. Найдите вероятность того, что начинать игру должен будет мальчик.

Исход. В случайном эксперименте симметричную монету бросают дважды Специальная формула вероятности

4. Задание B5 (№ 283471) В случайном эксперименте симметричную монету бросают четырежды. Решение: Равновозможны $2^{4}=16$ результатов эксперимента: О-выпадение орла; Р-выпадение решки. 20. В случайном эксперименте симметричную монету бросают дважды. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход РО (в первый раз выпадает решка, во второй.

Решение задачи 2. Вариант 371

Вероятность выпадения орла 1 раз мы уже находили в пункте в и она равна 0. Вероятность выпадения орла 3 раза мы уже находили в пункте а и она равна 0. Таким образом, вероятность того, что орел выпадет нечетное число раз при пятикратном бросании монеты, равна 0. Будущее для жизни уже сейчас Мгновенная помощь Из любой точки мира на любом языке Поможет стать лучше Решит любую задачу, ответит на вопрос Используй как тебе удобно В твоем телефоне, ноутбуке, планшете Делай больше за тоже время AI Znanya сделает твою учебу и работу более результативней AI Znanya.

Мы можем рассчитать эту вероятность, сложив вероятности выпадения орла 1, 3 и 5 раз. Вероятность выпадения орла 1 раз мы уже находили в пункте в и она равна 0. Вероятность выпадения орла 3 раза мы уже находили в пункте а и она равна 0. Таким образом, вероятность того, что орел выпадет нечетное число раз при пятикратном бросании монеты, равна 0.

Первое из них -100. Последнее -999. Определяем количество чисел, кратных 25. Первое из них — 100. Последнее — 975. Таких чисел По классической формуле вычисляем вероятность. Ответ: 0,04. Найдите вероятность того, что случайно выбранное трёхзначное число делится на 33. Решение: Как и в задаче 1. Первое трёхзначное число, кратное 33, это - 132. Последнее из них — 990. Таким образом, благоприятных исходов, то есть трёхзначных чисел, кратных 33, всего Ответ: 0,03. В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с зелёным чаем. Вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с зелёным чаем, согласно классической формуле, определяется отношением Ответ: 0,2. На олимпиаде по русскому языку участников рассаживают по трём аудиториям. В первых двух по 130 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 400 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории. Значит, искомая вероятность равна. Ответ: 0,35. В группе туристов 8 человек. С помощью жребия они выбирают шестерых человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д. Решение: Для туриста Д. Общее число всех равновозможных исходов — количество туристов в группе их 8 по условию задачи.

Организаторы жеребьевки обязаны сделать так, чтобы все спортсменки имели равные возможности получить этот шарик, иначе она будет несправедливой. Значит событие - "шарик с номером "1" у спортсменки" - является элементарным. Ответ: 0,25 Задача 4 В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 - из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции. Решение Аналогично предыдущей задаче. Событие A - "последним выступает спортсмен из Швеции". Элементарное событие - "последний номер достался конкретному спортсмену". Благоприятствующее событие - спортсмен, которому достался последний номер, из Швеции. Ответ: 0,36 Задача 5 На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Решение Аналогично 2-ум предыдущим задачам. Событие A - "шестым выступает прыгун из Парагвая". Элементарное событие - "номер шесть у конкретного спортсмена". Благоприятствующее событие - спортсмен, у которого номер "6", из Парагвая. Ответ: 0,36 Замечание: Последние три задачи, по сути, абсолютно одинаковы, но с первого взгляда их вопросы кажутся разными. Чтобы запутать школьника? Нет, у составителей другая задача: на экзамене должно быть много разных вариантов одинаковой степени трудности. Итак, не надо пугаться "каверзного вопроса", надо рассматривать ситуацию, которая описывается в задаче, со всех сторон. Задача 6 Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений - по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Событие A - "выступление представителя России состоится в третий день". Одно выступление можно считать элементарным событием, так как представители от всех стран равноправны по одному от каждой страны. Пусть событие A - "выступление представителя России состоится в третий день", событие B - "выступление представителя России не состоится в первый день", событие С - "выступление представителя России состоится в третий день при условии, что он не выступал в первый день". Если выступление представителя России не попадет на первый день, то он имеет одинаковые шансы выступить в любой из следующих 4-ёх дней остальные выступления распределены равномерно, а значит дни равновозможны. Ответ: 0,225 Замечание: Задачи теории вероятностей часто решаются разными способами. Выбирайте для себя тот, который понятнее именно вам. Задача 7 В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение Событие A - "выбранный насос не подтекает". Ответ: 0,995 Задача 8 Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Решение Событие A - "купленная сумка качественная". Ответ: 0,93 Замечание 1: Сравните эту и предыдущую задачи. Как важно внимательно относиться к каждому слову в условии!

Симметричную монету бросают 12 раз во сколько

Вопрос по ботанике. Механические часы. Карточки с номерами групп. Вероятность уцелеть. Пристрелянный револьвер. Сборник к ЕГЭ по математике. Решение большого количества задач из «Банка заданий». Рекомендации выпускникам по подготовке к ЕГЭ. Из опыта подготовки к итоговой аттестации немотивированных учащихся.

Результаты ЕГЭ. Информационная поддержка Единого государственного экзамена. Учебно-тренировочные тесты к ЕГЭ 2011 по математике. Задачи на движение. Движение объектов навстречу друг к другу. Бригада маляров красит забор длиной 240 метров. Задачи на работу. Прототип задания B12.

Задачи на работу и производительность. Задачи на «концентрацию, смесей и сплавов». Общие подходы к решению задач. Движение велосипедистов и автомобилистов. Движение лодки по течению и против течения. Сюжетные задачи. Укажите график функции, заданной формулой. Простейшие виды уравнений и неравенств.

ЕГЭ-2012 математика. Полезные приемы. Бланки ответов. Оценка работ ЕГЭ по математике. Рекомендации по заучиванию материала. Изменения в ЕГЭ по математике 2012. Структура варианта КИМ. Типовые тестовые задания. Подготовка к ЕГЭ по математике. Содержание задания.

Проверяемые требования. Реальные числовые данные. Лимонная кислота. Спасательная шлюпка. Задания для самостоятельного решения. Лимонная кислота продается в пакетиках. Памятка ученику. Наибольшее число. Прототип задания. Условие В случайном эксперименте симметричную монету бросают дважды.

Найдите вероятность того, что во второй раз выпадет то же, что и в первый. Решение Данную задачу будем решать по формуле: Где Р А — вероятность события А, m — число благоприятствующих исходов этому событию, n — общее число всевозможных исходов. Применим данную теорию к нашей задаче: А — событие, когда во второй раз выпадет то же, что и в первый; Р А — вероятность того, что во второй раз выпадет то же, что и в первый. Определим m и n: m — число благоприятствующих этому событию исходов, то есть число исходов, когда во второй раз выпадет то же, что и в первый. В эксперименте бросают монету дважды, которая имеет 2 стороны: решка Р и орел О.

Он относится к категории Математика, для 10 - 11 классов.

Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Математика. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей. Последние ответы Полинка1455 28 апр.

Ответ получить можно см. Но зачем привлекать сложную математику, если можно рассмотреть "бытовую" ситуацию с другой точки зрения? Представим себе, что жеребьевка завершена, и каждая гимнастка уже держит шарик с номером в руке. У каждой только один шарик, на всех шариках разные номера, шарик с номером "1" только у одной из спортсменок.

У какой? Организаторы жеребьевки обязаны сделать так, чтобы все спортсменки имели равные возможности получить этот шарик, иначе она будет несправедливой. Значит событие - "шарик с номером "1" у спортсменки" - является элементарным. Ответ: 0,25 Задача 4 В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 - из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции. Решение Аналогично предыдущей задаче. Событие A - "последним выступает спортсмен из Швеции". Элементарное событие - "последний номер достался конкретному спортсмену".

Благоприятствующее событие - спортсмен, которому достался последний номер, из Швеции. Ответ: 0,36 Задача 5 На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Решение Аналогично 2-ум предыдущим задачам. Событие A - "шестым выступает прыгун из Парагвая". Элементарное событие - "номер шесть у конкретного спортсмена". Благоприятствующее событие - спортсмен, у которого номер "6", из Парагвая. Ответ: 0,36 Замечание: Последние три задачи, по сути, абсолютно одинаковы, но с первого взгляда их вопросы кажутся разными.

Чтобы запутать школьника? Нет, у составителей другая задача: на экзамене должно быть много разных вариантов одинаковой степени трудности. Итак, не надо пугаться "каверзного вопроса", надо рассматривать ситуацию, которая описывается в задаче, со всех сторон. Задача 6 Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений - по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Событие A - "выступление представителя России состоится в третий день". Одно выступление можно считать элементарным событием, так как представители от всех стран равноправны по одному от каждой страны.

Пусть событие A - "выступление представителя России состоится в третий день", событие B - "выступление представителя России не состоится в первый день", событие С - "выступление представителя России состоится в третий день при условии, что он не выступал в первый день". Если выступление представителя России не попадет на первый день, то он имеет одинаковые шансы выступить в любой из следующих 4-ёх дней остальные выступления распределены равномерно, а значит дни равновозможны. Ответ: 0,225 Замечание: Задачи теории вероятностей часто решаются разными способами. Выбирайте для себя тот, который понятнее именно вам. Задача 7 В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение Событие A - "выбранный насос не подтекает". Ответ: 0,995 Задача 8 Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами.

Задание №874

В случайном эксперименте симметричную монету бросают дважды 1200 в случайном эксперименте симметричную монету. Задачи на подбрасывание монет считаются довольно сложными. Задачи для подготовки к Задачи ЕГЭ профиль. Задания по теме Классическое определение вероятности. Условия, решения, ответы, тесты, курсы, обсуждения. Задача №8603. Вы перешли к вопросу В случайном эксперименте симметричную монету бросают четырежды. В случайном эксперименте симметричную монету бросают четыре раза.

В случайном эксперименте симметричную монету бросают четырежды?

в случайном эксперименте симметричную монету бросают дважды. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход РО (в первый раз выпадает решка, во второй. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что во второй раз выпадет то же, что и в первый. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что при втором бросании выпала решка. Новости. Будет ли как-то улучшаться система проверки и организации итоговых сочинений? Ответы экспертов на вопрос №1217066 В случайном эксперименте симметричную монету бросают трижды.

В случайном эксперименте симметричную монету бросают дважды

Вероятность выпадения орла или решки в одном броске монеты равна 0. Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел. Если мы хотим найти вероятность того, что орел не выпадет ни разу, то это означает, что должен выпасть только один исход из четырех решка-решка или решка-орел или орел-решка.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение Событие A - "первой выступает гимнастка из Китая". Чтобы определить число исходов, давайте сначала задумаемся, что такое исход жеребьевки?

Что будем принимать за элементарное событие? Если будем представлять себе процедуру, когда одна спортсменка уже вытащила шарик с номером выступления, а вторая должна что-то вытащить из оставшихся, то будет сложное решение с использованием условной вероятности. Ответ получить можно см. Но зачем привлекать сложную математику, если можно рассмотреть "бытовую" ситуацию с другой точки зрения? Представим себе, что жеребьевка завершена, и каждая гимнастка уже держит шарик с номером в руке.

У каждой только один шарик, на всех шариках разные номера, шарик с номером "1" только у одной из спортсменок. У какой? Организаторы жеребьевки обязаны сделать так, чтобы все спортсменки имели равные возможности получить этот шарик, иначе она будет несправедливой. Значит событие - "шарик с номером "1" у спортсменки" - является элементарным. Ответ: 0,25 Задача 4 В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 - из Норвегии.

Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции. Решение Аналогично предыдущей задаче. Событие A - "последним выступает спортсмен из Швеции". Элементарное событие - "последний номер достался конкретному спортсмену".

Благоприятствующее событие - спортсмен, которому достался последний номер, из Швеции. Ответ: 0,36 Задача 5 На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Решение Аналогично 2-ум предыдущим задачам.

Событие A - "шестым выступает прыгун из Парагвая". Элементарное событие - "номер шесть у конкретного спортсмена". Благоприятствующее событие - спортсмен, у которого номер "6", из Парагвая. Ответ: 0,36 Замечание: Последние три задачи, по сути, абсолютно одинаковы, но с первого взгляда их вопросы кажутся разными. Чтобы запутать школьника?

Нет, у составителей другая задача: на экзамене должно быть много разных вариантов одинаковой степени трудности. Итак, не надо пугаться "каверзного вопроса", надо рассматривать ситуацию, которая описывается в задаче, со всех сторон. Задача 6 Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений - по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями.

Какова вероятность, что выступление представителя России состоится в третий день конкурса? Событие A - "выступление представителя России состоится в третий день". Одно выступление можно считать элементарным событием, так как представители от всех стран равноправны по одному от каждой страны. Пусть событие A - "выступление представителя России состоится в третий день", событие B - "выступление представителя России не состоится в первый день", событие С - "выступление представителя России состоится в третий день при условии, что он не выступал в первый день". Если выступление представителя России не попадет на первый день, то он имеет одинаковые шансы выступить в любой из следующих 4-ёх дней остальные выступления распределены равномерно, а значит дни равновозможны.

Ответ: 0,225 Замечание: Задачи теории вероятностей часто решаются разными способами. Выбирайте для себя тот, который понятнее именно вам.

Рассмотрим решение данной задачи на конкретных примерах. В случайном эксперименте симметричную монету бросают один раз Здесь всё просто.

Выпадет либо орёл, либо решка. Задачи с более, чем одним броском, проще всего решать составлением таблицы возможных вариантов. Для простоты, обозначим орла цифрой "0", а решку цифрой "1". Тогда таблица возможных исходов будет выглядеть так: 00 10 11 Если, например, нужно найти вероятность того, что орёл выпадет один раз, требуется просто подсчитать количество подходящих вариантов в таблице - то есть тех строк, где орёл встречается один раз.

Таких строк две вторая и третья.

Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой.

Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза. Подставляем n и k в формулу: Задача.

Монету бросают три раза. Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0!

В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза тогда решек будет 1 , либо 4 тогда решек вообще не будет.

Найдем вероятность каждого из этих событий. Пусть p 1 - вероятность того, что орел выпадет 3 раза. Имеем: Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза.

Имеем: Чтобы получить ответ, осталось сложить вероятности p 1 и p 2.

Симметричную монету бросают 12 раз во сколько

Задание для 11 класса для подготовки к экзамену по математике. Тренируйтесь решать задания вместе с Фоксфордом и станьте увереннее в своих силах. Образовательный ресурс для средней школы. Проверяем знания📓 В случайном эксперименте симметричную монету бросают дважды. Задача 7. В случайном эксперименте симметричную монету бросают четырежды. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно 2 раза. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно 2 раза.

ЕГЭ (базовый уровень)

  • Специальная формула вероятности
  • Исход. В случайном эксперименте симметричную монету бросают дважды Специальная формула вероятности
  • Монету бросают 4 раза сколько элементарных событий
  • ЕГЭ (базовый уровень)
  • В случайном эксперименте симметричную монету бросают трижды
  • Исход. В случайном эксперименте симметричную монету бросают дважды Специальная формула вероятности

Остались вопросы?

Вероятность выпадения орла или решки в одном броске монеты равна 0. Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел. Если мы хотим найти вероятность того, что орел не выпадет ни разу, то это означает, что должен выпасть только один исход из четырех решка-решка или решка-орел или орел-решка.

Качественные тарелки.

Иностранный язык. Искомая вероятность. Вопрос по ботанике.

Механические часы. Карточки с номерами групп. Вероятность уцелеть.

Пристрелянный револьвер. Сборник к ЕГЭ по математике. Решение большого количества задач из «Банка заданий».

Рекомендации выпускникам по подготовке к ЕГЭ. Из опыта подготовки к итоговой аттестации немотивированных учащихся. Результаты ЕГЭ.

Информационная поддержка Единого государственного экзамена. Учебно-тренировочные тесты к ЕГЭ 2011 по математике. Задачи на движение.

Движение объектов навстречу друг к другу. Бригада маляров красит забор длиной 240 метров. Задачи на работу.

Прототип задания B12. Задачи на работу и производительность. Задачи на «концентрацию, смесей и сплавов».

Общие подходы к решению задач. Движение велосипедистов и автомобилистов. Движение лодки по течению и против течения.

Найдите вероятность того, что орлов и решек выпадет одинаковое количество. Итак, монету бросают два раза. Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл.

Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности.

Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы.

Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза. Подставляем n и k в формулу: Задача. Монету бросают три раза.

Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0! В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза тогда решек будет 1 , либо 4 тогда решек вообще не будет. Найдем вероятность каждого из этих событий.

Пусть p 1 - вероятность того, что орел выпадет 3 раза. Имеем: Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. Имеем: Чтобы получить ответ, осталось сложить вероятности p 1 и p 2. Помните: складывать вероятности можно только для взаимоисключающих событий. Всего 4 варианта: о; о о; р р; р р; о. Благоприятных 1: о; р.

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР в первый раз выпадает орёл, во второй — решка.

Пример 1 На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. Пассажиру В. Но "благоприятствующими" будут только те из них, когда пассажир В.

Ответ: 0,1 В примере, который представлен выше, реализуется самое простое понятие элементарного события. Так как один человек способен занять только одно место, события независимы. А так как в условии специально оговорено, что при регистрации место выбиралось случайно, то равновозможны. Поэтому, фактически, мы считали не события, а места в самолёте. Пример 2 В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П.

Турист П. Ответ: 0,2 В этом примере, уже следует задуматься о том, что представляет собой элементарное событие. Здесь это сформированный рейс вертолёта. Один человек может попасть только на один рейс, то есть только в одну группу из 6-ти человек, - события независимы. По условию задачи порядок рейсов случаен, то есть все рейсы для каждой группы равновозможны. Считаем рейсы. Пример 3 Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3?

Решение Выпишем в ряд заданные числа и отметим те из них, которые делятся на 3. Ответ: 0,3 Замечание. Этот способ решения относится к простейшему случаю, когда отрезок ряда короткий, и его легко выписать явно. Что будет, если задачу изменить, например, так: Из множества натуральных чисел от 107 до 198 наудачу выбирают одно число. Тогда придётся вспомнить, что "на 3 делится каждое третье число в натуральном ряду" на 4 - каждое четвертое, на 5 каждое пятое... В каждой полной группе есть одно число, которое делится на 3. В неполной группе, которую составляют два последних числа, 197 не делится 3, а 198 делится. Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне.

Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. Задача 1 В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Решение Событие A - "выбор билета с вопросом по ботанике". Выбрать можно только один билет события попарно несовместимы , все билеты одинаковы события равновозможны и все билеты доступны школьнику полная группа. Значит событие "выбор билета" является элементарным. Ответ: 0,2 Замечание: В самом деле "бытовая" ситуация настолько знакома и проста, что интуитивно понятно, какие события являются элементарными, и какие благоприятствующими.

Дальше я не буду подробно описывать эту часть решения, если в этом не будет необходимости. Задача 2.

Похожие новости:

Оцените статью
Добавить комментарий