Новости почему поверхностное натяжение зависит от рода жидкости

Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. Поверхностное натяжение жидкости является причиной появления капиллярного эффекта.

Поверхностное натяжение жидкости — формулы и определение с примерами

  • Поверхностное натяжение
  • Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)
  • Поверхностное натяжение веществ на границе с воздухом
  • 2.2.3. Факторы, влияющие на величину поверхностного натяжения
  • Почему и как зависит поверхностное натяжение от температуры и рода жидкости
  • 1. Температура т

Почему поверхностное натяжение зависит от вида жидкости?

На форму маленьких капель сильно влияет поверхностное натяжение, для очень маленьких капель это влияние становится определяющим. Для ныряющего в воду человека главную опасность представляет давление на него воды. Для крошечного клопа, ползущего по капле дождя, непреодолимы силы поверхностного натяжения. Теперь понятно, почему маленькие водяные насекомые могут бегать по поверхности пруда не проваливаясь? Они ничем не рискуют: большинство из них водой не смачивается и провалиться не может.

Даже если их насильно затолкнуть под воду, они немедленно выскочат наружу, причем помогает им поверхностный слой. Для крошечных насекомых, тело которых имеет способность намокать, капля воды оказывается тюрьмой. Частично смачиваемые водой насекомые могут держаться на ее поверхности, если они достаточно малы, но, погрузившись однажды в воду, случайно проскочив через упругую поверхность, они уже не смогут выбраться наружу. В жизни еще более мелких существ, например микробов, все определяется поверхностными силами; вес едва ли имеет для них какое-либо значение.

Весь контакт с внешним миром они осуществляют через свою поверхность; через нее поступает пища, и, если они хотят двигаться, им надо изменять-форму своей поверхности. Не удивительно поэтому, что такие существа можно уничтожать с помощью ядов, которые покрывают их поверхность, подобно тому как краска наносится на волокна одежды. Размышления завели нас далеко от экспериментальных фактов. Некоторые из развитых идей подтверждаются последующими опытами, другие стоят лишь немногим более простой игры воображения, и их следует использовать только в той мере, в какой они приводят к плодотворным предположениям.

Краевой угол с молекулярной точки зрения Все же мы можем развить дальше молекулярную картину и обсудить, как жидкости соприкасаются с твердыми телами, т. Возвращаясь к небольшим лужицам на столе и к классификации по краевым углам, нарисуем каплю, поверхность которой принимает выпуклую форму под влиянием поверхностных сил, действующих на молекулы фиг. Поверхностное натяжение и краевой угол с молекулярной точки зрения. В том месте, где лужица соприкасается со столом, угловые молекулы должны также притягиваться столом.

Совместное притяжение стола и жидкости и определяет краевой угол. Складывая силы притяжения как векторы, получаем равнодействующую R сил притяжения со стороны соседних молекул как жидкости, так и стола. Для поверхности жидкости эта равнодействующая играет роль «вертикали», и поверхность расположится перпендикулярно к ней, точно так же, как поверхность большой лужи принимает горизонтальное положение, перпендикулярно силе тяжести. Итак, краевой угол определяется направлением равнодействующей сил притяжения R; прежде чем продолжить обсуждение, рассмотрим подробнее силы, которые определяют форму поверхности.

Молекулярные силы и поверхность жидкости Чтобы понять, почему поверхность жидкости располагается перпендикулярно равнодействующей сил притяжения R, вернемся к обсуждению сил, действующих на молекулу. На молекулы действуют: дальнодействующие силы: б притяжение соседей только в пределах нескольких диаметров молекул ; короткодействующие силы: в сильное отталкивание во время столкновений с соседями на расстоянии долей диаметра молекулы. Для описания поведения молекул вряд ли стоит применять термин «равновесие», но все же можно сказать, что в покоящейся жидкости каждая молекула в среднем находится в равновесии. Коротко- и дальнодействующие силы.

На любую молекулу на поверхности жидкости короткодействующие силы действуют со всех сторон и снизу, поэтому равнодействующая будут перпендикулярна поверхности. Равнодействующая дальнодействующих сил, которая уравновешивает эти короткодействующие силы, должна иметь противоположное направление, а следовательно, она также будет перпендикулярна поверхности. Из последнего утверждения следует и обратное — поверхность должна быть перпендикулярна равнодействующей сил притяжения, в противном случае все силы перемещали бы поверхность, пока она не приняла бы этого положения. Конечно, в молекулярном масштабе сама поверхность исчезает в хаосе беспорядочных движений, подобно границе толпы.

Она представляется гладкой, только когда ее рассматривают издалека. Две из названных сил действуют на поверхность и меняют свое направление, когда поверхность изгибается. Это — короткодействующее отталкивание и дальнодействующее притяжение соседей. Третья сила — земное притяжение — всегда направлена вертикально вниз.

В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны. На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести. Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности».

Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг. Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости. Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией.

Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии. Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол.

Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться. Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться. С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг.

Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости. Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами?

Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии. Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла. Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств.

На вопрос: «Какой толщины должно быть покрытие? На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг.

Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне». Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне фиг. Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке фиг. Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила.

Наброски, представленные на фиг. Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это см. Капиллярные явления.

Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla. Таким образом, капиллярность — это старое название поверхностного натяжения, которое еще применяется, чтобы охарактеризовать поведение жидкостей в тонких трубках. Это красивое название, но оно не объясняет подъема жидкости. Сказать, что вода поднимается по тонкой трубке вследствие капиллярности, по существу то же, что сказать «вследствие поведения тонких трубок».

Рассматривая через увеличительное стекло мениск поверхность жидкости в тонкой трубке, мы увидим, что он висит, как прикрепленный к стеклу изогнутый мешок, весьма похожий на одеяло пожарников, которые ловят выбрасывающегося из окна горящего дома тяжелого мужчину фиг. Снова возникает мысль о резиновой оболочке. Если измерить силы, удерживающие оболочку, то видно, что эти же силы определяют форму маленьких капель. Можно даже говорить, что оболочка удерживает поднимающуюся по трубке жидкость[75], но более реально говорить о молекулах, которые вскарабкиваются по внутренней поверхности трубки и образуют изогнутый мениск.

Жидкости поднимаются не только в круглом стеклянном капилляре. Капиллярность проявляется в любом узком пространстве. Когда вода стекает между щетинками малярной кисти или увлажняет в ванне ваши волосы, то она заполняет не полые волоски, а узкие промежутки между отдельными волосками. На таком поведении жидкостей основано всасывание масла в ламповый фитиль, воды в банное полотенце и т.

Задача 3 трудная. Формула капиллярности Допустим, что подъем жидкости в капилляре определяется разностью давлений по обе стороны мениска. Вернитесь к опыту с двумя соединенными друг с другом мыльными пузырями см. Какой вывод только из этого опыта можно сделать о соотношении между высотой подъема в капилляре и его диаметром?

Задача 4. Капиллярность в несмачиваемой трубке Возьмем жидкость, которая образует со стенками трубки большой краевой угол. К задаче 4. Уровень ртути в широкой трубке показан, но рисунки не закончены.

Набросайте в тетради все эти рисунки и закончите их. Применения капиллярности Чтобы жидкость втягивалась в капилляр, а не только поднималась вверх, и вообще проникала в поры, необходим малый краевой угол между жидкостью и стенками пор. При большой величине краевого угла предметы будут оставаться сухими. Ниже приведены примеры, которые демонстрируют роль капиллярности и смачивания в природе и в быту.

Чернила на конце пера щель на конце пера подает чернила на бумагу вследствие капиллярности; стальные перья, применявшиеся прежде, когда они бывали новыми, имели большой краевой угол, и для улучшения работы перья следовало смочить слюной. Чернила на бумаге но поры в бумаге должны быть закрыты. Кровь на бинтах. Капли от насморка на слизистой оболочке носа.

Припой на металле для уменьшения краевого угла применяют флюс. Слюна на пище. Растворитель для краски на сухом порошке красителя. Жидкая краска на окрашиваемых поверхностях с этим связан ряд вопросов в технике живописи.

Мыльная вода при стирке грязной одежды. Вода на стеклах очков здесь нет узких промежутков, но при небольшом краевом угле конденсирующаяся на стекле вода создает плоскую пленку, а не туман из капелек. Блинное тесто на сковороде. Вода на полу в ванной.

Вода на стеклах очков мелкие капли быстрее испаряются. Важную роль капиллярность играет в садоводстве. Вода проникает в тонкие промежутки между частицами почвы. Разрыхление и вскапывание изменяет размеры этих промежутков и затрудняет доступ воды из глубины почвы к поверхности, предотвращая тем самым ее испарение.

Кирпичи пористы. Кирпичные дома на высоте 30 см или более от поверхности земли должны иметь изоляцию от влаги из непористого материала. Объяснение капиллярности с молекулярной точки зрения По всей трубке вверх поднимается очень тонкий слой жидкости, возможно, толщиной в одну молекулу, а за ним ползет основная масса жидкости, образуя искривленный мениск. Силы F1 и F2 для случаев малого и большого краевого угла схематически изображены на фиг.

Молекулярные силы, краевой угол и капиллярность. Поверхность жидкости располагается перпендикулярно равнодействующей R сил притяжения, действующих на ее молекулы. Это является результатом короткодействующих сил, которые проявляются при столкновениях с другими молекулами. Когда краевой угол равен нулю, стеклянная стенка, вероятно, на всем протяжении покрыта тонким слоем жидкости толщиной в несколько молекул.

Мениск всползает по этому слою жидкости. Рисунки весьма упрощены, так как на них не учтена сила тяжести. Вещества, облегчающие смачивание: мыла и моющие средства Очень часто, когда нужен малый краевой угол, природа дает нам большой. Овечья шерсть, например, не смачивается водой; это мешает обработке отары растворами при дезинсекции.

С обеденной посуды вода скатывается, как со спины утки, и даже на чайных стаканах порой остаются несмачиваемые отпечатки пальцев. А новые посудные полотенца, поступающие со склада с ужасной восковой отделкой! Нам необходимы молекулы-посредники, которые образовывали бы промежуточный слой и уменьшали бы краевой угол между водой и жирными тарелками, покрытыми воском волокнами одежды и т. Сейчас эту роль выполняют моющие средства, предшественником которых было мыло.

Мыло действует на жир с помощью поверхностного натяжения, помогая воде заползать под жир и отрывать его частички, которые смываются в виде эмульсии скопление мелких частиц жира, взвешенных в воде. Один конец молекулы мыла имеет сродство к воде вследствие химического или электрического притяжения[76], а другой конец инертен к воде, но легко присоединяется к жиру. В то время как «жирные» концы образуют облако вокруг частиц жира, «водяные» концы выступают наружу и притягивают воду. Современные синтетические мыла или стиральные порошки обычно облегчают смачивание.

Их молекулы действуют как посредники и уменьшают краевой угол.

Смачивающие жидкости поднимаются по капиллярам, несмачивающие — опускаются. Подъем смачивающей жидкости в капилляре. Верхний конец капилляра открыт.

Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр. Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде, а уровень воды в стеклянном капилляре поднимается.

Капиллярные явления играют большую роль в природе и технике. Множество мельчайших капилляров имеется в растениях. В деревьях по капиллярам влага из почвы поднимается до вершин деревьев, где через листья испаряется в атмосферу. В почве имеются капилляры, которые тем уже, чем плотнее почва.

Вода по этим капиллярам поднимается до поверхности и быстро испаряется, а земля становится сухой. Ранняя весенняя вспашка земли разрушает капилляры, т. Процесс кровообращения связан с капиллярностью. Кровеносные сосуды являются капиллярами.

В технике капиллярные явления имеют огромное значение, например, в процессах сушки капиллярно-пористых тел и т. Большое значение капиллярные явления имеют в строительном деле. Например, чтобы кирпичная стена не сырела, между фундаментом дома и стеной делают прокладку из вещества, в котором нет капилляров. В бумажной промышленности приходится учитывать капиллярность при изготовлении различных сортов бумаги.

Например, при изготовлении писчей бумаги её пропитывают специальным составом, закупоривающим капилляры. В быту капиллярные явления используют в фитилях, в промокательной бумаге, в перьях для подачи чернил и т. Рассмотрим примеры решения задач. Пример 1.

Эти силы определяют, насколько тесно молекулы жидкости связаны между собой на поверхности, что влияет на её поверхностное натяжение. Поверхностное натяжение Свойства поверхностного слоя жидкости. Поверхностное натяжение.

Способность уменьшать поверхностное натяжение называется поверхностной активностью 2. Условное изображение молекулы ПАВ Полярные группы в воде гидратируются, неполярная часть молекул ПАВ представляют собой гидрофобную углеводородную цепь или радикал. Молекула ПАВ из-за своего дифильного строения по-разному взаимодействует с молекулами воды в растворе: полярная часть легко гидратируется благодаря этому идет растворение молекул ПАВ — этот процесс энергетически очень выгоден , неполярный углеводородный радикал, слабо взаимодействуя с водой, препятствует межмолекулярному взаимодействию диполей воды друг с другом. В результате на поверхности образуется определённым образом ориентированный адсорбционный слой, в котором полярная часть обращена в воду, а неполярный радикал - в контактирующую фазу например, в воздух.

ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ

Форум самогонщиков, пивоваров, виноделов Иными словами, в зависимости от силы взаимодействия молекул жидкостного раствора зависит значение сила натяжения поверхности.
Поверхностное натяжение: чем вызвано, коэффициент, определение по формуле Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения.
Сила поверхностного натяжения Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул.
Почему поверхностное натяжение зависит от рода Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами.
Почему поверхностное натяжение зависит от рода жидкости кратко Поверхностное натяжение воды и других жидкостей зависит от рода жидкости из-за различий в их межмолекулярных силах.

Вопрос вызвавший трудности

  • Почему у воды высокое поверхностное натяжение?
  • почему поверхностное натяжение зависит от рода жидкости
  • Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)
  • Почему зависит поверхностное натяжение от рода жидкости
  • Почему у воды высокое поверхностное натяжение?

Почему поверхностное натяжение зависит от состава и свойств жидкости

Температурная зависимость поверхностного натяжения между жидкой и паровой фазами чистой воды Температурная зависимость поверхностного натяжения бензола Поверхностное натяжение зависит от температуры. 6 ответов на вопрос “Почему поверхностное натяжение зависит от рода жидкости?”. Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения. Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Почему у воды поверхностное натяжение больше, чем у других жидкостей? Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).

Поверхностное натяжение: основы и связь с температурой и родом жидкости

  • Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя
  • Почему поверхностное натяжение зависит от рода жидкости кратко
  • Смотрите также
  • Поверхностное натяжение — Юнциклопедия
  • Сила поверхностного натяжения

Свойства жидкостей. Поверхностное натяжение

Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. Потому что поверхностное натяжение зависит от межмолекулярных взаимодействий жидкости, а оно у всех жидкостей отличается. Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости. Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости?

Почему поверхностное натяжение зависит от рода

Для чистых жидкостей поверхностное натяжение зависит от природы жидкости и температуры, а для растворов – от природы растворителя, природы и концентрации растворенного вещества. Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. 1. Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости? Поверхностное натяжение жидкости зависит от нескольких факторов, которые определяют ее свойства и поведение на поверхности. Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой. Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

Почему поверхностное натяжение зависит от состава и свойств жидкости

Поверхностное натяжение жидкости Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью.
Почему поверхностное натяжение зависит от рода Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).

Поверхностное натяжение жидкости - формулы и определение с примерами

Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. Опыт 4. Ну и наконец, я проверил, зависит ли поверхностное натяжение жидкости от температуры. Так же взял лоток с водой, на поверхность воды положил бумажную модель лодки, во внутреннее отверстие капнул жидкое мыло с помощью пипетки. Жидкое мыло так же стремится вырваться наружу через узкий канал. Это связано с силой поверхностного натяжения жидкого мыла. А лодка при этом устремится вперед. Повторил опыт, изменяя температуру. Мы видим, что с увеличением температуры скорость движения лодки уменьшается меньше расстояние, пройденное лодкой. Уменьшается поверхностное натяжение воды. В результате, данная гипотеза не подтвердилась: поверхностное натяжение жидкости зависит от температуры жидкости.

Таким образом, в результате опытов, подтвердились гипотезы: 1 - Жидкости обладают поверхностным натяжением. А гипотеза 3 не подтвердилась: Поверхностное натяжение жидкости зависит от температуры. В результате проделанной работы я сделал выводы: Поверхностное натяжение всё-таки существует. Поверхностное натяжение жидкости зависит от рода жидкости и от её температуры. Поверхностное натяжение жидкости повсюду встречается в нашей повседневной жизни. Мне хотелось бы продолжить изучать свойства жидкостей. Интересно, почему и как образуется роса, как образуются облака.

Для них поверхностное натяжение падает сначала линейно, затем по логарифмическому закону. В растворах таких соединений с увеличением концентрации до некоторой критической величины — ККМ критической концентрации мицеллообразования образуются мицеллы — агрегаты из ориентированных молекул ПАВ. Поверхностное натяжение таких растворов определяется индивидуальными молекулами ПАВ, так как мицеллы почти не снижают поверхностное натяжение раствора — кривая 4.

Их называют силами поверхностного натяжения. Проявления сил поверхностного натяжения Чтобы убедиться в реальном существовании сил поверхностного натяжения, достаточно провести простые опыты. Поместить мыльную пленку на рамку и увидеть, как она стремится уменьшить свою площадь. Опустить проволочное кольцо в мыльный раствор и подействовать на него силой, чтобы оторвать от поверхности. Таким образом, силовое и энергетическое определения поверхностного натяжения тесно взаимосвязаны между собой и дополняют друг друга. Давайте разберемся, от чего зависит это удивительное свойство.

Зависимость поверхностного натяжения от условий Поверхностное натяжение определяется в первую очередь природой самой жидкости и того вещества, с которым она граничит обычно воздух или пар. Это связано с различной силой взаимодействия между молекулами.

Кровеносные сосуды являются капиллярами. В технике капиллярные явления имеют огромное значение, например, в процессах сушки капиллярно-пористых тел и т. Большое значение капиллярные явления имеют в строительном деле.

Например, чтобы кирпичная стена не сырела, между фундаментом дома и стеной делают прокладку из вещества, в котором нет капилляров. В бумажной промышленности приходится учитывать капиллярность при изготовлении различных сортов бумаги. Например, при изготовлении писчей бумаги её пропитывают специальным составом, закупоривающим капилляры. В быту капиллярные явления используют в фитилях, в промокательной бумаге, в перьях для подачи чернил и т. Рассмотрим примеры решения задач.

Пример 1. Найти разность уровней воды в коленах. Смачивание полное. Сила поверхностного натяжения должна уравновешивать вес столба жидкости в капилляре. Вес жидкости.

Учитывая, что получаем вес жидкости. Сила поверхностного натяжения равна произведению периметра линии контакта в нашем случае — окружность на коэффициент поверхностного натяжения:. Здесь отсутствует косинус краевого угла, так как смачивание полное и угол этот равен нулю, а косинус нуля — 1. Учитывая все это, получаем: Выражаем высоту столба:. Вычисленная по этой формуле высота столба в капилляре радиусом 0,5 мм — 0, 0292 м, или 29,2 мм, а в капилляре 1 мм высота столба 0,0146 м, или 14,6 мм.

Разница между высотой первого и второго составляет 14,6 мм. Пример 2. Воспользуемся формулой из предыдущей задачи, единственное, что в ней изменим — добавим косинус краевого угла, так как смачивание здесь не полное. Вес ртути: , а сила поверхностного натяжения равна произведению периметра линии контакта окружность на коэффициент поверхностного натяжения:.

Похожие новости:

Оцените статью
Добавить комментарий